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The concept of anisotropy of spin relaxation in nonmagnetic metals with respect to the spin direction of

the injected electrons relative to the crystal orientation is introduced. The effect is related to an anisotropy

of the Elliott-Yafet parameter, arising from a modulation of the decomposition of the spin-orbit

Hamiltonian into spin-conserving and spin-flip terms as the spin quantization axis is varied. This

anisotropy, reaching gigantic values for uniaxial transition metals (e.g., 830% for hcp Hf) as density-

functional calculations show, is related to extended ‘‘spin-flip hot areas’’ on the Fermi surface created by

the proximity of extended sheets of the surface, or ‘‘spin-flip hot loops’’ at the Brillouin zone boundary,

and has no theoretical upper limit. Possible ways of measuring the effect as well as consequences in

application are briefly outlined.
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Spin-relaxation processes are of fundamental importance
for the realization of spintronic devices, which aim at
utilizing the electron spin degree of freedom for processing
and transfer of information [1]. A nonequilibrium spin
distribution will equilibrate, and the corresponding infor-
mation will be lost on a time scale of the spin-relaxation
time T1. The dominant spin-relaxation mechanism in
structure- and bulk-inversion symmetric, nonmagneticmet-
als is the Elliott-Yafet mechanism [2,3], which is due to
scattering of electrons at phonons or impurities. Owing to
the presence of spin-orbit coupling (SOC) in a solid, such
scattering events will flip the spin of an electron with a
certain probability, which depends on both the wave func-
tions of the ideal crystal and the scattering potential. Within
the Elliott approximation in the diffusive regime, one
obtains that the ratio between the momentum and spin-
relaxation times is proportional to the Elliott-Yafet (or
spin-mixing) parameter b2, which is a property of the ideal
crystal only [2,3]. While b2 has long since been accepted as
a measure of spin relaxation, the anisotropy of b2 has not
been analyzed on a theoretical basis so far [4].

In an experiment measuring spin relaxation, the injected
electrons are characterized by the axis of spin polarization
which is determined, e.g., by the external magnetic field in
conduction-electron spin resonance or by the direction of
magnetization of ferromagnetic leads in spin-injection or
giant-magnetoresistance experiments. For our purposes we
call this direction the spin quantization axis (SQA) ŝ. As it
turns out, the SQA relative to the crystal latticematters for the
value of b2, and not just by a little. This gives us the notion of
anisotropy of theElliott-Yafet parameter andconsequently of
spin relaxation. It will thus make a difference in an experi-
ment if spins are injected into a metal from a ferromagnet
whose magnetization is normal to the interface, compared to
being parallel, as long as the metal exhibits a preferential
crystalline orientation. Since the spin population decays
exponentially with respect to the distance from the injection

point, with T1 entering in the exponent, the anisotropy can
make a difference between, e.g., a well-operating and a
defective giant-magnetoresistance junction. One realizes
also that we are faced with an anisotropy of an irreversible
process, i.e., of the entropy production during relaxation.
This can have far-reaching consequences, for example, in
the spin-entropy-induced Peltier cooling in nanojunctions
[7]. In this respect this anisotropy is fundamentally different
from other, known SOC effects, such as the magnetocrystal-
line anisotropy energy of ferromagnets or the anisotropic
magnetoresistance which arise from small changes of the
band energies depending on themagnetization direction. In a
nonmagneticmetal, the choice of the SQAdoes not influence
the band energies, but it manifests itself through matrix
elements determining the orbital and spin character of the
Bloch states, which can have a profound influence on spin
transport [8]. One also expects an anisotropy in the spin
susceptibility, since the spin-mixing parameter of a state is
directly related to its response to a Zeeman field.
In this Letter, we investigate the anisotropy of the

Elliott-Yafet parameter in nonmagnetic metals. For this
purpose we employ density-functional theory, which has
been successfully applied in the past to calculate the
spin-mixing parameter in various metals [9,10]. Our main
finding is that in noncubic transition metals, or generally
metallic systems of lowered symmetry, e.g., in the hcp
structure, the anisotropy of the Elliott-Yafet parameter
can be gigantic. We also demonstrate that in metals with
cubic symmetry, such as, e.g., bcc tungsten or fcc gold, this
anisotropy is much smaller, although it can still reach large
values. Moreover, we analyze the Fermi-surface properties
of the spin-mixing anisotropy and provide simple argu-
ments for a microscopic understanding of our results. Our
choice of materials (5d metals) is based on their similar
SOC strength but different crystal structures, which at the
end brings about anisotropy values differing by orders of
magnitude.
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The Elliott-Yafet theory is based on the observation that
the SOC of the lattice ions causes the Bloch eigenstates to
be a superposition of spin-up and spin-down character.
This superposition is often called spin mixing. The spin-
orbit Hamiltonian can be divided into a spin-conserving
�ðLSÞk and a spin-flip part �ðLSÞ"#, given respectively by

the first and second parts of the right-hand side of the
following expression:

�L � S ¼ �LŝSŝ þ 1

2
�ðLþ̂

s S
�̂
s þ L�̂

s S
þ̂
s Þ: (1)

Here,� is the SOC strength, ŝ is a unit vector in the direction
of the spin- (and generally angular-momentum-) quantiza-
tion axis (defining the SQA),L and S ¼ @

2� are the orbital

and spin angular-momentum operators, respectively, Lŝ ¼
L � ŝ, Sŝ ¼ S � ŝ, L�̂

s and S�̂s are the corresponding raising

and lowering operators for orbital and spin angular momen-
tum in the reference frame specified by the direction vector
ŝ, and� is the vector of Pauli matrices. It is clear that the dot
productL � S is independent of ŝ, leaving the eigenenergies
of the Hamiltonian invariant with respect to the SQA.
However, the spin-conserving and spin-flip parts separately
depend on the choice of the SQA.

The time-reversal and space-inversion symmetries
imply that the eigenenergies of the system at any Bloch
momentum k are at least twofold degenerate, with the
corresponding states taking the form [2]

�þ
kŝðrÞ ¼ ½akŝðrÞj "iŝ þ bkŝðrÞj #iŝ�eik�r; (2)

��
kŝðrÞ ¼ ½a��kŝðrÞj #iŝ � b��kŝðrÞj "iŝ�eik�r: (3)

The two spin states j "iŝ and j #iŝ are eigenstates of S � ŝ,
e.g., if ŝ k z, j "iz and j #iz are the eigenstates of the Sz
operator. The functions akŝðrÞ and bkŝðrÞ exhibit the peri-
odicity of the lattice. We define b2kŝ as the unit cell integralR
d3rjbkŝðrÞj2.
For fixed direction ŝ, the degenerate �þ

kŝ and ��
kŝ states

[and the corresponding akŝðrÞ and bkŝðrÞ] can be chosen, by
linear combination, such that the spin-expectation value
hSŝik ¼ h�þ

kŝjSŝj�þ
kŝi ¼ �h��

kŝjSŝj��
kŝi is maximal. The

spin-mixing parameter is then given by b2kŝ ¼ 1=2�
hSŝik=@ and is usually small, due to the weakness of the
SOC. In this case the Bloch states are of nearly pure spin
character. However, at special spin-flip hot spots in the
Brillouin zone (BZ), e.g., accidental degeneracies, BZ
boundaries, or other high symmetry points [11,12], b2kŝ
may increase significantly up to 1

2 , which corresponds to

the case of fully spin-mixed states. The Fermi-surface (FS)
averaged spin-mixing, or Elliott-Yafet, parameter is given by

b2ŝ ¼
1

nðEFÞ
1

@VBZ

Z

FS

b2kŝ
jvðkÞj d

2k; (4)

where vðkÞ is the Fermi velocity and VBZ is the BZ volume.
The normalization by the density of states at the Fermi level,
nðEFÞ¼1=ð@VBZÞ

R
FS jvðkÞj�1d2k, ensures that 0�b2ŝ � 1

2 .

Our calculations are based on the local density approxi-
mation to density-functional theory [13], employing the
Korringa-Kohn-Rostoker Green-function method [14] in
the atomic sphere approximation and solving the Dirac
equation with an angular-momentum cutoff of ‘max ¼ 4.
We choose a grid of at least 200 k points along each
direction in the full BZ, resulting in about 107 points at
the FS. We follow the procedure described in Ref. [15] to
maximize the spin component hSŝik at the FS points. The
details of determination of the Fermi surface and corre-
sponding FS integration will be published elsewhere.
First we discuss in detail hcp osmium, which exhibits a

uniaxial crystal structure. The Fermi surface of Os, pre-
sented in Figs. 1(a) and 1(b), consists of two nested sheets,
a surrounding surface crossing the BZ boundary, and
little hole pockets ‘‘P.’’ Analyzing the distribution of the
spin-mixing parameter b2kŝ on the FS, we observe a strong

dependence on the SQA, evident from comparing
Figs. 1(a) and 1(b). For ŝ along the c axis of the crystal
[Fig. 1(a)], the spin mixing is relatively uniform (b2kŝ �
0:05) for large areas of the FS, reaching larger values near
the pockets. However, this picture changes drastically
when ŝ is parallel to the ab plane [Fig. 1(b)]. In this case,
areas with full spin mixing (red, b2kŝ � 0:5) are prominent,

most clearly visible at the caps of the two nested FS sheets
(indicated by ‘‘H’’). Additionally, large areas with smaller,
but still strong spin mixing (b2kŝ � 0:3) are visible, e.g.,

in the area denoted by ‘‘B.’’ Overall, for the two considered
cases there is a strong qualitative difference in the
k-dependent spin-mixing parameter b2kŝ.
As for the Fermi-surface averaged b2ŝ , we find values of

4:85� 10�2 and 7:69� 10�2 for ŝ along the c axis and
parallel to the ab plane, respectively, yielding thus a
gigantic anisotropy of the Elliott-Yafet parameter, defined
as A ¼ ½maxŝðb2ŝÞ �minŝðb2ŝÞ�=minŝðb2ŝÞ, of 59%. The

anisotropy with respect to rotations of the SQA within
the ab plane is, on the other hand, negligible. These two
limiting cases are contained in Fig. 1(g), in which the value
of b2ŝ is shown as a function of all possible directions of ŝ
on the unit sphere. The absent (or very small) anisotropy
within the ab plane is reflected in the rotationally invariant
color scale around the c axis, as opposed to the large
difference between the ab plane and the c axis. A detailed
analysis reveals that the largest contribution to A comes
from the somewhat extended spin-flip hot areas with high
or intermediate values of b2kŝ > 0:15.
We delve into the anisotropy of the spin mixing at the

area around H by means of a numerical experiment.
Analyzing the band structure of Os along the high sym-
metry line from the center of the BZ (� point) through
theH point to the center of the hexagonal face (A point), in
Fig. 1(e), we see two bands crossing the Fermi level
at H, representing the two nested FS sheets of Figs. 1(a)
and 1(b). The splitting �SOC between these two bands is
due to SOC, as we have verified by the fact that they fall on
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top of each other when the SOC strength is scaled down
(not shown). Each band is twofold degenerate due to time-
reversal and inversion symmetry. This remanent degener-
acy can be lifted by applying a small Zeeman-like field B
coupling to the Bloch states via a term � � B, which breaks
the time-reversal symmetry and sets the SQA in the direc-
tion of B. We choose a weak B field with a magnitude of
40 meV and vary its direction. In Fig. 1(e), we clearly
observe a splitting of bands ‘‘1’’ and ‘‘2’’ for B along the
c axis (dashed red lines). However, for B in the ab plane,
the degenerate pairs 1 and 2 do not split (solid black lines).
We can relate this result to our findings for b2kŝ by employ-

ing perturbation theory arguments: In first order, the energy
shift of a state in the presence of a small B field is
proportional to the state’s spin-expectation value. This
numerical experiment shows that in the case that B k ab
plane the states are fully spin mixed, just as found by the
calculation of b2

k;ŝkab. It also reveals an anisotropy of the

susceptibility that follows from the anisotropy of the spin-
mixing parameter.

We are now in a position to give a simple line of argu-
ments demonstrating the microscopic mechanism that
leads to a large anisotropy in general. As a working ex-
ample, we use the calculated giant anisotropy at and in the
vicinity of the H point in Os. Important in the setup is the
presence of a degeneracy or near degeneracy at EF, here at

the pointH, of Bloch wave functions�1;2
k , which in a tight-

binding picture we represent as �1;2
k ¼ P

lmc
1;2
klmjl; mi.

Here, jl; mi are eigenstates of Lŝ for a given SQA ŝ in

the crystal, e.g., the z axis. The requirement for a large
anisotropy is met if the matrix elements of the spin-flip
SOC operator �ðLSÞ"# between �1

k and �2
k vanish. This

occurs if the expansions above exclude terms with l1 ¼ l2
and jm1 �m2j ¼ 1, where jl1; m1i contributes to �1

k and

jl2; m2i to �2
k. Here, concretely, we have found that only

the orbitals jd;�1i and jd;þ1i contribute to the bands 1
and 2 at H. These are superimposed to form the oriented
orbitals dxz and dyz which are the actual eigenstates of the

crystal field. Then the lifting of degeneracy is due only to
the spin-conserving SOC �ðLSÞk which causes no spin

mixing.
Suppose now that the SQA (and together with it the axis

for quantization of orbital angular momentum) is rotated

around y, from z to �z ¼ x. In the new frame ( �x �y �z ) we
denote the orbital functions and angular-momentum indi-

ces with an overline. The oriented orbitals have a new

resolution with respect to the new axes. For example, dyz
becomes d �x �y having a projection on jd;�2i, while dxz
becomes d �x �z having a projection on jd;�1i. As a result,

the expansions of �1;2
k with respect to the new frame

include orbitals with l1 ¼ l2 and j �m1 � �m2j ¼ 1 at the

same energy, allowing for nonzero matrix elements of the

spin-flip part of the SOC. For the SQA along z, the system
is ‘‘protected’’ against large-amplitude spin-flip transi-

tions, while for the SQA along x or y spin-flip transitions

are favored. What we have demonstrated here is that the

matrix elements of the spin-conserving and spin-flip part of

FIG. 1 (color online). Fermi surfaces of Os (a), (b), W (c), (d), and Hf (f). For an illustration of the nested sheets of Os and Hf, only
half of the Fermi surface is shown. The spin-mixing b2kŝ is shown in terms of a color code with the SQA ŝ (red arrows at the lower left
corners) along the c axis (a) and the ab plane (b). The splitting introduced by SOC and by a Zeeman-like field is shown in the band
structure of Os (e) along the �-A direction (BZ center to hexagonal-face center). For W, the cases ŝ k ½001� and [111] are shown in (c)
and (d), respectively. In (g) and (h), the Elliott-Yafet parameter b2ŝ is shown as a function of the SQA direction for Os and W,

respectively [in (g) and (h) the color scale is different than in the Fermi-surface plots]. The average of b2ŝ over all directions of ŝ,
corresponding to polycrystalline samples, are 0.0666 for Os and 0.0627 for W. (f) Hf Fermi surface with ŝ parallel to the ab plane. An
arrow indicates one of the spin-flip hot loops, clearly visible in red on the hexagonal face of the BZ. The hot loops vanish when ŝ is
rotated to the c axis, resulting in an anisotropy of 830% of the Elliott-Yafet parameter.
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the SOC can depend so strongly on the SQA that the spin

flip vanishes in one direction while it is maximal in an-

other. For example, while in the original frame the SOC-

induced band splitting at H arises from �ðLSÞk, in the new

frame the exact same splitting arises from �ðLSÞ"#, leading
to a spin mixing of 1

2 . It is, therefore, the direction of the

SQA that dictates which part of the Hamiltonian causes

most of the splitting, even though the sum of the two

contributions is independent of the direction of the SQA.

Other states, lying far away in energy due to the crystal

field splitting, play only a small role in the final result.
The mechanism for large anisotropy of the spin-mixing

parameter described above is of course not only specific to
the d states of Os, but it is also responsible for gigantic
values ofA that we find for hcp Lu (200%), hcp Re (88%),
and hcp Hf (830%). Particularly in hcp metals, there is a
special symmetry at the hexagonal face of the BZ that is
lifted only by the SOC [16]. Thus, whenever the FS of an
hcp metal happens to cut through the hexagonal face, the
resulting contour can obtain full spin mixing depending on
the SQA, as shown in Fig. 1(f) for Hf. These looplike
contours, or spin-flip hot loops, are a source of extremely
high anisotropy. The Fermi surfaces of Lu, Re, and Hf, for
example, contain such loops, but the one of Os does not,
since it does not cut through the hexagonal face. We further
observe that the magnitude of the effect can be strongly
enhanced by the large extension of the two near-degenerate,
parallel sheets of the FS, resulting in a spin-flip hot area
around the point of near degeneracy. For example, in Os we
obtain a hot area around pointH instead of a single hot spot
at H, while the position and topology of such areas gener-
ally depend on the FS and electronic structure.

We now turn to tungsten, which has a bcc lattice struc-
ture. When ŝ k ½001�, b2kŝ exhibits hot spots in directions

perpendicular to ŝ (denoted by ‘‘C’’) [Fig. 1(c)] but not at
the rotationally equivalent points along the z axis, follow-
ing the formation scenario similar to that at the H point in
Os. Additionally, many states with smaller spin mixing
(0:2< b2kŝ < 0:3) are present at the FS, leading to b2ŝ ¼
6:49� 10�2. For SQA along another high symmetry di-
rection, ŝ k ½111� in Fig. 1(d), the intensity at the point C is
reduced, but a large area with smaller spin mixing is clearly
present, resulting in b2ŝ ¼ 6:14� 10�2. For SQA along

[110], we find b2ŝ ¼ 6:26� 10�2. This leads to an anisot-

ropy A ¼ 6%, which is still large but 1 order of magni-
tude smaller than in hcp Os. In fact, we also predict rather
small anisotropy in other cubic transition metals, such as
Ir (1%) and Pt (0.4%). This observation is similar to the
dependence of the magnetocrystalline anisotropy energy
and anisotropy of the anomalous Hall effect [17,18] on the
symmetry of the lattice in ferromagnets: For the hcp struc-
ture with lower symmetry SOC contributes toA in second
order, while it enters only in fourth order in cubic crystals.
Generally, we expect the integrated value b2ŝ to exhibit the

full point-group symmetry of the lattice [evident in

Figs. 1(g) for Os and (h) for W], even if the map of b2kŝ
has a lower symmetry. The comparatively large anisotropy
value in W is partly a consequence of the d states, which
yield a strong directional anisotropy of the Fermi surface.
In contrast to this, the FS of fcc gold consists of s-like
states and can be regarded as almost spherical. For the
Elliott-Yafet parameter in Au, we find b2ŝ � 3:25� 10�2,

i.e., the same order of magnitude as in W and Os, but the
anisotropy is only 0.1%.
In conclusion, spin relaxation in metals can strongly

depend on the orientation of the injected-electron spin
axis due to a corresponding anisotropy of the Elliott-
Yafet parameter. The anisotropy is expected to be largest
in noncubic crystals and in the presence of extended nested
Fermi-surface sheets that are almost degenerate, resulting
in extended spin hot areas or hot loops instead of singular
spin hot spots; especially critical are cases where the
splitting between nested sheets is caused primarily by the
spin-orbit coupling. Since there is no theoretical limit on
the area of the nested sheets in this scenario, the anisotropy
can in principle exceed the large values calculated here and
is an effect worth investigating on a number of metals and
ordered alloys. While the precise scattering mechanism
will naturally affect the anisotropy, our results should be
measurable even if the exact value can deviate somewhat
from the one of the Elliott approximation. In this respect it
seems most beneficial to investigate the temperature de-
pendence of the effect, which can be attributed mainly to
phonons. We furthermore expect that anisotropy effects
should also be present in metallic alloys, heterostructures,
or ultrathin films, which we leave for future work.
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