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We present a theoretical analysis of the effects of uniaxial magnetic anisotropy and contact-induced exchange
field on the underscreened Kondo effect in § = 1 magnetic quantum dots coupled to ferromagnetic leads. First,
by using the second-order perturbation theory we show that the coupling to spin-polarized electrode results in
an effective exchange field B.i and an effective magnetic anisotropy Deg. Second, we confirm these findings
by using the numerical renormalization group method, which is employed to study the dependence of the
quantum-dot spectral functions, as well as quantum-dot spin, on various parameters of the system. We show
that the underscreened Kondo effect is generally suppressed due to the presence of effective exchange field and
can be restored by tuning the anisotropy constant, when |Deg| = | Begr|. The Kondo effect can also be restored
by sweeping an external magnetic field, and the restoration occurs twice in a single sweep. From the distance
between the restored Kondo resonances one can extract the information about both the exchange field and the
effective anisotropy. Finally, we calculate the temperature dependence of linear conductance for the parameters
where the Kondo effect is restored and show that the restored Kondo resonances display a universal scaling of

S = 1/2 Kondo effect.
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I. INTRODUCTION

Although manifestation of the Kondo effect in nanoscopic
systems of spin S > 1/2 has been the subject of exten-
sive experimental and theoretical studies for more than a
decade,'™ it is still attracting considerable attention. From
the experimental point of view, this was triggered by a
rapid development of techniques®?® allowing for controlled
preparation and investigation of single magnetic impurities,
such as atoms and molecules, placed on a surface® 13 or
captured in a junction.'*2° Furthermore, an important issue
is the interaction of individual large-spin atoms or molecules
with the environment, which may contribute to a magnetic
anisotropy.”!~?’ A significant uniaxial magnetic anisotropy,
in turn, results in an energy barrier for switching the
molecules’s spin between two metastable states, the feature
indispensable for potential applications in information storage
technologies.”®? Interestingly enough, the magnetic state of
such a system can, in principle, be controlled by means of spin-
polarized currents,?*->* which has already been experimentally
confirmed.”

In order to be able to exploit advantageous features stem-
ming from the presence of magnetic anisotropy, a possibility
of its external control would be very desirable. Indeed, several
experiments have so far confirmed the feasibility of such a
control. The most straightforward way to modify the magnetic
anisotropy of an adatom is just to change its nearest atomic en-
vironment, which can be achieved simply by deposition of the
adatom at topologically different points of a substrate.?>3+3>
More elaborate techniques demonstrated for molecules involve
the application of electric field,'”** or even the mechanical
modification of the molecular symmetry.®® In fact, the latter
method allows for a fully controllable and continuous tuning
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of the anisotropy constant, which was demonstrated for
a spin § =1 quantum dot in the underscreened Kondo
regime.’’

Screening of a quantum dot spin appears when the dot
becomes strongly coupled to electrodes. For temperatures T
smaller than the Kondo temperature Tk, the spin exchange
processes due to electronic correlations can lead to an
additional sharp peak in the density of states, the Kondo-
Abrikosov-Suhl resonance. Generally, in order to observe
full screening of a magnetic impurity spin S, the impurity
should be coupled to 25 screening channels.’”*** In turn, a
typical experimental setup for measuring transport through
quantum dots or molecules involves usually two contacts.
This implies that when connecting the spin S = 1 dot to two
(say first and second) leads, the spin could be, in principle,
fully screened.'® In order to observe the underscreened Kondo
effect, one needs to use a more specific setup, as demonstrated
by Roch et al.*® Since the screening becomes effective when
T < Tx* and the Kondo temperature depends exponentially
on the dot-lead coupling strength I', by connecting the dot
asymmetrically to external leads one obtains two different
Kondo temperatures: Té(z) for the first (second) lead. The
underscreened Kondo effect can be then observed when the
condition Ty « T < T3 is fulfilled.*® In such a case, the
spin is only partially screened by electrons of the strongly-
coupled lead, while the other lead serves as a weakly coupled
probe. Despite its theoretical simplicity, the first experimental
realization of the underscreened Kondo effect was reported
only very recently. 3646

In this paper, motivated, for example, by the experiments
of Parks et al.,® we analyze the transport properties of a spin
S = 1 system strongly coupled to a ferromagnetic reservoir. In
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FIG. 1. (Color online) Schematic of a two-level magnetic quan-
tum dot coupled to a metallic ferromagnetic electrode. The magnetic
moment of the electrode (denoted by a bold arrow) is collinear
with the dot’s easy axis. The dot levels have energies ¢; and &,
respectively, with § being the level spacing, while J denotes the
exchange interaction. The tunnel matrix elements between the dot
and the lead are denoted by T, for the dot level j and spin o.

particular, we focus on discussing how the uniaxial magnetic
anisotropy and the ferromagnetic-contact-induced exchange
field affect the underscreened Kondo effect. Our analysis is
based on the full density-matrix numerical renormalization
group (fDM-NRG) method,**=! which is known as the most
powerful and exact in addressing transport properties of
various nanostructures in the Kondo regime. As we are mainly
interested in the aspects of the underscreened Kondo effect,
which are related to the coexistence of magnetic anisotropy
and ferromagnetism of the screening channel, we assume a
model in which only one electrode is attached to the dot
(see Fig. 1). Such a setup defines a typical one-channel
Kondo experiment,’64¢ where the role of the second (weakly
coupled) electrode in the formation of the Kondo resonance
can be neglected (the corresponding Kondo temperature
tends to zero). Nevertheless, the second electrode, being a
weakly coupled probe (e.g., a tip of STM), will enable the
measurements of the conductance through the system and the
local density of states.

The paper is organized as follows. In Sec. II we describe the
model and method used in calculations. Section III is devoted
to basic concepts, where we discuss the spectrum of an isolated
dot and the effects of renormalization due to the coupling to
electrode. Numerical results and their discussion are presented
in Sec. IV with a special focus on the effects due to magnetic
anisotropy. Finally, the conclusions can be found in Sec. V.

II. THEORETICAL DESCRIPTION
A. Model
The total Hamiltonian of a two-level magnetic quantum dot
coupled to an external lead (see Fig. 1) can be written as

H= Hmol + Hlead + Htun» (1)

where the first term describes the quantum dot, the second
one refers to the lead, and the final term represents tunneling
processes between the dot and the lead.
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A bare two-level quantum dot can be characterized by the
model Hamiltonian

Huoo = D Y einje+U Y njnj,

j=120=1,] j=1.2
+U" > nigny +JS*+ DS+ B.S..  (2)
o.0'=14

joCjo and cja(c o) denotes the creation
(annihilation) operator of an electron with spin o and energy
g; in the jth level (j = 1,2). For convenience, we write the
energy levelsase; = ¢ — §/2and e, = ¢ 4 §/2, where ¢ is the
average value of the two levels, while § is the level spacing. The
Coulomb energy of two electrons of opposite spins occupying
the same level is given by U (assumed to be the same for
both levels), whereas the interlevel Coulomb correlations are
described by U’. For simplicity, we assume equal correlation
energies U = U’ in the following. Furthermore, J stands for
the interlevel exchange interaction with S = S; + S,, where
S; is the electron spin operator for the dot level j, S; =

In the above, n;, = Pl

% Zw, c}aaw,cja,, witho = (0¥,07,0%) being the Pauli spin
matrices. According to the Hund’s rules, this interaction should
be generally of a ferromagnetic type (J < 0); nonetheless, the
possibility of a weakly antiferromagnetic coupling has also
been reported.>” Finally, the lowest-order uniaxial magnetic
anisotropy is represented by the anisotropy constant D, and
the last term of Eq. (2) describes the Zeeman energy of the dot
in an external magnetic field B, applied along the dot’s easy
axis, with gug = 1.

The Hamiltonian for a ferromagnetic metallic reservoir of
noninteracting itinerant electrons is given by

Hicad = D . D Ekollpylyy- 3)

ko=t

Here, a,Tm (a4, ) creates (annihilates) an electron of energy o,
where k indicates a wave vector, while o is a spin index of
the electron. It is important to mention that in the following
discussion we assume that magnetic moment of the electrode
remains collinear to the dot’s easy axis.

Finally, tunneling of electrons between the electrode and
the dot is described in general by

Hun=»_ > Y Tyat,cjs +He., 4)

k j=120=1,)

where Tji, denotes the tunnel matrix element between the
dot’s jth level and the electrode (see Fig. 1). In the following
we assume that both levels are coupled symmetrically to
the electrode, that is, Tixy = Toxe = Tio. Although such
foundation is not the most general one,”3>* it is sufficient
for the present analysis of the effects resulting from mag-
netic anisotropy and exchange field in the context of the
underscreened Kondo problem. In order to further facilitate
calculations, we assume that the full spin-dependence is
included exclusively via the matrix elements 7,,,°>>% where the
k dependence has also been neglected. In addition, we assume a
symmetric and flat conduction band extending within the range
[—W, W], so that the density of states is p(w) = p = 1/2W),
and we use W = 1 as the energy unit. Consequently, the spin-
dependent hybridization function reads I'y = mp|T,|>. Now,
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introducing the spin polarization coefficient P of the electrode,
defined as P =Ty —TI'))/(I'y +T,), the spin-dependent
coupling can be parameterized as I'y) =TI'(1 £ P), with
=@y +T))/2

B. Objectives and method of calculations

The main quantity we are interested in is the zero-
temperature, spin-dependent equilibrium spectral function of
the quantum dot,

1 ,
Al (w) = —;Sm«cjglc;g))ﬁu (. =12, (5

. T .
with {(¢jplCiy e Fourier trans-

w

standing for the

form of the retarded Green’s function ((cj(,lc;,a)); =

—i9(t)({cja(t),cj,{,(O)}). It is worth noting that the spectral

function with two identical indices, that is, A{;j (w), is related
to the spin-resolved density of states associated with the jth

level, whereas AY /(a)) with j # j’ corresponds to processes
of electrons entering and leaving the dot at different levels.
Because measuring the spin-resolved components of the
spectral function may pose a serious experimental challenge,
we focus on discussing the total spectral function. Thus, we
introduce the normalized full spectral function A(w),

A@)=mY Y T, AV (). (6)
Jjit o

The importance of the spectral function A(w) stems from
the fact that in a two-terminal setup with the second lead
being a weakly coupled probe, for example, a tip of an STM
microscope, the differential conductance of the system at bias

voltage eV can be approximated as j—{, ~ eh—2A(a) =eV)78
On the other hand, the spectral function for w — 0, A(0),
determines the linear-response conductance.

In the light of the preceding discussion, the central problem

is the calculation of the spectral function A% (w). In the
Kondo regime, this can be reliably done by means of the
numerical renormalization group (NRG),***%4° which enables
us to analyze the static and dynamic properties of the system
in the most accurate manner. The essential idea of the method
lies in a logarithmic discretization of the conduction band
and mapping of the system’s Hamiltonian onto a semi-infinite
chain, with the quantum dot residing at the initial site. Iterative

S,=0 S;=-1 §;=1
~ e
D \\3—4// D
_-S;=-1,01~_ _
S;=-1y S;=1_-7 Groundstate =~ ~~_S;=0
P, - ="
' >
D<O0 D=0 D>0

Uniaxial magnetic anisotropy constant D

FIG. 2. (Color online) Sketch showing how the uniaxial magnetic
anisotropy lifts partially the degeneracy between the components
of the triplet S = 1. Note that in reality the energy of the S, =0
component is independent of magnetic anisotropy D.
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diagonalization of the Hamiltonian by adding consecutive
sites of the chain allows then for resolving key properties
of the system at energy scale A~"/2, with A > 1 denoting the
discretization parameter and n a given iteration.

In order to address the present problem efficiently, the
calculations have been performed with the use of the flexible
density-matrix numerical renormalization group (DM-NRG)
code.’"* In this study we exploited the Ucharge(1) X Uspin(1)
symmetries corresponding to conservation of the electron
number (charge) and the zth component of the total spin.

III. BASIC CONCEPTS

A. Isolated quantum dot

Before presenting and discussing numerical results on the
spectral functions, it is advisable to have a closer look at the
energy spectrum of an isolated quantum dot. For the sake of
clarity of the following discussion, let us assume that there is no
external magnetic field, B, = 0, so that the system’s behavior
is entirely determined by both the sign and the magnitude of
the uniaxial anisotropy constant D, as shown schematically in
Fig. 2.

In order to observe the underscreened Kondo effect, the
quantum dot needs to be occupied by two electrons which are
ferromagnetically exchange coupled. The ground state of the
dot is then a triplet with the components

ITy) =1S: =+1) = thl P,

1
ﬁ“ Ml dz+ 1l 1l (N

IT-) =1S: ==1) =1 {hl ),

where |x); denotes the local state of the jth level, with x =
0, |, 71 .d corresponding to zero, spin-down, spin-up, and
two electrons occupying the level, respectively. As long as
an external magnetic field and the magnetic anisotropy are
absent, the three triplet states remain degenerate and er, =
er, = er. =2 + U + 2J (see Fig. 2). Moreover, the triplet
remains the ground state provided the condition, §/2 — 2U +
5J/4 <& < —8/2—U —5J/4, is satisfied.®” However, the
magnetic anisotropy D lifts this degeneracy and the triplet
becomes partially split,

|To) = 1S: =0) =

er, =er, =26+ U +2J + D,
er, =2 + U +2J, ®)
er. =¢ep, =2e4+U+2J 4+ D.

As one can see, the energy of states |7.;) and |7_) depends on
D, while the energy of | Ty) is independent of D. Consequently,
when D < 0, the ground state is twofold degenerate and
corresponds to the states |7) and |7_), while for D > 0, the
ground state corresponds to |Tp) (see Fig. 2). This will have a
large impact on the Kondo effect, as discussed later on. Note
that the presence of magnetic field additionally splits the states
|Ty) and |T-).

B. Effective exchange field and anisotropy

The next question that straightforwardly arises is what
happens when the § = 1 quantum dot becomes attached to
a reservoir of electrons. If the temperature is lower than the
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Kondo temperature, T < Tk, the conduction electrons can
then screen only a half of the dot’s spin, whereas the residual
spin-% is left unscreened. At zero temperature, the system
behaves then as a singular Fermi liquid, that is, the Fermi
liquid with a decoupled S = 1/2 object.*"*?> In addition, it
turns out that multiple spin-flip processes responsible for the
Kondo resonance lead to renormalization of the quantum dot
parameters. One can, in principle, distinguish two different
effects associated with such a renormalization. First, the spin
degeneracy of the dot is lifted by an effective tunnel-induced
exchange field Bg. 3917 It was shown that the exchange
field can be tuned by a gate voltage®® and can be compensated
by applying an external magnetic field.%%*7 The second
effect, on the other hand, is related to the renormalization
of the anisotropy constant, A D, which results in an effective
anisotropy Degr, Desr = D + A D, as shown schematically in
Figs. 3(a)-3(c). This renormalization is independent of the
spin polarization P of the lead, while it depends weakly on the
gate voltage and cannot be compensated by external magnetic
field.

The renormalized energies €7, (i = 0,=%) of the triplet state
can be found from the second-order perturbation theory in the
tunneling Hamiltonian as g7, = ez, + 8, (i = 0,%), where
8¢y, is the second-order correction of the respective triplet
component. The renormalized triplet energies may be written
in the following way:

€r, = e, + 8e1, + Degr + Betr + B,
g1, = er, + e, )
€7 = er, + 8¢, + Dety — Berr — B,

where the effective exchange field Bt induced by a ferromag-
netic contact is given by®*

rp ! 1 - fw 1)
Beff=——2fdw{ LACO R ) } (10)
T w_Equlj w+Ele3j
j=%
and the effective anisotropy D.g can be expressed as
Dess = D+ AD, an

with the renormalization of the anisotropy constant A D of the
form

_Tr ' 1—fl® 1-f()
AD_nj:Zi/ da){

w_ETO,lj w_ETl,lj
_[ flw — fl) “ (12)
w + ETQ,3j w + ET|,3j '

The prime superscript in the above equations symbolizes
Cauchy’s principal value integrals, and f(w) stands for the
Fermi-Dirac distribution function of the contact. We note that
terms involving 1 — f(w) represent here electronlike charge
fluctuations, due to which the molecule loses one electron,
while terms with f(w) refer to the holelike processes, when
the charge of the molecule is increased by one electron.
Furthermore, E, g = &, — &g is the energy difference between
the corresponding states. The respective energies of singly
occupied states are £, = ¢ £6/2 4 3J/4 4+ D/4, while the
energies of states with three electrons are given by €31 = 3¢ +
3U £6/2+3J/4+ D/4. In Eq. (9) 8¢y, (8er, < 0) denotes
the second-order energy correction of the triplet component
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FIG. 3. (Color online) (a)—(c) Schematic representing level renor-
malization due to the effective anisotropy constant D.g and effective
exchange field By for the quantum dot with § = 1. Dashed lines in
(a) and (c) correspond to energy levels without the renormalization of
the uniaxial magnetic anisotropy constant, Dy = D [see Eq. (11)].
It is assumed that B.g < 0, so that the ground state [in (b) and (c)]
is |Ty). (Bottom panels) The dependence of B.y and Dy on the
anisotropy constant D for ¢/U = —1.4 (d) and on the level position
¢ in the Coulomb blockade regime for |[D|/I" = 0.1 (e). Note that in
(e) for D < 0 one also gets D¢ < 0, but for practical reasons | Deg|
is plotted. For comparison, in (d) we also show AD and D. The other
parameters are¢ = —17.5I',8 =2.5I", U = 12.5I", J = —2.5T", and
P =0.5.

|To) (uniform shift of the whole triplet). The explicit form of
de7, 1s not relevant for the present discussion, since it is the
difference between the above energies of triplet components
that determines the occurrence and features of the Kondo
effect. In the low-temperature regime, which except Sec. IV C
is in the main scope of the work, Eqgs. (10) and (12) simplify
significantly,

PT ’Em Epy 13

Beff =—1In
4 ET|,3—

Er 3¢
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AD = Dy |Eni- Enav Ens- Enss)

(14)
s ETU,l—

Ena+ Ens- Epag

We also note that the energies of triplet [Eq. (9)] explicitly
include the external magnetic field B,. This is relevant for the
discussion of system transport properties in the presence of
magnetic field, which is presented in the next section.

From Egs. (10) and (13) follows that the exchange field is an
intrinsic effect resulting from the spin-dependence of tunneling
processes and vanishes for P — 0. Moreover, B.g displays
monotonic dependence on the level position &, with Beg = 0
at the particle-hole symmetry point of the model, that is, for
e = —3U/2, and Begr < 0 for ¢ 2 —3U/2. This is shown in
Fig. 3(e). In addition, By also depends on the anisotropy
constant D [see Fig. 3(d)]. This dependence, however, is much
weaker than the dependence on ¢.

On the other hand, since €7, = 7, + D, one can imme-
diately conclude from Eqgs. (12) and (14) that AD — 0 as
D — 0. It is interesting to note that tunneling of electrons
leads to suppression of the magnetic anisotropy, AD < 0 for
D 2z 0, in the whole Coulomb blockade regime. Furthermore,
unlike the effective exchange field, A D is an even function of
the level position ¢ with the extremum (maximum for D > 0
and minimum for D < 0) in the particle-hole symmetry point,
where

I |QU —5J —3D)* — 48

AD,__w = —1 . 15
== " siypr_ae| Y

The dependence of the effective anisotropy Deg on the
magnetic anisotropy constant as well as on the level position
is shown in Figs. 3(d) and 3(e). One can note that Deg
depends strongly on D and only weakly on the level position,
which is just opposite to the behavior of the exchange field
Betr. Moreover, while Beg is due to the spin-dependence of
tunneling processes and vanishes for nonmagnetic leads, Degr
does not depend on the spin polarization and is finite also when
P =0,aslongas D # 0.

The above discussion suggests that transport properties
should be mainly determined by the interplay of the effective
anisotropy D.g, contact-induced exchange field B.g and the
Kondo temperature Tk . Additionally, the behavior of the total
spectral function also significantly depends on the tunnel-
coupling strength I (to observe the Kondo physics the coupling
should be sufficiently large). Experimental results show that
the Kondo phenomena in quantum dots can be observed when
I" is of the order of a few tenths of a meV for temperatures of
the order of mK.>>"17? Accordingly, in numerical calculations
we assume ' = 0.5 meV and use I' as the relevant energy
scale. For the quantum dot we assume the parameters that are
comparable to those observed in experiments, ¢ = —17.5T
(e = —8.75 meV), § =2.5T (6 =1.25 meV), U =12.5T
(U =6.25 meV), and J = —2.5T (J = —1.25 meV), if not
stated otherwise. Note that we assumed ¢/U > —3U/2, so
that if the lead is ferromagnetic, the ground state is |7.) due
to Begr < O [see also Fig. 3(c)].

IV. NUMERICAL RESULTS AND DISCUSSION

In the following we present and discuss numerical results
on the dot’s spectral density as a function of the anisotropy
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constant D, spin polarization of the lead P, and external
magnetic field B,. The main focus, however, is on the effects
arising from the magnetic anisotropy and effective exchange
field. Generally, the magnetic anisotropy in systems under
consideration can take fairly large values and can range
approximately from |D| < 0.05 meV for single-molecule
magnets,' 41773 up to a few meV for magnetic adatoms like
Mn, Fe, Co,??>% or some magnetic molecules.*® Further-
more, Park ef al.’® have shown that mechanical strain in a
certain type of Co complexes allows for a fully controllable and
continuous change of the magnetic anisotropy of a molecule.
This effect occurs since the stretching or squeezing of a
molecule leads to modification of the crystal field exerted on
the central Co ion. For the above reasons, the following results
are presented for a wide range of both positive and negative
uniaxial anisotropy constant D.

A. Influence of uniaxial magnetic anisotropy
1. Nonmagnetic lead

To begin with, let us first discuss briefly how the spectral
function of the system depends on the magnetic anisotropy in
the case of a nonmagnetic electrode.*® Figure 4(a) shows the
dependence of A(0) on D for several values of the exchange
interaction J. It can be seen that A(0) ~ 2 for |D| < Tk, where
Tk is the Kondo temperature, with A(0) decreasing below its
unitary value once |D| 2 Tx. Moreover, the resonance dies
away more abruptly for D > 0, where the spectral function
is practically equal to zero above some threshold value of the
anisotropy constant. Accordingly, one should expect there a
vanishingly small linear conductance of the system. Indeed,
such a behavior has been observed by Parks et al.’® who
reported splitting of the Kondo peak due to stretching the
molecule. The asymmetry between the decrease of A(0) for
positive and negative D is associated with different ground
states of the quantum dot (see Fig. 2). For D > 0 and Deg 2,
Tk, the ground state is |7Tp) and no spin-flip processes are
possible; consequently, A(0) becomes abruptly suppressed.
On the other hand, for D < 0 and |Deg| 2 Tk, the ground
state is twofold degenerate, with equally occupied states |7T7.)
and |7_) [see Eq. (9)]. Due to the spin selection rules for
tunneling processes, the second-order spin-flip cotunneling is
then suppressed and the Kondo resonance becomes suppressed
as well [A(0) starts decreasing]. However, there are fourth-
order tunneling processes that are still possible and therefore
A(0) decreases rather slowly with increasing | D|, opposite to
the case of positive D.

The features discussed above depend on the Kondo tem-
perature Tx. Since Tk is a function of the energy difference
between the ground state and single and three-particle virtual
states, the Kondo temperature can be tuned by changing the
exchange interaction J. When increasing |J|, one effectively
increases the energy differences and Tx becomes decreased.
Accordingly, the suppression of the Kondo effect occurs for
smaller values of D. This can be clearly seen in Fig. 4(a). Note
that the width of the maximum in A(0O) as a function of D is
roughly equal to 2Tk.
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FIG. 4. (Color online) Total normalized spectral function A(w)
of the dot for w — 0, A(0), as a function of the uniaxial mag-
netic anisotropy constant D for several values of the interlevel
exchange interaction J in the presence of (a) nonmagnetic (NM) and
(b) ferromagnetic (FM) electrode. The insets in (a) and (b) display
A(0) as a function of D/T plotted in a linear scale in the case of
nonmagnetic (a) and ferromagnetic (b) electrode for different values
of J. Note that in the inset in (a) the Kondo peaks have been shifted
by —0.01 for better visibility. (c) Variation of the spectral function
with the energy w and uniaxial magnetic anisotropy constant D for
J/T' = =2.5.(d) Cross-sections of the plot in (c) for selected values
of the uniaxial anisotropy constant D > 0. The other parameters are
e=—17.5I',6 =2.5I", U = 12.5T", and P = 0.5 [except (a) where
P =0].

2. Ferromagnetic lead

The situation becomes much more interesting when the
nonmagnetic reservoir is replaced by the ferromagnetic one.
The dependence of the spectral function A(0) on D is presented
in Fig. 4(b). First, for small values of | D|, and thus also | D/,
the height of the Kondo resonance is significantly reduced as
compared to the case of a nonmagnetic electrode, which is
due to the presence of exchange field B.g. Second, as D > 0
increases, one observes the revival of the Kondo effect at some
resonant value of the magnetic anisotropy constant, D = Dyeg.

PHYSICAL REVIEW B 86, 245415 (2012)

N
L
>

s
==
=

S
[~

1
I
I
I
I
1
1

Average spin (S,) Total spectral function A(0)

10% 10* 10° 102 10
Anisotropy constant D/T"

FIG. 5. (Color online) (a) Total normalized spectral function
A(w) of the dot for @ — 0 and (b) the corresponding expectation
value of the dot’s spin zth component as functions of the uniaxial
magnetic anisotropy constant D. Except J/I' = —2.5, remaining
parameters are the same as in Fig. 4.

However, further increase in D results in the drop of the
spectral function to zero, so that the behavior of the system
for large and positive D resembles that of a dot coupled to
a nonmagnetic electrode. In addition, the dependence on the
exchange coupling is also qualitatively similar to that in the
nonmagnetic case. When increasing |J|, Tk is reduced and the
width of the Kondo resonance as a function of D becomes de-
creased as well [see the inset in Fig. 4(b)]. In fact, the width of
the Kondo resonance for a given value of J is of the same order
in the case of nonmagnetic and ferromagnetic leads, compare
the insets in Figs. 4(a) and 4(b). In addition, the value of Dy
decreases with increasing J, which is due to the corresponding
dependence of Beg and Deg on the exchange coupling J.

Since the spectral function can be substantially modified
upon altering the anisotropy constant D, the following dis-
cussion is focused on the interplay of D.g and Beg, which
governs the transport behavior in the Kondo regime. In the
remaining part of the paper we present and discuss numerical
results for a fixed value of the exchange coupling, J/I" = —2.5
[corresponding to the bold lines in Figs. 4(a) and (b)].

As follows from Eq. (13), the strength of Beg depends on
the spin polarization P of the reservoir, Beg ~ PI'. Moreover,
through the energy differences between respective states, Begr
is a function of all parameters of the model, including the
magnetic anisotropy constant D. First of all, unlike AD [see
Eq. (14)], By is finite for D — 0. More specifically, for
parameters used in Figs. 3(d) and 4(c) and 4(d) it approaches a
constant value of B/ ' & —0.087. Since the exchange field
lowers the energy of the highest-weight triplet component |77 )
[see schema (b) in Fig. 3], one can observe almost full spin
polarization of the dot, (S,) — 1 [see Fig. 5(b) for D — 0].
Note, however, that the dot’s spin can be flipped to (S,;) — —1
for e < —3U/2, where By > 0 and |T_) becomes the ground
state of the system. This can be achieved, for instance, by
applying a gate voltage. In addition, By also depends on
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the anisotropy constant and it can either increase or decrease
depending on the sign of D [see the solid line in Fig. 3(d)]. For
the parameters used in calculations, the modification of Beg
for | D| = I'/10is, however, rather small (~1%). The variation
of the exchange field as a function of D is thus of rather minor
significance for I' > | D|, but nevertheless the interplay of D
(Detr) and Begr turns out to be crucial for the occurrence of the
Kondo effect.

Let us focus first on the case of D < 0, where no restoration
of the Kondo resonance takes place [see the left side of
Fig. 4(b)]. The ground state for P =0 would be doubly
degenerate. Because of the exchange field, this degeneracy,
however, is lifted and the ground state is |7..). The state
|T,) remains the ground state in the whole range of D < 0
considered in this paper. In consequence, there is no Kondo
effect for D < 0.

The situation, however, is much more complex in the case of
D > 0, where the restoration of the Kondo resonance appears
[see the right side of Fig. 4(b)]. For small values of D, where
the dominant energy scale due to renormalization processes
is set by the exchange field B.g, the ground state is |77)
and the situation is similar to that for D < 0. Nonetheless, as
the magnetic anisotropy grows, the condition Begs + Degr = 0
becomes satisfied at some point (note that for the assumed
parameters Beg < O while Degr > 0) and the state |T.) gets
degenerate with the state |7y). The difference between the
spin zth components of the states |7';) and |Tp) is 1, so the
second-order spin-flip cotunneling processes are possible and
the Kondo effect can be restored. A(0) reaches then its maximal
value.

The above-described behavior can be also observed in the
full energy dependence of the spectral function A(w) [see
Figs. 4(c) and 4(d)]. The Kondo resonance is restored when
D = Dy, = I'/10 and is immediately suppressed once D >
D:es. On the other hand, the suppression is less effective on the
left side of the restored Kondo resonance, as discussed above.
In addition, the energy dependence of the spectral function
in Fig. 4(d) reveals small side peaks for D > D, which
are reminiscent of the Kondo effect and occur for energies
w & £|Defr + Begt| corresponding to restored degeneracy of
the states |7..) and |7p). Apart from this, at large energies,
w =~ U, there are typical Hubbard resonance peaks.

Since the occurrence of the Kondo resonance depends on
the ratio of Begr and Dy, it is interesting to study variation of
A(0) with D for different values of lead’s spin polarization.
This is shown in Fig. 5(a). When P =0, A(0) shows a
maximum for such D that the condition | Dege| < T is fulfilled.
If the spin polarization is finite, the maximum is shifted
towards larger values of anisotropy and occurs precisely
when the states |T,) and |7j) become degenerate, that is, for
D = D. Note that the width of the peak in A(0) as a function
of D is of the same order for all values of spin polarization P.
Since the dot is coupled to one electron reservoir, only half of
the dot’s spin can be screened by the conduction electrons for
D = Dys. As aresult, in the underscreened Kondo regime the
expectation value of the dot’s spin should reach (S;) ~ 1/2,
since the unscreened residual spin-% is polarized due to the
presence of exchange field. This can be seen in Fig. 5(b),
which shows the dependence of (S,) on D for several values
of P. For D < D, the ground state of the dot is |7';) and
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FIG. 6. (Color online) (a) Dependence of the magnetic anisotropy
constant D, at which the Kondo resonance is restored on the
interlevel exchange coupling J for P = 0.5 and (b) on the spin
polarization P for J/I' = —2.5. Other parameters as in Fig. 4.

(S;) is close to one, while for D > Dy, the ground state is
|Tp) and (S,) = 0. On the other hand, for D & D, one finds
(S;) = 1/2 [see Fig. 5(b)]. However, closer analysis of (S;)
shows that it actually fails in attaining its maximum value
for D < D,. This is related with the fact that the ratio U/ T’
is relatively large for the assumed parameters and there is
nonzero occupation probability of other spin components of
the triplet.® However, when increasing the spin polarization P
of the lead, the splitting of the levels grows due to the exchange
field, Bess ~ PT', and the occupation of the triplet component
|T,) is raised. In consequence, one finds that (S;) — 1, if
P — 1.

Knowing the analytical condition, Beg + Degr = 0, for the
occurrence of the Kondo resonance for D > 0, it is instructive
to analyze the role of magnetic anisotropy renormalization.
For this purpose, in Fig. 6 we present the dependence of
Dyes on J and P. The solid (dashed) line corresponds to Dieg
determined from the analytical formulas for Beg and Deg with
(without) including A D, while the dots show D, obtained
from NRG data. As one can see, the NRG results are in very
good agreement with analytical results when AD is taken
into account. Thus, the estimations based on the analytical
expressions for the exchange field and effective anisotropy
[Eqgs. (13) and (14)] are quite satisfactory. The renormalization
of D is thus an important effect that needs to be included in
theoretical considerations of spin § 2 1 systems exhibiting
magnetic anisotropy.

To demonstrate additional features of the interplay between
magnetic anisotropy and exchange field, we show in Fig. 7 the
energy and spin polarization dependence of the normalized
spectral function A(w). The full energy dependence of the
spectral function may prove to be useful in predicting some
qualitative information concerning transport properties of the
system at a finite bias. As discussed earlier, the spin polariza-
tion P determines the strength of B, without affecting Deg.
In consequence, all w-dependent features in Fig. 7 should,
in principle, stem from the changes of Bt with respect to
Degi. For P < P, where Py is the value of spin polarization
at which the Kondo resonance is restored, one observes a
well-pronounced dip, which indicates that the system’s ground
state is nonmagnetic, that is, |7p). In the present picture,
increasing o turns to be equivalent (to some extent) to the
application of an external bias voltage when the dot would
be asymmetrically attached to two contacts.”® For P — 0,
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FIG. 7. (Color online) Total normalized spectral function A(w) of the dot shown as a function of energy w and the spin polarization
parameter P for indicated values of the uniaxial magnetic anisotropy constant D. Other parameters are the same as in Fig. 5.

the spectral function attains then its local maximum at w that
approximately corresponds to the degeneracy of the states |Tp)
and |7). From this, in turn, D can be straightforwardly
obtained, that is, Dt ~ w. As P increases, the magnitude
of the exchange field |B.s| increases as well, and this is
accompanied by a decrease in the energy gap Begr + Degr-
This appears then as a gradual narrowing of the dip, until
the two states, that is, |7+) and |7j), become degenerate, and
the Kondo resonance is restored [see Figs. 7(a)-7(e)]. For
larger values of P, the system’s ground state is |7.) and the
Kondo resonance is suppressed again. There are, however, two
satellite peaks at energies w = =£|Degr + Befr|, Whose position
depends linearly on P, and whose height diminishes as P
grows further. Moreover, it turns out that for larger values of
D [see Figs. 7(f) and 7(g)] no restoration of the Kondo effect
is possible. This is because the magnitude of exchange field
is too low to compensate the effective anisotropy Deg and the
degeneracy of states cannot be restored even if P — 1.

B. Influence of an external magnetic field

Figure 8 shows the dependence of the spectral function A(0)
and the average value of dot’s spin (S;) on the magnetic field
B.. It can be noticed that while the Kondo effect for D < 0
can be restored just for a single value of B,, for D > 0 the
restoration occurs twice. In order to understand this behavior
one should bear in mind that the external magnetic field affects
the components |7,) and |7_) of the triplet state and thus can
be used to compensate the splitting induced by exchange field
B.f due to ferromagnetic contact® [see Eq. (9)]. In the case of
vanishing D and B, = 0, the Kondo resonance is suppressed
due to the exchange field B.g and the system ground state
is |T4). With increasing B,, all three components of the
triplet state become degenerate once B + B, ~ 0, and the
system is in the underscreened Kondo regime. Nevertheless,
because only a half of the dot’s spin can be screened by
conduction electrons, the remaining spin—% can be polarized
by any infinitesimal magnetic field (at zero temperature). This
leads to strong sensitivity of the ground state on magnetic field,
which hinders the full restoration of the underscreened Kondo
effect.%

For D < 0, the increase of B, can only restore the de-
generacy between the highest and lowest-weight components
of the triplet. In consequence, one observes a small peak at
B, = | B«| [see Fig. 8(a)], where the ground state changes
from |T) to |T_) [see Fig. 8(c)]. Note that the position of this
peak does not depend on D. On the other hand, for positive
anisotropy D > 0, the full restoration of the Kondo effect is
possible [see Fig. 8(b)]. Moreover, contrary to single-level
quantum dots,’® the restoration with increasing B, occurs
twice. This can be understood by studying the evolution of the
ground state with magnetic field [see Fig. 8(d)]. For B, =0
and D > 0, the ground state is a singlet, |7p). By lowering

Anisotropy constant D < 0 Anisotropy constant D > 0

(a) DT =0
----- |D)/T = 0.05
15 e [D)/T = 0.1 1
=w=w= |D|/T'=0.15

— |DJI=02

Average spin (S;) Total spectral function A(0)

1 —
-04 -02 0 02 0404 -02 0 02 04
Magnetic field B, /T’ Magpnetic field B, /T’

FIG. 8. (Color online) Dependence of the total normalized spec-
tral function A(w) for @ — 0(a),(b) and the average zth component of
the spin (S;) (c),(d) on an external magnetic field B, oriented along
the dot’s easy axis. Different lines correspond to selected values
of the uniaxial magnetic anisotropy constant D, and the left panel
corresponds to D < 0, while the right panel refers to D > 0. Except
for P =0.5and J/T" = —2.5, all remaining parameters are the same
as in Fig. 4.
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the magnetic field, B, < 0, the ground state changes to |77.)
for B, &® — D¢t — Befr, while by increasing B,, once B, =~
De¢ss — Besr, the ground state changes to |7-). Consequently,
once B, & + D, — Begr, the twofold degeneracy of the ground
state becomes restored and the Kondo effect can develop.
One observes then two maxima in A(0) [see Fig. 8(b)]. Note,
however, that different states are responsible for these two
Kondo peaks. For B, &~ —D.g — B, it is the degeneracy
between the states |77.) and |Tp) that results in the formation of
the Kondo effect, while for B, & D¢g — Bess, the states |7_)
and |Tp) are degenerate. It is also worth noting that since the
Kondo temperature is rather independent of D, the width of
the restored Kondo peaks is the same for all values of D [see
Fig. 8(b)].

From the magnetic field dependence of A(0) one can obtain
the information about the magnitude of both Beg and Deg.
Suppose the restoration of the Kondo effect occurs for B, =
B') and B, = B?); then the effective anisotropy constant can
be related to a half of the distance between the two restored
Kondo resonances Degr = |B{)) — B2)|/2. On the other hand,
the magnitude of the exchange field can be found from
the average, Ber = —(B) + B2))/2. Studying the magnetic
field dependence of the zero-energy spectral function, which
would correspond to measuring the low-temperature zero-bias
conductance, may be thus useful in obtaining information
about both the effective anisotropy and exchange field.

C. Temperature dependence of linear conductance

Itis very instructive to study the temperature 7' dependence
of the linear conductance, G(T'), in the underscreened Kondo
regime and for parameters where the restoration of the Kondo
effect appears. Generally, the conductance in the under-
screened Kondo regime can be measured by attaching a second
weakly coupled electrode, which, due to much smaller Kondo
temperature, is irrelevant for screening the dot’s spin.>¢4¢ The
linear conductance has been calculated by means of the NRG
method with the full density matrix, and the Meir-Wingreen
formula.”* The normalized linear conductance as a function of
temperature 7 is shown in Fig. 9(a) for the underscreened
Kondo effect (dashed line), that is, for P = D = B, =0,
and for parameters where the restoration of the Kondo effect
occurs, first when the condition Deg + Begr = 0 is met (solid
line) and second when the restoration is obtained by applying
magnetic field, that is, when D¢ — Begr — B, = 0 is satisfied
(dotted line). The relevant Kondo temperatures are also given
in the figure. Tx is defined here as the value of T where
G(T)/G(0) = 1/2. Figure 9(b) displays the universal scaling
curves of normalized conductance G(7')/G(0) as a function
of T/Tk.For D =0, P =0 and in the absence of magnetic
field, we observe scaling typical for the underscreened Kondo
regime,* which has been recently measured experimentally.*
The temperature dependence of the linear conductance for
parameters where the restoration of the Kondo effect occurs
also turns out to be universal [see Fig. 9(b)]; however,
the scaling is completely different from the underscreened
Kondo effect. For parameters where the restoration occurs,
the ground state is twofold degenerate, that is, either |7T7)
and |Tp) or |Tp) and |7-) components of the triplet state are
degenerate; therefore, one should expect the same scaling as
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FIG. 9. (Color online) The temperature dependence of the nor-
malized linear conductance G(T')/ G(0) (a) and the universal scaling
curves (b). The relevant curves correspond to (i) underscreened Kondo
effect, with D =0, P =0, B, = 0; (ii) restored Kondo resonance
when Begr + Der = 0, with D/ " = 0.1, P = 0.5, B, = 0; and (iii)
restored Kondo resonance by magnetic field B, = Degt — Begr, With
D/T ~0.2,P=0.5, B;/I" ~0.22. The curves (ii) and (iii) display
scaling typical for spin § = 1/2 Kondo effect [dot-dashed line in (b)].
Other parameters the same as in Fig. 4 with J/ " = —2.5.

for the spin S = 1/2 Kondo effect.”> Indeed, we compare
the universal scaling of the linear conductance for restored
Kondo resonances of S = 1 quantum dot with the scaling for
typical S = 1/2 Kondo effect and find perfect agreement [see
Fig. 9(b)].

V. SUMMARY AND CONCLUSIONS

By means of the NRG method, we have studied transport
properties of a magnetic S = 1 quantum dot coupled to a
ferromagnetic lead in the underscreened Kondo regime. Due
to the coupling of the dot to an external lead, the following
two effective parameters are shown to play an important role:
The effective exchange field Besr and the effective anisotropy
constant Degr. The interplay of the corresponding interactions
is crucial to understand behavior of the system transport
properties, especially regarding the evolution (suppression
or restoration) of the Kondo effect as a function of various
parameters of the model considered. Using the second-order
perturbation theory, we have derived analytical formulas for
both B and Deg. It turns out that the effective anisotropy
Degr depends strongly on D and Deg — 0 as D — 0. Fur-
thermore, Des is an even and weakly changing function of
the level position ¢, with an extremum at the particle-hole
symmetry point, ¢ = —3U /2, and does not depend on the spin
polarization of the ferromagnetic lead. The effective exchange
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field Begr, on the other hand, depends linearly on lead’s spin
polarization P and Beg — O for P — 0. Furthermore, it
is an odd function of level position ¢ and vanishes at the
particle-hole symmetry point, ¢ = —3U /2. B also depends
on D, although this dependence is rather weak. We compared
the analytical formulas for B and Deg with the NRG data
and found very good agreement.

By performing extensive NRG calculations, we have stud-
ied variation of the spectral functions with various parameters
of the system. We have shown that the underscreened Kondo
effect is generally suppressed due to the presence of magnetic
anisotropy and exchange field. It can be, however, restored by
tuning the magnetic anisotropy constant D. The restoration oc-
curs only for positive anisotropy, D > 0, while no restoration
takes place when the magnetic anisotropy is negative, D < 0.
Moreover, the restoration of the Kondo resonance also occurs
as a function of magnetic field applied along the easy axis. By
sweeping the magnetic field, the Kondo effect can be restored
twice in a single sweep. The restoration always occurs due to
the degeneracy between the components of the triplet state that
differ in the spin S, quantum number by 1.

We have also determined the temperature dependence of
the linear conductance for some characteristic parameters,
where the restoration of the Kondo effect occurs. It turned out
that the restored Kondo resonances exhibit a universal scaling
as a function of T/ Tk characteristic of spin S = 1/2 Kondo
quantum dots. This is due to the fact that for parameters where
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the restoration of the Kondo effect is possible, the ground state
is twofold degenerate.

Finally, we would like to emphasize that when considering
spin-resolved transport through nanostructures of spin S > 1
exhibiting magnetic anisotropy, there are two relevant and
distinct effects that need to be taken into account in order
to fully understand behavior of the system. The first one
is the exchange field induced by ferromagnetic contact, and
the second one is associated with effective (renormalized)
magnetic anisotropy. We also remark that nanoscopic systems
for which the magnetic anisotropy is a generic feature, as the
ones discussed in this paper, present just one possible way
of employing magnetic anisotropy as a key element of novel
spintronics devices. More recently, it has been suggested that
spin anisotropy can also be generated in spin-isotropic systems
by spin-dependent transport of electrons.”®”’
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