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We present a first-principles computational scheme for investigating the ballistic transport properties of one-
dimensional nanostructures with noncollinear magnetic order. The electronic structure is obtained within density
functional theory as implemented in the full-potential linearized augmented plane-wave method and mapped
to a tight-binding-like transport Hamiltonian via noncollinear Wannier functions. The conductance is then
computed based on the Landauer formula using the Green’s function method. As a first application, we study
the conductance between two ferromagnetic Co monowires terminated by single Mn apex atoms as a function
of Mn-Mn separation. We vary the Mn-Mn separation from the contact (about 2.5 to 5 Å) to the far tunneling
regime (5 to 10 Å). The magnetization direction of the Co electrodes is chosen either in parallel or antiparallel
alignment and we allow for different spin configurations of the two Mn spins. In the tunneling and into the
contact regime, the conductance is dominated by s-dz2 states. In the close contact regime (below 3.5 Å), there
is an additional contribution for a parallel magnetization alignment from the dxz and dyz states which give rise
to an increase of the magnetoresistance as it is absent for antiparallel magnetization. If we allow the Mn spins
to relax, a noncollinear spin state is formed close to contact due to the competition of ferromagnetic coupling
between Mn and Co and antiferromagnetic coupling between the Mn spins. We demonstrate that the transition
from a collinear to such a noncollinear spin structure as the two Mn atoms approach leaves a characteristic dip in
the distance-dependent conductance and magnetoresistance of the junction. We explain this modification of the
spin-valve effect due to the noncollinear spin state based on the spin-dependent hybridization between the dxz,yz

states of the Mn spins and their coupling to the Co electrodes.

DOI: 10.1103/PhysRevB.86.165449 PACS number(s): 73.63.−b, 73.23.Ad

I. INTRODUCTION

Break-junction experiments have allowed to perform trans-
port studies on nanoscale metallic contacts in which the
mean-free path of the electrons is much larger than the junction
length. The observation of quantized conductance in such
systems is a hallmark of ballistic transport and opened new
vistas to study the scaling of electronic devices down to the
atomic length scale.1 A drawback of such experiments is the
limited control of the microscopic arrangement in the junction
which hinders a straightforward interpretation of the data and
makes a comparison with theoretical calculations difficult.2

In this respect, a great advantage is given by the use of
scanning tunneling microscopy (STM) experiments, in which
a tip can approach and contact single atoms or molecules
on a surface.3–8 In such experiments, it has been possible to
measure the conductance as a function of tip-sample distance
from the tunneling to the contact regime. Due to the promise
of spintronic devices for future applications with low power
consumption and high speed, a recent focus of such contact
measurements has been magnetic systems, e.g., spin-valve
behavior has been observed in single magnetic molecules or
atoms on surfaces8,9 and the occurrence of the Kondo effect
has been found in ferromagnetic atomic contacts.10

It has been emphasized that the low coordination of the
contact atoms in nanoscale junctions leads to an enhanced ten-
dency towards magnetism, e.g., magnetic moments are formed
in systems of otherwise nonmagnetic materials.11–15 Natu-
rally, transport phenomena in such magnetic low-dimensional
systems have raised a lot of attention and triggered many

theoretical studies, which mainly focused on systems with
collinear magnetic order, considering also the effect of
magnetoresistance.16–21 It was recently pointed out that if the
magnetization direction of the two electrodes is opposite, a
domain wall can form in the contact between them and the non-
collinear order in the domain strongly affects the conductance
and the magnetoresistance.22–24 Finally, the effect of spin-orbit
coupling on the conductance needs to be considered,16,25

which leads to novel transport phenomena such as the ballistic
anisotropic magnetoresistance16,26 or the tunneling anisotropic
magnetoresistance.27,28

Recently, the transition regime from tunneling to contact
in a spin-polarized STM geometry has been studied based
on density functional theory in order to explain, e.g., the
conductance of a single magnetic atom,5 and to analyze
the contribution from different conduction channels.21 As a
magnetic STM tip approaches a single magnetic atom on a
surface to measure the distance-dependent conductance (as
in Ref. 8), an exchange interaction with the tip apex atom
occurs. In principle, it is possible to switch the magnetic
moment of the adatom in such a way.29 If the magnetic
moment of the adatom is exchange coupled to the substrate
(as in Ref. 8), there is a competition of exchange interactions
which can result in a canting of the spins close to contact.
Noncollinear spin alignment in such an atomic contact can
also occur if the adatom spin is canted due to exchange
coupling on a substrate with a spin spiral structure as in
Refs. 30 and 31. The noncollinear spin alignment between
tip apex atom and adatom can influence the conductance
measured with an STM. It may be the origin of the nontrivial
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behavior of the distance-dependent magnetoresistance found
experimentally by STM far in the contact regime (Ref. 8).
Here, we use first-principles calculations to elucidate the effect
of noncollinear spin states on the conductance and on the
spin-valve effect of single-atom contacts.

We introduce an approach to calculate the conductance in
magnetic nanojunctions with noncollinear spin structure from
first principles, employing the methodology of noncollinear
Wannier functions (WFs), which we describe in detail. In
order to start from an accurate description of the electronic
and magnetic structures of the system, we use the full-potential
linearized augmented plane-wave (FLAPW) method based on
density functional theory. We map the electronic structure of a
system in a noncollinear magnetic state from the FLAPW
description to a tight-binding-like Hamiltonian via WFs.
Finally, we calculate the conductance within the Landauer
approach with the technique of Green’s functions.

As a model system, we consider two Co monowires to
each of which a single apex Mn atom is attached. We
vary the distance between the two Mn atoms in order to
calculate the conductance from the tunneling to the contact
regime. The magnetization direction of the two Co electrodes
is chosen either parallel (P) or antiparallel (AP), which allows
us to obtain the distance-dependent magnetoresistance. In the
tunneling regime, the conductance is dominated by states of
s-dz2 -orbital character and only in the contact regime there is
an additional contribution due to dxz,yz states. As the latter
conduction channel is suppressed in the AP alignment, the
magnetoresistance displays a large rise close to contact.

When the two Mn atoms approach in the P electrode align-
ment, a competition of the exchange interactions between the
two Mn spins and between the Mn spins and the Co electrodes
occurs. While the Mn spins couple ferromagnetically to the Co
electrodes, they couple antiferromagnetically with each other.
As a result, a noncollinear arrangement becomes the magnetic
ground state and the angle between the two Mn spins changes
gradually from 0◦ to about 105◦ at the closest separation we
considered. The conductance displays a characteristic dip as
the noncollinear state forms, which is also apparent in the
distance-dependent magnetoresistance. We explain this reduc-
tion of the conductance due to noncollinear spin states from
the spin-dependent hybridization of dxz,yz states between the
two Mn atoms which depends on the angle between their spin
moments and partly suppresses the conduction in this channel.

The paper is organized as follows. In Sec. II, we introduce
our method to calculate the conductance of a one-dimensional
nanoscale junction with a noncollinear spin structure. We
discuss the extension of Wannier functions to systems with
noncollinear order (Sec. II A), the implementation within the
FLAPW method (Sec. II B), and the incorporation into our
transport code (Sec. II C). In Sec. III, we introduce our model
system consisting of two Co monowires to each of which a
single Mn atom is attached. First, we analyze the magnetic
and transport properties of collinear spin states from tunneling
to contact (Sec. III B) before we address the occurrence of
noncollinear spin states in the contact regime (Sec. III C). We
analyze the ballistic conductance of such spin states (Sec. III D)
and show that a characteristic fingerprint is observed in the
distance-dependent conductance and the magnetoresistance
(Sec. III E). We end with a summary in Sec. IV.

II. METHOD

The density functional theory32 (DFT) states that the
energy functional of a general magnetic system E[n(r),m(r)]
is uniquely determined by the charge density n(r) and the
magnetization density m(r). The most common approximation
made to a general magnetic system is to assume a collinear
magnetization density, i.e., m(r) = m(r)ê, where ê is an
arbitrary direction. Within this collinear approximation, the
energy is a unique functional of the charge density n(r) and
the scalar magnetization density m(r). Due to decoupled spin
and real space, the spin channels can be treated independently.
However, it is known that relaxing the collinear approximation
and allowing for noncollinearity of the magnetization density
in real space in the DFT setup leads to an ability of reliably
treating whole classes of new phenomena, which rely on the
properties of complex magnetic states.33

A. Noncollinear Wannier functions

Within the DFT formulation for noncollinear magnetic
systems, one solves the Kohn-Sham equations33

{
− h̄2

2me

∇2I2 + V
}

|ψkm〉 = εm(k)|ψkm〉, (1)

where I2 is the 2 × 2 unity matrix, V is the potential matrix
which also mixes the spin channels, m is the band index,
and |ψkm〉 = (|ψkm↑〉,|ψkm↓〉)T is the spinor Bloch function
with spin-up and -down components |ψkm↑〉 and |ψkm↓〉,
respectively.

For the M converged spinor Kohn-Sham orbitals |ψkm〉 on
a uniform mesh of N k points, the orthonormal set of Wannier
functions can be obtained via the transformation34

|WRn〉 = 1

N
∑

k

e−ik·R
M∑

m=1

U (k)
mn |ψkm〉, (2)

where the number of WFs N is smaller than or equal to M

and the matrices U (k)
mn represent the gauge freedom of the

WFs. In the case when N = M and the group of bands we
are extracting the WFs from is isolated from other bands,
the U (k)

mn matrices are unitary at each k point. Imposing the
constraint of maximal localization of WFs in real space
determines the set of U (k)

mn matrices up to a common global
phase, and the corresponding WFs are called maximally
localized Wannier functions (MLWFs).35 Like the Kohn-Sham
orbitals, the MLWFs are spinors and can be written as
|Wkm〉 = (|Wkm↑〉,|Wkm↓〉)T in terms of their spin-up and
-down components |Wkm↑〉 and |Wkm↓〉, respectively. Such
spinor-valued WFs were introduced and analyzed in detail
by Freimuth et al. in Ref. 36 for the case of a system with
spin-orbit coupling.

For the construction of MLWFs within DFT
electronic-structure codes, the matrix elements
M (k,b)

mn = 〈ψkm|e−ib·r̂|ψk+bn〉 and A(k)
mn = 〈ψkm|gn〉 need

to be computed, where |gn〉 is a localized orbital, which
defines the starting point of the iterative procedure of
determining the MLWFs.35 Since spin up and down are
coupled in noncollinear calculations, these matrix elements
involve a summation over the spin σ .
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The matrix elements Hnn′ (R1 − R2) for the WFs tight-
binding Hamiltonian

ĤWFs =
∑
R1n

∑
R2n′

Hnn′ (R1 − R2)|WR1n〉〈WR2n′ | (3)

are given by36

Hnn′ (R1 − R2) = 1

N
∑
km

εm(k)
〈
WR1n

∣∣ψkm

〉 〈
ψkm

∣∣WR2n′
〉

= 1

N
∑
km

εm(k)eik·(R1−R2)
(
U (k)

mn

)∗(
U

(k)
mn′

)
. (4)

Even though the Wannier and Bloch functions are spinor
valued, the transformation of the Hamiltonian from Bloch into
Wannier representation is fully determined by the matrices
U (k)

mn and the eigenvalues εm(k) as in the collinear case.

B. Noncollinear Wannier functions within the FLAPW method

The treatment of noncollinear magnetism within the
FLAPW method as implemented in the Jülich DFT code
FLEUR (Refs. 33 and 37) neglects the effect of intra-atomic
noncollinearity. Space is partitioned into the muffin-tin (MT)
and interstitial regions (IR). The spin density m(r) in the IR
is treated without shape approximation as a continuous vector
field. In the MT sphere MTα of atom α only the projection
of the spin density onto the direction êα

M of the average
spin moment is used for the generation of the exchange-
correlation potential. The explicit one- and two-dimensional
implementations also contain a third region, the vacuum region
(VR), which can be treated analogously to the IR.38,39 Thus,
the self-consistent spin density is approximated as

m(r) =
{

m(r) IR (VR),
mα(r)êα

M MTα . (5)

A part of the intra-atomic noncollinearity can still be described
within this hybrid approach by decreasing the MT radii.

The radial solutions uα
lσα (r) of angular momentum l of

the scalar-relativistic Schrödinger equation in MTα and their
energy derivatives u̇α

lσ α (r) are calculated for the two spins
σα and used for the expansion of basis functions and Bloch
functions. The spin quantum number σα refers to the local
spin quantization axis êα

M . The expansion coefficients of the
eigenspinors of the local-spin-quantization axis in terms of
the eigenspinors of the global-spin-quantization axis, which
is the z axis, are given by

χ
αg

↑ =
[

exp

(
−i

φ

2

)
cos

(
θ

2

)
, exp

(
i
φ

2

)
sin

(
θ

2

)]T

,

(6)

χ
αg

↓ =
[
− exp

(
−i

φ

2

)
sin

(
θ

2

)
, exp

(
i
φ

2

)
cos

(
θ

2

)]T

,

where φ and θ are azimuthal and polar angles of the spin
direction of MTα with respect to the global frame g.

Within the MTs, the wave function ψkm(r) is thus given by

ψkm(r)|MTα =
∑
σαL

[
Aα

mLσα (k)uα
lσα (r)

+Bα
mLσα (k)u̇α

lσ α (r)
]
YL(r̂)χαg

σα , (7)

where L denotes the angular momentum quantum numbers,
YL is the corresponding spherical harmonic, and m is the band
index.

Using functions |gn〉, which are restricted each to a single
MT sphere, has been found to result in a very good starting
point for the iterative optimization of collinear WFs.36 Due
to the approximate intra-atomic collinearity, it is reasonable to
choose in the noncollinear case the localized orbitals |gn〉 to be
eigenstates of the projection of the spin operator onto the
local-spin-quantization axis êα

M :

gn(r)|MTα(n) =
∑
L

cnLũnl(r)YL(r̂)χα(n)g
σ (n) . (8)

Here, cnL are expansion coefficients, α(n) is the index of the
atom for which gn(r) is nonzero, σ (n) is the spin associated
with this trial orbital gn(r), and ũnl(r) is the radial part of the
trial orbital. Thus, we obtain

A(k)
mn =

∑
L

cnL

{[
Aα

mLσ (n)(k)
]∗

∫
u

α(n)
lσ (n)(r)ũnl(r)r2 dr

+ [
Bα

mLσ (n)(k)
]∗

∫
u̇

α(n)
lσ (n)(r)ũnl(r)r2 dr

}
. (9)

The MT contribution to the M (k,b)
mn matrix may be written

as

M (k,b)
mn

∣∣
MT =

∑
α,σα

∫
MTα

d3 r[ψkmσα (r)]∗e−ib·rψk+bnσα (r),

(10)

with ψkmσα (r) given by

ψkmσα (r) =
∑
L

YL(r̂)
[
Aα

mLσα (k)uα
lσα (r) + Bα

mLσα (k)u̇α
lσ α (r)

]
.

(11)

The computation of the M (k,b)
mn matrix for noncollinear systems

reduces therefore to integrals for which explicit expressions
have been given for the FLAPW method.36

C. Ballistic transport in systems with noncollinear magnetism

The extension of the collinear scheme for ballistic transport,
which we described in detail in our previous publication
(Ref. 16) to a noncollinear setup is now rather straightforward.
Given the minimal WFs Hamiltonian ĤWFs [Eq. (3)] for a
noncollinear system, we are able to construct the tight-binding
Hamiltonian of the nanojunction in accordance to our transport
method,16 which employs the partitioning of space into the
scattering region (S), as well as left (L) and right (R) leads:

H =
⎛
⎝ HL HLS 0

H†
LS HS H†

RS

0 HRS HR

⎞
⎠ . (12)

Compared to a collinear calculation, we have to deal with twice
as many Wannier functions due to the inseparable spin chan-
nels. Two calculations using the locking technique16 are re-
quired for Eq. (12). The Hamiltonian matrix HS and the matri-
ces HLS , describing the coupling to the leads, are obtained from
a supercell FLAPW calculation. The Green’s functions for the
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leads GL/R(E) = [(E + iε)IL/R − HL/R]−1 can be brought to
finite-sized surface Green’s functions gL/R by constructing
HL/R based on principal layers hL/R and the coupling matrices
hLL/RR .16 Those matrices are obtained from a separate
calculation of a perfect periodic lead. Following our Landauer-
Büttiker method, the noncollinear ballistic transport can be
calculated with the Green’s function of the scattering region:

GS(E) = [EIS − HS − H†
LSgLHLS − H†

RSgRHRS]−1. (13)

The interaction between scattering region and the leads, and
the resulting level broadenings, are described by broadening
matrices �:

�L/R(E) = i[	L/R(E) − 	
†
L/R(E)], (14)

where 	L/R(E) are the self-energies of the leads:

	L/R(E) = H†
LS/RSgL/R(E)HLS/RS. (15)

Finally, the ballistic transport process is described by the
transmission function T (E),

T (E) = Tr[GS(E)�L(E)G†
S(E)�R(E)], (16)

resulting in the conductance through the junction

G(E) = e2

h
T (E) = 1

2
G0T (E) (17)

with the conductance quantum G0 = 2e2/h. In the
noncollinear case, the trace operation of Eq. (16) has to
be additionally performed over the spin σ . The spin-channel
information is therefore lost for general noncollinear systems.

We tested noncollinear Wannier functions on freestanding
noncollinear magnetic Mn chains and found them to reproduce
the FLAPW electronic structure with any given accuracy.
For the performed transport calculations, a second-nearest-
neighbor (NN) tight-binding-like Hamiltonian is sufficient due
to the excellent correspondence of FLAPW and WFs electronic
structure in the vicinity of the Fermi level in absence of s-dz2

band edges in that particular region, which usually would re-
quire to consider more neighbors.16 For the system, considered
in the following, the orbitals participating in transport can be
arranged according to the symmetry into the 
1 (s and dz2

orbitals), the 
3 (dxz/yz), and the 
4 (dxy/x2−y2 ) groups.

III. THE Co∞-Mn-Mn-Co∞ JUNCTION

In the following section, we investigate the ballistic
transport properties of collinear and noncollinear magnetic
configurations of a Co∞-Mn-Mn-Co∞ junction, consisting
of semi-infinite ferromagnetic Co monowires with magnetic
Mn “tip” atoms (see sketch of the structure in Fig. 1). We
will discuss the effect of noncollinear magnetism on ballistic
transport through such a junction, specifically keeping in
mind tunneling-to-contact STM (Refs. 3–8) and mechanically
controllable break-junctions40 experiments. In particular, we
investigate the changes in the transport properties upon chang-
ing the distance between the two Mn atoms, while keeping
all other interatomic distances fixed at their equilibrium
“semi-infinite” values. We will show that upon bringing the
leads together, the noncollinearity in this system emerges as a
result of competing Mn-Mn and Mn-Co exchange interactions.

FIG. 1. (Color online) Calculated magnetic configurations in
the Co∞-Mn-Mn-Co∞ junction. The magnetization of the left lead
always points up (↑). The magnetization of the right lead can be
either parallel (P) or antiparallel (AP) to it. The direction of the Mn
spins is marked with respect to the left lead: pointing up (↑), down
(↓), or along a direction at an angle α with the magnetization of the
left lead. Special configurations of interest which are discussed in
the text are shown: (a) P↑↑, (b) symmetric Pα state with α = 105◦,
P105◦, (c) P↓↓, (d) P↓↑, and (e) AP↑↓. In the text, we refer to the
separation between the leads in terms of the distance between the Mn
atoms dMn-Mn. Co atoms are displayed as orange spheres, Mn atoms
are displayed as red spheres.

We then explore the influence of noncollinear magnetism
on ballistic transport for various collinear and noncollinear
configurations. The nomenclature for the magnetic states in
the Co∞-Mn-Mn-Co∞ junction includes the alignment of
the magnetization directions of the leads, parallel (P) or
antiparallel (AP) to each other, and the directions of the two Mn
spins. Without loss of generality, these directions are denoted
with respect to the left lead, which has magnetization “up.”
The Mn spins can point “up” (↑), “down” (↓), or in a direction
which makes an angle α with the direction up (see Fig. 1). In the
latter case, we consider the symmetric configuration, denoted
as Pα, in which the spins of the Mn atoms make an angle
of 2α between each other. For all considered noncollinear Pα

states, we fixed the direction of all Co atoms either up or down,
depending on the magnetization direction of the corresponding
lead. The energy differences between different magnetic states
are given per Mn atom.

A. Computational details

For all collinear and noncollinear electronic-structure cal-
culations, we used density functional theory within generalized
gradient approximation (GGA) to the exchange-correlation
potential,41 as implemented in the FLAPW Jülich code
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FLEUR.37 The wires were calculated in three-dimensional
supercells, with an interchain separation in the x-y plane of
13 bohr. The supercell setup along the chain’s axes (z direction)
is described in detail below. The Brillouin zone (BZ) was
sampled by 12 or 24 k points along the z axis, depending on
the size of the supercell. All calculations were performed with
an LAPW basis cutoff parameter kmax of 3.7 bohr−1, resulting
in approximately 625 LAPW basis functions per atom.

The parallel magnetic configuration (P) of Co∞-Mn-Mn-
Co∞ junctions was investigated in an eight-atom supercell
along the chain direction, consisting of six Co atoms with an
equilibrium interatomic distance of the Co infinite monowire
of dCo = 4.15 bohr, and two attached Mn atoms (see Fig. 1).
For all considered magnetic configurations, with parallel or
antiparallel alignment of the magnetization of the leads,
as well as noncollinear magnetic states, irrespective of the
separation between the leads, we fixed the Co-Mn distance
dCo-Mn to 4.48 bohr, which corresponds to the equilibrium
distance between the ferromagnetic Co and Mn atoms at a
very large separation between the leads. For the P↑↑ and P↓↓
states of the junction, we considered the inter-Mn separation
of dMn-Mn = 5.0, 5.5, 7.0, 8.5, 10.0, 12.5, 15.0, 17.5, and
20.0 bohr. The antiparallel magnetic configuration (AP) of
Co∞-Mn-Mn-Co∞ junctions was calculated in a 16-atom
supercell, consisting of 6 ↑-Co atoms and 2 Mn atoms on
one side, and 6 ↓-Co atoms and 2 Mn atoms at another end of
the junction. In this case, dMn-Mn was set to 4.5, 5.0, 5.5, 7.0,
and 8.5 bohr.

For the conductance calculations we applied the locking
technique to a perfect monowire to describe the semi-infinite
leads, as described in detail in Ref. 16. In all cases, the Wannier
functions were generated on a 1 × 1 × 24 k-point grid in the
BZ. For the collinear cases, the WFs were generated from 1 4s

and 5 3d orbitals per atom for each spin separately, which were
constructed from the radial solutions for the FLAPW potential.
In noncollinear calculations, the spin channels are mixed, and
2 4s and 10 3d orbitals per atom were used to construct the
WFs. The energy bands were disentangled using the procedure
described in Ref. 42. For all calculations, we used a frozen
energy window of [−12.0, + 1.6] eV with respect to the Fermi
energy. Respectively, for the collinear calculations, the lowest
58 eigenvalues per k point were used to obtain 48 WFs
for the 8-atom supercell and the lowest 104 eigenvalues per
k point for 96 WFs for the 16-atom supercell calculations.
With noncollinearity of the magnetization included, the lowest
103 eigenvalues per k point were used to obtain 96 WFs for
the 8-atom unit cell. The spreads of the noncollinear WFs
of Mn atoms vary between the spreads of the corresponding
WFs for the parallel and antiparallel alignment of the Mn
spins. For example, the spread of the Mn 
3 WFs smoothly
changes from 2.5 to 2.0 bohr2 as the angle the Mn spin makes
with the x axis is changed between 0◦ and 180◦. For testing
purposes, for several noncollinear configurations we compared
the electronic structure of the system calculated with FLEUR

and with corresponding WFs. We find that the quality of
the description of the band structure of the system with the
tight-binding Hamiltonian constructed from noncollinear WFs
is in a very close correspondence to that obtained previously
for the case of Pt and Co chains, and reported in Figs. 3, 8, and
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FIG. 2. (Color online) (a) Energy of the P↓↓ state (red diamonds,
dashed line) and P↓↑ state (green triangles, dotted line) with respect
to the energy of the P↑↑ state, as a function of the Mn-Mn interatomic
distance dMn-Mn. (b), (c) Spin moment of the Mn atoms SMn(b) and
NN Co atoms SCo(c) as a function of dMn-Mn. In (b) and (c), the values
are given for the P↑↑ state with black circles (solid line), for the P↓↓
state with red diamonds (dashed line), and for the P↓↑ state with up
triangles for the FM side and down triangles for the AFM side of the
junction. (d) Total conductance at the Fermi level Gtotal(EF ) (upper
line) and 
1 conductance G
1 (EF ) (lower line) on a logarithmic
scale for the P↑↑ state. Gray shaded area is associated with the 
1

conductance, while cyan shaded area with the 
3 conductance.

10 of Ref. 16. In particular, we find that a very good description
of the electronic structure can be achieved with WFs within
the third-nearest-neighbor approximation, while for WFs
calculations of the transmission in the vicinity of the Fermi
level already the second-nearest-neighbor approximation to
the WFs Hamiltonian provides very reliable results.

B. Collinear magnetic states of the junction from
tunneling to contact

We start the investigation of the Co∞-Mn-Mn-Co∞ junction
with both leads positioned far away from each other. To
mimic a tip-sample approach, we decrease the Mn-Mn distance
dMn-Mn, and calculate the energies of the collinear states P↑↑,
P↓↓, and P↓↑, showing the results in Fig. 2(a). The energy
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as a function of angle α. (d) Ballistic conductance at the Fermi level
for the Pα state as a function of angle α: total conductance Gtotal(EF )
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3 conductance contribution (cyan shaded area), and

1 conductance G
1 (EF ) (lower line, gray shaded area).

difference between P↑↑ and P↓↓ states when the distance is
varied in the tunneling regime from dMn-Mn = 20 bohr down
to 10 bohr remains relatively constant and constitutes around
27 meV per atom, indicating weak interaction between both
sides of the junction and a weak ferromagnetic coupling be-
tween the Mn atom and its nearest Co neighbor (NN Co). After
a small reduction of the energy difference between the P↑↑ and
P↓↓ states around dMn-Mn = 8 bohr, the ferromagnetic (FM)
Mn-Co coupling becomes more stable for decreasing dMn-Mn,
expressed in an increasing energy difference. In the contact
regime, we find a slight decrease in the energy difference from
93.5 meV at dMn-Mn = 5.0 bohr down to 77 meV per atom at
dMn-Mn = 4.5 bohr. This decrease in energy can be correlated
with strong changes in the Mn and NN Co spin moments,
SMn and SMn, respectively, upon decreasing the distance [see
Figs. 2(b) and 2(c)] (see also discussion in the next section).

While in all cases the spin moments of the Co atoms,
not neighboring the Mn atoms directly (≈2.09 μB ), are very
similar to the spin moments of the Co atom in an infinite
lead (≈ 2.07 μB), the spin moments of Mn atoms and the
NN Co atoms can be strongly affected by dMn-Mn at close
contact and the spin configuration of the junction. Namely, for
the P↓↓ state, SMn decreases from 4.3 to 3.9 μB , while NN
SCo increases from 1.4 to 1.8 μB , as dMn-Mn is varied from
5.5 to 4.5 bohr. On the other hand, if the Mn spin moment
exhibits a similar variation as a function of distance for the
P↑↑ state, the spin moment of the NN Co atoms remains
relatively constant (≈2 μB ). This interplay between structure
and magnetism already indicates that the intra-atomic as well
as interatomic exchange, given by the Stoner parameter I

and the Heisenberg exchange constants J , respectively, may
be of importance for further understanding of the magnetic
properties of this system.

The change from FM coupling at larger interatomic
distances to an antiferromagnetic (AFM) coupling at smaller
dMn-Mn in an infinite Mn chain has been previously predicted
based on DFT calculations.43 In the vicinity of this crossover
point, the Mn spins favor noncollinear magnetic order.44–46

To demonstrate a strong tendency of Mn spin moments
to AFM coupling at smaller values of dMn-Mn, we plot
the energy difference between the P↑↑ and P↓↑ states in
Fig. 2(a). Reversing one of the Mn spin moments in the P↑↑
configuration is clearly energetically more favorable than the
P↑↑ state when the distance between the Mn atoms is below
≈5.2 bohr. In this case, the gain in energy due to switch of the
Mn spin moment can be explained only by the strong AFM
coupling of the two Mn atoms for this regime of interatomic
distance since the coupling of the Mn atom with its NN Co
atom is ferromagnetic. The spin moments in the P↓↑ state at
dMn-Mn = 4.5 bohr constitute 4.1 μB for Mn and 1.5 μB for
its NN Co on the AFM side, and 3.7 μB for Mn and 1.9 μB

for the NN Co on the FM side [see Figs. 2(b) and 2(c)]. For
larger dMn-Mn values, the P↑↑ state is the lowest in energy
as compared to all possible collinear states of the junction in
which the magnetization direction of the left and right leads is
the same, which is indicative of the FM Mn-Mn coupling for
larger distances.

In Fig. 2(d), we present the results of our calculations for
the evolution of the ballistic conductance of a P↑↑ junction
when going from the tunneling to the contact regime. The main
contribution to the conductance at large Mn-Mn distances is
coming solely from the 
1 channel, owing to the overlap
between the s-dz2 orbitals of the neighboring Mn atoms across
the barrier. Within our approach, the expected exponential
behavior of the conductance at very large distances is very
nicely reproduced. At a distance of dMn-Mn ≈ 10 bohr, the
conductance approaches the magnitude of the conductance
quantum, reaching saturation upon further decreasing the
distance. For distances in the contact regime below 7 bohr,
more localized d orbitals of 
3 symmetry start contributing
to the total conductance, as can be seen in Fig. 2(d). The

3 contribution to the conductance increases with decreasing
distance. As we shall see in the following, the details of
hybridization between the 
3 orbitals are very sensitive to
the magnetic state of the junction. On the other hand, in all
considered cases, the d states of 
4 symmetry do not contribute
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to the conductance due to an energetic mismatch between the
states of this symmetry of NN Co and Mn atoms (see discussion
in Sec. III D).

C. Noncollinear magnetic states of the junction in
contact regime

According to the findings presented above, we expect that
Mn spin moments in the contact regime will experience a
frustration when the magnetizations of the leads are parallel to
each other. In this case, when Mn atoms are close enough, FM
coupling of Mn spins with NN Co atoms and AFM Mn-Mn
coupling can possibly lead to a stable noncollinear magnetic
state. In order to consider this situation, we introduce an angle
α between the spin moments of the Mn and the NN Co atoms,
rotating the first Mn spin moment by +α and the second one
by −α, while keeping the moments of the Co atoms fixed
[see Fig. 1(b)]. This is what we call a symmetric Pα state.
We choose a distance of 4.5 bohr between the Mn atoms as
a representative of the contact regime at which the Mn-Mn
coupling is strongly antiferromagnetic.

The results of our calculations for the total energy of the
Pα state, EPα , in relation to the energy of the P↑↑ state are
shown in Fig. 3(a) as a function of the angle α. From this plot
we observe that the minimum of the total energy is acquired
for the noncollinear P105◦ state, which is 137 meV lower in
energy than the corresponding collinear P↑↑ state. The failure
of a straightforward description of the energy landscape EPα

in terms of a simple Heisenberg model which assumes just
the nearest-neighbor Co-Mn and Mn-Mn exchange coupling,
given by antiferromagnetic JMn < 0 and ferromagnetic JCo >

0, respectively, can be understood from noticing that the
expression for the energy within this approximation, given by

EPα(α) = − 1
2 [JMn cos(2α) + 2JCo cos(α)], (18)

acquires a minimum for angles α below 90◦, in contradiction
to our calculations.

The solution to this deficiency of the Heisenberg model
can be given by lifting the assumption that the exchange
interaction between the Mn and Co spins, given by JCo,
is ferromagnetic. As we can see from Figs. 3(b) and 3(c),
while the Mn spin moment remains relatively constant upon
changing α, SCo for values of α below 60◦ is by as much
as 0.2 μB larger than for α > 90◦. Owing to the intra-atomic
Stoner exchange, the noncollinear states with small α therefore
acquire a negative contribution to the total energy in addition
to that proportional to JCo, as compared to larger angles. If we
account for the energy gain due to creation of the NN Co spin
moments by a Stoner parameter of Co, I ≈ 990 meV,47 and
subtract the energy gain EStoner = 1

2IS2
Co(α) − 1

2IS2
Co(P↓↓)

from the calculated DFT dispersion, we arrive at the en-
ergy dispersion [squares in Fig. 3(a)], which reflects only
exchange interactions between the atoms. If we fit this curve
according to Eq. (18) [dashed line in Fig. 3(a)], we obtain
the “nonrenormalized” Heisenberg exchange constants of
JCo = −170 meV and JMn = −366 meV. It becomes clear now
that, although the “pure” exchange coupling between the Mn
and Co spins is expectedly antiferromagnetic, the larger spin
moment of Co in the parallel spin alignment with Mn tips the
balance in favor of ferromagnetic coupling between the spins,

which can be observed for a large range of distances dMn-Mn

[cf. Fig. 2(a)].
In Fig. 2(a), we also observe that, judging from the energies,

in the close contact regime the collinear P↓↑ state is competing
with the noncollinear Pα state for the global ground state of
the system. Indeed, our calculations show that at the dMn-Mn

of 4.5 bohr, the P↓↑ configuration is by a tiny value of 5 meV
lower in energy than the P105◦ solution. We argue, however,
that the P↓↑ state is not very likely to appear in experiments,
given that the Co electrodes are identical. In this case, the adi-
abatic rise of the intrinsically asymmetric P↓↑ configuration
via symmetric noncollinear states can not happen, as the elec-
trodes, initially being in the P↑↑ state when very far from each
other, are brought together (see also discussion at the beginning
of Sec. III E). Nevertheless, it seems plausible that such state,
if observed in experiment, is created via a rapid flip of one of
the Mn atoms in the contact regime during, e.g., a reformation
of the lead geometry, or an inelastic current-induced spin-flip
process. Our calculations, shown with a dotted line in Fig. 3(a),
based on the Heisenberg model extended by the Stoner term of
intra-atomic exchange of the Co moments, indicate that once
the system enters the P↓↑ state, it is effectively “trapped” there
since the ↓-Mn is energetically quite stable versus deviations in
the angle its spin makes with the rest of the spins in the system.
Thus, we do not consider any noncollinear states associated
with the P↓↑ state in the following.

D. Ballistic conductance of noncollinear magnetic
states of the junction

In this section, we perform a detailed analysis of the
ballistic conductance G(EF ) of the Pα state at fixed distance
between Mn atoms of 4.5 bohr. At this distance, we calculate
G(EF ) as a function of angle α and present the results in
Fig. 3(d). In this plot, we observe that the conductance exhibits
a very nontrivial dependence on α, originating mainly from
the 
3 orbitals (dxz,yz), while the 
1 contribution (s − dz2 )
to the conductance G
1 remains almost perfectly constant.
Surprisingly, the 
3 conductance almost vanishes for α of
about 70◦, away from any high-symmetry spin configuration
in the junction, suggesting that the dependence of the details
of hybridization and electronic structure on the angle between
the Mn spins can be rather delicate. In order to analyze this
dependence in more detail, as a function of α, we plot the
energy-dependent conductance G(E) versus the local densities
of states (LDOS) of Mn and NN Co atoms resolved into
spin-up and -down contributions with respect to the global
spin quantization z axis (Fig. 4). Mainly we focus on the 
3

contribution to the conductance and the LDOS, and only in the
upper (P↑↑) and lower (P↓↓) panels of Fig. 4 we show also
the total LDOS of the atoms.

The conductance at a given energy E depends on the
presence of available states in the LDOS of the atoms at E, and
on the coupling between these states across the junction, both
of which depend on the orientation of the spins with respect
to each other. By looking at the LDOS of the atoms presented
in Fig. 4 for α = 0◦, we can explain the absence of the 
4

(dxy,x2−y2 ) contribution to the conductance: the localized 
4

states of the Co atoms, which can be seen as pronounced
peaks in the LDOS marked with the dashed line in Fig. 4,
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FIG. 4. (Color online) Transport properties and electronic structure of the Pα state at dMn-Mn of 4.5 bohr as a function of angle α (indicated
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are positioned at about −2 eV for the spin-up channel and
directly at the Fermi energy for the spin-down channel, while
the corresponding Mn 
4 states are positioned below −2.5
and above +1 eV, prohibiting thus the hybridization between
the Co and Mn orbitals of 
4 symmetry across the junction.
Noticeably, the LDOS of both atoms for the up spin in a wide
region of energies around EF is absent, leading to a negligible
↑ conductance. Here, it is important to remark, that the LDOS

of the NN Co atoms around the Fermi energy overall resembles
quite well the LDOS of a Co atom in a Co monowire [see, e.g.,
Fig. 13(a) in Ref. 16] or even of a Co atom deposited on
noble-metal surfaces (see, e.g., Ref. 48). This means that our
results should be rather stable with respect to the geometry of
the Co leads, manifesting that the main influence on the 
3

conductance at EF would come from the hybridization of the
Mn and NN Co states.
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Turning now to the comparatively delocalized 
3 states
(solid line) on both Co and Mn atoms, we observe for P↑↑
(upper panels of Fig. 4) that they hybridize directly at the
Fermi energy, which leads to a significant 
3 contribution
to the conductance. Specifically, while the 


↓
3 subband of

Co spreads from −1.8 to +1 eV, the 
3-down states of Mn
atoms are distinctly split into wide bonding (“b”) states at the
Fermi energy and narrow antibonding (“a”) states at +1.8 eV.
Very importantly for the transport properties of the system, the
hybridization of the 


↓
3 band of Co with the 


↓
3 states of Mn is

nontrivial. (i) The 

↓
3 states of Co exhibit a dip at the position

of the maximal density of bonding states of Mn due to the fact
that these Mn states are localized mainly in-between the Mn
atoms, prohibiting strong overlap with the Co states. (ii) The
upper, antibonding part of the Co 


↓
3 band hybridizes stronger

with the bonding states of Mn since the antibonding states of
Co atoms have a larger overlap with the Mn orbitals, which
results in a larger 
3 conductance above EF . (iii) Analogously,
for energies below EF the conductance is suppressed since the
bondinglike 


↓
3 Co states have smaller overlap with the Mn

bonding states.
Let us now follow the evolution of the electronic structure

upon increasing the angle between the Mn spins. Two trends
in the LDOS can be clearly observed in Fig. 4. First,
with increasing α, the splitting between the bonding and
antibonding Mn states decreases owing to the mixed spin
character of the states. At the angle of 90◦, when Mn spins
are antiparallel to each other, both types of states transform
into degenerate 
3 orbitals of the “isolated” Mn atoms since
the hybridization between the Mn states of the same spin is
almost absent due to large exchange splitting. On the other
hand, the dip in the ↓ LDOS of the NN Co atoms follows the
position of the bonding state of the Mn dimer, moving from
the Fermi energy at α = 0◦ to +0.2 eV for α = 90◦ (indicated
by filled triangles in Fig. 4). Overall, such redistribution of the
LDOS of the atoms, combined with the effect of decreasing
LDOS of Mn atoms for spin-down channel at the Fermi energy
when the angle α is varied, results first in a decrease of the
conductance at EF for α ≈ 70◦, followed by a consequent
increase with increasing angle.

When the angle α increases further beyond 90◦, the bonding
and antibonding Mn states eventually acquire their initial
splitting at α = 180◦ (P↓↓ state), when the Mn spins are
collinear again. Simultaneously, with increasing angle, we
observe that the Mn states around the Fermi energy become
sharper since the hybridization with the Co leads decreases
as the Mn states become predominantly spin up in character.
Interestingly, while for 90◦ < α < 120◦ a large value of the 
3

conductance is due to a significant amount of delocalized Co
and bonding Mn states at the Fermi energy in the spin-down
channel, for larger angles the value of G
3 (EF ) is due to a sharp
resonant Co state in the spin-up channel at the Fermi energy,
coupled to a bonding Mn state at EF . When further increasing
α above 170◦, this resonance becomes more localized and
decoupled from the states in the leads, while the Mn LDOS at
the EF in the minority spin channel vanishes, causing a sharp
drop in the 
3 conductance. By looking at the total LDOS of
the NN Co atom in the P↓↓ state, we observe that it remains
basically unaffected, as compared to the P↑↑ configuration,

while the Mn states become pronouncedly decoupled from the
states of the NN Co owing to the energetical mismatch for both
spin channels.

E. Fingerprints of noncollinear magnetic states of the junction
in ballistic conductance experiments

Finally, we investigate the evolution of the conductance
and the magnetoresistance of different magnetic states of the
junction within the contact regime mimicking a typical STM
or break-junction experiment. Here, we are partly motivated by
the fact that a nontrivial behavior of magnetoresistance when
going from tunneling to contact has been recently observed in
STM experiments (see, e.g., Ref. 8). At a very large separation
between the leads (or, the tip and the sample in the STM
language), owing to the FM coupling of the Mn atom to
the Co chain, one can imagine only two possible magnetic
configurations: P↑↑ and AP↑↓. The conductance of these
two magnetic states in the tunneling regime, arising mainly
from the s orbitals, is orders of magnitude smaller than in the
contact regime, for which the dependence of G(EF ) on the
distance can be nontrivial due to the large contribution of the d

states.
In the case of the AP↑↓ configuration, the starting collinear

arrangement of the spins will survive over the whole range
of the separation between the leads since, in the contact
regime, when the Mn atoms are close to each other, both
exchange preferences of the Mn spins, that is, FM coupling
to the NN Co spins and AFM coupling among each other,
are fulfilled. Small possible deviations from the collinear
arrangement of the Mn spins, which can affect the details of
the distribution of the 
3 states and their coupling to the leads,
would not manifest in a conductance measurement, owing to
the antiparallel magnetizations of the leads, and corresponding
complete dominance of the 
1 channel for conductance at EF

in this case (Fig. 5). As we can see from this figure, G(EF ) lies
in-between 0.5 and 1.0 G0, when the distance between the Mn
atoms is varied from 8.5 to 4.5 bohr. This is very similar to the
behavior of the conductance at the Fermi energy of pure AP
Co leads without Mn atoms [see, e.g., Fig. 11(b) of Ref. 16].

Owing to the magnetic frustration of the Mn spins of the
junction in the contact regime, for the P↑↑ initial configura-
tion, we consider the Pα and P↓↑ states in addition to the P↑↑
state when the Mn-Mn distance is relatively small. Here, as
we have seen in the preceding section, the conductance at the
Fermi energy can be very strongly influenced by the details
of hybridization between the 
3 orbitals. On the other hand,
since very often transport measurements serve as the only
experimental insight into the magnetic structure of a system,
it is very important to coin each of the possible magnetic
states with a unique fingerprint which can be related to the
experimental data. In the following, we suggest that indeed
three distinct spin states in a Co∞-Mn-Mn-Co∞ junction,
which can occur in an experiment due to various reasons
such as structural details, temperature fluctuations, external
magnetic field, etc., lead to different transport signatures.

As already shown in Fig. 2(d), the conductance of the
collinear P↑↑ state rapidly rises towards a value of 1.8 G0

as the distance between the leads is decreased. Compared
to other possible magnetic configurations of the junction,
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FIG. 5. (Color online) Conductance at the Fermi energy of
various possible magnetic states of the Co∞-Mn-Mn-Co∞ junction
as a function of the distance between the Mn atoms. The following
magnetic states are considered: AP↓↑ (filled circles, solid line), P↑↑
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is lowest in energy among all possible angles α at a fixed distance
is considered. In the inset, the values of the magnetoresistance for
different P states are shown.

GP↑↑(EF ) is significantly larger in value (see Fig. 5) because
of the alignment of the minority spin s and d states of the Co
electrodes and the Mn atoms at the Fermi energy, which ideally
favors perfect transmission. In contrast, the conductance of the
collinear P↓↑ state is significantly suppressed, reaching only
1.0 G0 at the separation of 4.5 bohr, due to the large exchange
splitting of the 
3 states of the Mn atoms with antiparallel spin
moments, which hinders the 
3 conductance. A small dip in
the conductance at 5.0 bohr for this configuration is due to the
promotion of the second-nearest-neighbor ferromagnetic Co-
Mn hopping across the antiparallel Mn spin with decreasing
distance between the Mn atoms.

The conductance of the noncollinear ground-state Pα

state lies in-between the values for both limiting collinear
configurations. In the close contact regime, at dMn-Mn of
4.5 bohr, the conductance of the Pα state of 1.4 G0 is exactly
in-between the values of GP↑↑(EF ) and GP↓↑(EF ). Clearly,
the difference of 0.4 G0, stemming from the variation in the

3 conductance with the spin state, can be easily detected in
experiment, allowing for a way to distinguish between different
possible magnetic configurations. At the distance of 5.0 bohr,
the ground state among the Pα states is the P90◦ state, while
at larger distances above 5.5 bohr, the system converges to a
collinear configuration. The angle α in the lowest in energy
Pα state decreases smoothly with increasing the separation,
and we speculate, that owing to the nonmonotonous behavior
of the conductance as a function of α, seen in Fig. 3(d), the

conductance as a function of dMn-Mn can exhibit several dip
features similar to that at dMn-Mn of 5.0 bohr, although we did
not perform the calculations to support this statement owing
to the required computational effort.

According to recent experiments,8 the conductance of the
junction with the parallel (P) and antiparallel (AP) orientations
of the lead’s magnetization can be related to each other
via measuring the magnetoresistance (MR). From the values
presented in Fig. 5, we calculate the MR of the junction,
defined as

MR = GP(EF ) − GAP(EF )

GAP(EF )
× 100%, (19)

and present the MR as a function of separation between
the electrodes in the inset of Fig. 5, where we choose
GAP↓↑ for GAP(EF ), and values of GP↑↑(EF ), GP↓↑(EF ), and
GPα(EF ) for GP(EF ). The overall smaller AP↓↑ conductance
as compared to the P configurations results in positive
magnetoresistance values. The MR curves as a function
of the distance generally resemble those of the conductance,
with the values of the MR of 22, 62, and 105% at the distance
of 4.5 bohr for the P↓↑, Pα, and P↑↑ states, respectively.
Much more pronounced in the MR is the feature characteristic
to the P↓↑ and Pα configurations, a dip around the distance
of 5.0 bohr, also present in the conductance curves. As can be
seen from Fig. 5, at this distance, the MR almost completely
vanishes when the Mn spins exhibit a different from FM
configuration. Overall, we conclude that the pronounced
difference in the shape and magnitude of the MR curves can be
also used in experiments such as those performed in Ref. 8 to
shed light onto the complex magnetism in this type of systems.

IV. SUMMARY

In this work, we presented the realization of a first-
principles scheme for calculating the ballistic transport prop-
erties of magnetically complex one-dimensional systems
employing the technique of noncollinear Wannier functions.
We use the FLAPW method in order to calculate the electronic
structure of the system with high accuracy and use the Wannier
functions to transfer it to our transport calculations performed
within the Landauer approach. As spin-orbit interaction can be
naturally included into the consideration within this technique
(cf. Ref. 16), the method introduced here can be used to explore
the rich field of transport phenomena in systems such as
nanosized or atomic-sized contacts, break junctions, or STM
experiments for which both effects, spin-orbit coupling and
frustrated exchange interactions, can be prominent.

As a first application of our approach, we consider the
ballistic transport properties of a single-atom junction formed
by two semi-infinite Co electrodes with a single-apex Mn
atom. We study the conductance as a function of the separation
between the two Mn atoms from the tunneling to the contact
regime, taking into account the complex magnetic interaction
in the junction. As we demonstrate, even such a simple
setup allows us to draw some general conclusions concerning
the interplay of structure and magnetism for the transport
through such atomic-sized contacts, which are in the focus of
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today’s research. We analyze the ballistic conductance of the
junction with lead magnetizations in parallel and antiparallel
alignments. We consider separately the tunneling (separation
larger than about 5 Å) and contact (below 5 Å) regimes
of the junction, and we demonstrate that in the tunneling
regime the conductance G is solely coming from the overlap
between the 
1 (s-dz2 orbitals) of the contacts. In this case, the
Mn spins prefer to order ferromagnetically with respect to the
magnetization of the leads. On the other hand, upon reaching
the close contact regime (below 3.5 Å), when the magnitude
of the conductance reaches 1 G0, the hybridization between
the 
3 (dxz,dyz orbitals) states of the junction starts to provide
a sizable contribution to G.

In the close contact regime, when the hybridization between
the Mn atoms is significant, Mn spins experience a frustration
due to the FM coupling with the leads and an AFM Mn-Mn
coupling. The competition between the two gives rise to a
stable noncollinear solution which can be characterized by a
tilting angle of the spins α. General for this type of junction
is the sensitivity of the d-orbital conductance on the angle α,
which is due to a delicate interplay between the hybridization
details of the Mn and Co states at the Fermi energy, as well
as spin asymmetry in their distribution. This gives rise to a
nontrivial α dependence of the conductance of the d states.
We show that the complicated 
3-channel conductance arising
on the background of almost constant 
1 contribution can be
used in order to distinguish between different magnetic states
of the contact via either a direct conductance measurement or
via measuring the magnetoresistance, which, according to our

calculations, can vary in the contact regime between 20% and
100%, depending on the spin arrangement.

Finally, we would like to comment on our approximation
for the geometry of the junction we have assumed in this
work. Albeit being very simple, it allows us to capture the
key features which govern the transport properties of the
system, while keeping the computational burden reasonable.
Namely, within this geometry (i) the transition from tunneling
to contact can be naturally studied, (ii) the magnetic frustration
of the spins in the junction and (iii) the delicate details of the
hybridization of the adatom with the lead reservoirs are taken
into account, and (iv) the sensitive dependence of the spin
moments on the magnetic configuration in the nanocontact
is included into our considerations. Of course, in order to
achieve a quantitative agreement of the calculated values to the
experimentally measured ones in this type of junction beyond
the major trends, all details of the structure and structural
reformation upon approaching should be ideally accounted
for. Such a challenging study lies, however, outside of the
scope of this work, and we leave it for future studies.
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