001     127851
005     20250129092439.0
024 7 _ |2 ISSN
|a 1558-2515
024 7 _ |2 ISSN
|a 1051-8223
024 7 _ |2 Inspec
|a inh:13196405
037 _ _ |a FZJ-2012-00802
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)130633
|a Faley, M.I.
|b 0
|e Corresponding author
111 2 _ |a The Applied Superconductivity Conference
|c Portland
|d 2012-10-07 - 2012-10-12
|w Oregon
245 _ _ |a High-Tc DC SQUIDs for magnetoencephalography
260 _ _ |a New York, NY
|b IEEE
|c 2012
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1365687807_17250
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a We have investigated the microstructural and electron transport properties of 45° step-edge Josephson junctions grown on MgO substrates and used them for the preparation of superconducting quantum interference device (SQUID) magnetometers intended for magnetoencephalography (MEG) measurement systems. The high-Tc SQUID magnetometers also incorporate 16 mm multilayer superconducting flux transformers on the MgO substrates and demonstrate a magnetic field resolution of ~ 4 fT/√Hz at 77 K. Results are illustrated for the detection of auditory evoked magnetic responses of the human cortex and compared between high-Tc SQUIDs and a commercial low-Tc MEG system. Our results demonstrate that MEG systems can be upgraded using high-Tc SQUIDs to make them independent of helium and more user-friendly, saving operating costs and leading to the widespread utilization of MEG systems in clinical practice and at universities.
536 _ _ |0 G:(DE-HGF)POF2-423
|a 423 - Sensorics and bioinspired systems (POF2-423)
|c POF2-423
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)VDB21377
|a Poppe, U.
|b 1
700 1 _ |0 P:(DE-Juel1)144121
|a Dunin-Borkowski, R.E
|b 2
700 1 _ |0 P:(DE-Juel1)133935
|a Schiek, M.
|b 3
700 1 _ |0 P:(DE-Juel1)VDB131
|a Boers, F.
|b 4
700 1 _ |0 P:(DE-Juel1)140455
|a Chocholacs, H.
|b 5
700 1 _ |0 P:(DE-Juel1)VDB261
|a Dammers, J.
|b 6
700 1 _ |0 P:(DE-Juel1)140456
|a Eich, E.
|b 7
700 1 _ |0 P:(DE-Juel1)VDB97509
|a Shah, N.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Ermakov, A.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Slobodchikov, V.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Maslennikov, Y.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Koshelets, V.
|b 12
909 _ _ |o oai:juser.fz-juelich.de:127851
|p VDB
909 C O |o oai:juser.fz-juelich.de:127851
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |0 G:(DE-HGF)POF2-423
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2012
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)INM-4-20090406
981 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ZEL-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21