000127962 001__ 127962 000127962 005__ 20221109161707.0 000127962 0247_ $$2doi$$a10.1016/j.cam.2012.11.014 000127962 0247_ $$2ISSN$$a0377-0427 000127962 0247_ $$2ISSN$$a1879-1778 000127962 0247_ $$2ISSN$$a0377-0427 000127962 0247_ $$2WOS$$aWOS:000315066000001 000127962 037__ $$aFZJ-2012-00908 000127962 082__ $$a510 000127962 082__ $$a510 000127962 1001_ $$0P:(DE-HGF)0$$aKrämer, Lukas$$b0 000127962 245__ $$aDissecting the FEAST algorithm for generalized eigenproblems 000127962 260__ $$aAmsterdam [u.a.]$$bNorth-Holland$$c2013 000127962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1357217088_19205 000127962 3367_ $$2DataCite$$aOutput Types/Journal article 000127962 3367_ $$00$$2EndNote$$aJournal Article 000127962 3367_ $$2BibTeX$$aARTICLE 000127962 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000127962 3367_ $$2DRIVER$$aarticle 000127962 520__ $$aWe analyze the FEAST method for computing selected eigenvalues and eigenvectors of large sparse matrix pencils. After establishing the close connection between FEAST and the well-known Rayleigh–Ritz method, we identify several critical issues that influence convergence and accuracy of the solver: the choice of the starting vector space, the stopping criterion, how the inner linear systems impact the quality of the solution, and the use of FEAST for computing eigenpairs from multiple intervals. We complement the study with numerical examples, and hint at possible improvements to overcome the existing problems. 000127962 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000127962 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2 000127962 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000127962 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b1 000127962 7001_ $$0P:(DE-HGF)0$$aGalgon, Martin$$b2 000127962 7001_ $$0P:(DE-HGF)0$$aLang, Bruno$$b3 000127962 7001_ $$0P:(DE-HGF)0$$aBientinesi, Paolo$$b4 000127962 773__ $$0PERI:(DE-600)1468806-2$$a10.1016/j.cam.2012.11.014$$p1 - 9$$tJournal of computational and applied mathematics$$v244$$y2013 000127962 8564_ $$uhttps://juser.fz-juelich.de/record/127962/files/FZJ-2012-00908.pdf$$yRestricted$$zPublished final document. 000127962 909CO $$ooai:juser.fz-juelich.de:127962$$pVDB 000127962 9141_ $$y2013 000127962 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000127962 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000127962 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000127962 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000127962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000127962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000127962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000127962 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000127962 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000127962 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences 000127962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000127962 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000127962 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000127962 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000127962 980__ $$aVDB 000127962 980__ $$ajournal 000127962 980__ $$aUNRESTRICTED 000127962 980__ $$aI:(DE-Juel1)JSC-20090406