
Jül - 4354

M
em

be
r 

of
 th

e 
H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Design and implementation of a highly 
configurable and efficient simulator for job 
schedulers on supercomputers

Carsten Karbach



Berichte des Forschungszentrums Jülich 	 4354





Design and implementation of a highly  
configurable and efficient simulator  
for job schedulers on supercomputers

Carsten Karbach



Berichte des Forschungszentrums Jülich; 4354
ISSN 0944-2952
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)
Jül-4354

Vollständig frei verfügbar im Internet auf dem Jülicher Open Access Server (JUWEL)  
unter http://www.fz-juelich.de/zb/juwel

Zu beziehen durch: Forschungszentrum Jülich GmbH · Zentralbibliothek, Verlag
D-52425 Jülich · Bundesrepublik Deutschland
Z 02461 61-5220 · Telefax: 02461 61-6103 · e-mail: zb-publikation@fz-juelich.de



Contents

1 Introduction 1

1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem analysis 5

2.1 The scheduling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Current status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Job scheduling 23

3.1 Analysis of job scheduling strategies . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Practical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Simulation’s design 37

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Optimisation 71

5.1 Similar job requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Handling simultaneous events . . . . . . . . . . . . . . . . . . . . . . . . . . 72



5.3 Backfill windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Implementation aspects 83

6.1 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Extension points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Simulation tests 87

7.1 Module tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Tests on real systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Test results for JUROPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusion and outlook 95

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99

A Detailed profiling results 103

B Detailed test results for JUROPA 105



Abstract

The supercomputers maintained by the Jülich Supercomputing Centre (JSC) are used by
scientists for simulation projects in computational science and engineering. These systems
are run in batch mode and are shared among all active users. Jobs are submitted to the
job scheduler, which decides for each job the time of execution. It manages running and
waiting jobs, sorts them by a given priority and executes the jobs by fitting them into
the current system state. For users it is often difficult to understand the job scheduler’s
algorithm. Thus, a prediction of the future system allocation of currently running and
queued jobs is valuable. It helps users to plan job submissions and supports administrators
by optimising the system load.

This master’s thesis deals with the design and implementation of a configurable simulation
for various global job schedulers. The developed simulation program called JuFo focuses
on the job schedulers Loadleveler and Moab as these are the most important batch systems
for the supercomputers provided by the JSC. A major design goal is to keep the simulation
independent from special job schedulers, which is achieved by the generic configuration
of JuFo. Since the simulation of a job scheduler with hundreds of jobs can become time
consuming, methods for optimising this process are investigated. Finally, a test framework
is developed, which allows for evaluating the accuracy of the schedules provided by JuFo.



Zusammenfassung

Die vom Jülich Supercomputing Centre (JSC) betriebenen Parallelrechner werden von
Wissenschaftlern für Simulationen verschiedenster Anwendungsbereiche verwendet. Die-
se Rechner laufen im Batch-Betrieb und können gleichzeitig von allen aktiven Benutzern
angesprochen werden. Sie schicken Jobs an den Scheduler, welcher über den Ausführungs-
zeitpunkt aller Jobs entscheidet. Der Job Scheduler verwaltet laufende als auch wartende
Jobs, sortiert sie nach gegebener Priorität und lässt passende Jobs ausführen. Für die
Nutzer ist es oft schwierig den Algorithmus zur Platzierung der Jobs nachzuvollziehen.
Deshalb wird ein Simulationsprogramm zur Vorhersage des Job Schedulers benötigt. Die-
ses unterstützt nicht nur die Anwender bei der Planung zukünftiger Jobs, sondern hilft
auch Administratoren bei der Optimierung des Schedulers.

Diese Masterarbeit behandelt den Entwurf und die Implementierung eines flexibel konfi-
gurierbaren Simulationsprogramms für verschiedene globale Job Scheduler. Der Entwurf
des Simulationsprogramms mit dem Namen JuFo basiert auf der Analyse der Scheduler
Loadleveler und Moab, welche für die Supercomputer des JSC eingesetzt werden. Ziel die-
ser Analyse ist, dass JuFo basierend auf möglichst flexibler Konfiguration für beliebige
Zielsysteme eingesetzt werden kann. Da die Simulation hunderter von Jobs zeitaufwen-
dig werden kann, werden Möglichkeiten zur Optimierung erarbeitet. Schließlich wird eine
Testumgebung entwickelt, welche es erlaubt die Genauigkeit der Vorhersage zu beurteilen.



Chapter 1

Introduction

The importance of supercomputers like those provided by the Jülich Supercomputing
Centre (JSC) is steadily increasing, as researches require more and more computing time
for their simulations. The demand for computing time on parallel systems exceeds the
capacities of computing centres. Thus, the use of this rare resource of computing time
has to be optimized. On the one hand, this can be accomplished by optimizing the
algorithms. This includes the reduction of the parallel overhead, which mainly consists of
communication, start-up and idling times of the involved processors. On the other hand,
administrators of the supercomputers have various options for minimizing idling times of
the computing resources. The choice and configuration of the operating system for the
supercomputers strongly influences their efficiency.

A very important part of the supercomputer’s operating system is the job scheduler. This
scheduling system is responsible for efficiently mapping submitted jobs to the available
computing resources. Krallmann et al. [1] define the scheduling system as follows:

“The scheduling system of a multiprocessor receives a stream of job submission
data and produces a valid schedule.” [1]

Optimizing the job scheduler and fitting it to the specific needs of a given system is one
of the major tasks for the administration of a supercomputer. Often it is difficult to test
changes in the configuration of the scheduling system. Thus, a configurable simulation of
the job scheduler would be a valuable tool to support the administration work. Hence,
the topic of this master’s thesis is to develop the basis for simulating job schedulers. The
simulation will be used for predicting the future schedule of the specific system based on
real time data gathered from the simulated system. The most important design goal for
this simulation program is to keep it generic and configurable. This will allow to adapt
the simulation to different system types without the need of reimplementation for each
new supercomputer.

Next to the support of the supercomputer’s administration, the simulation is also useful for
users by providing a prediction of the supercomputer’s schedule. Based on the currently
queued and running jobs the simulation could estimate the dispatch time for the submitted
jobs. This helps the user to plan further job submissions. The simulation predicts idling



2 CHAPTER 1. INTRODUCTION

times for the computing resources, which then can be filled with matching jobs by the
users. Both use-cases will lead to higher efficiency and load for the specific system.

1.1 Problem definition

The task for this thesis is to develop a generic simulation program for the job scheduler of
massively parallel systems. These systems are run in batch mode, which means that the
users submit job descriptions to the system. The jobs are executed by the supercomputer
at a time determined by the job scheduler. It is assumed that the analysed batch systems
reserve the requested resources for each job until their completion. Jobs are not suspended
or migrated during their execution as context switches can become very time consuming
for highly scalable jobs. The simulation must imitate the job scheduler for a given set of
jobs and resources. It must decide, if a job can be started on the system depending on the
required resources. The jobs have to be sorted with respect to their current priority and
the scheduling algorithm has to be simulated adequately.

The major design goal for this simulation program is the configurability. The simulation
has to be tailored to different system types such as JUROPA and JUGENE, which are
among others currently maintained by the JSC. While JUROPA is a general-purpose
cluster using the Moab Workload Manager for job scheduling (see [2]), JUGENE is needed
for calculation intensive and high-scalable applications and uses the IBM Tivoli Workload
Scheduler LoadLeveler as scheduling system (see [3]).

The differences and similarities of these supercomputer’s scheduling systems are analysed
in this master’s thesis in order to support as many scheduling features and parameter
changes as possible and to minimize the need of adapting the implementation for new
systems. Moreover, extensibility plays an important role in the design of the simulation.
As the possibilities of configuration are always limited, it might be necessary to extend the
simulation’s functionality for instance to support adapted or new scheduling algorithms,
which cannot be represented in configuration parameters.

The simulation program will be integrated into the workflow of LLview. LLview is a
generic monitoring system for supercomputers. It collects real-time information of the
monitored system and visualizes it on a single well-arranged display (see [4]). The gath-
ered information of the parallel system is converted into the Large-scale system Markup
Language (LML), which defines the structure for XML files describing the current status of
a supercomputer (see [5]). Each LML file contains a complete status snapshot of the mon-
itored system and functions as communication layer between LML generating and LML
processing applications. Therefore, it is the ideal input for the job scheduler simulator,
which needs job and resource information in order to generate a predicted schedule. In
addition, LML will also function as the simulation’s output format. The job information
will simply be extended by additional attributes containing the predicted execution time
period for currently waiting jobs. As a result, the scheduling simulator can be seamlessly
embedded into the monitoring system as a stand-alone module. To sum up, the integra-
tion of the simulator will be implemented in three major steps: LLview gathers the needed
information from the supercomputer and generates an LML file, the simulation extends
the file and the results are visualized by a monitoring client.



CHAPTER 1. INTRODUCTION 3

LLview also generates the configuration for the simulator. This is reasonable as it is able
to provide inside information of the job scheduler. Integrating the simulation program in
this way allows to focus completely on the task of the scheduling simulation. There is no
need to define the data-format for the configuration or to consider how the simulator’s
input is generated. However, it will remain a stand-alone application and can also be used
without LLview by providing well-defined LML files as input from an arbitrary source.

1.1.1 Job scheduler definition

For scalability reasons the job scheduling system of a supercomputer is often a combination
of different scheduling layers. Arnold [6] describes the scheduling system as a hierarchy of
three independently working schedulers:

• the global job scheduler responsible for mapping complete jobs to the system re-
sources

• the task scheduler, which implements multitasking on a single processor

• the thread scheduler, which represents the finest scheduling system and decides,
which thread of a process is executed at a specific time frame

The simulation program developed in this project only handles the global scheduler layer.
The simulated supercomputer is assumed to run a batch system, which is accepting job
submissions, inserting them into queues and executing them in a schedule generated by
the global scheduler. The global scheduling system itself can be defined as a combination
of three components: “Scheduling policy, objective function and scheduling algorithm” [1].
In this definition the scheduling policy defines high level scheduling rules. E.g. one of these
rules could specify that 50 percent of the system resources are reserved for a special user
group. The objective function accepts a given schedule as input and calculates a scalar
value expressing the quality of the input schedule. This function is needed to evaluate
generated schedules in order to compare different scheduling algorithms and choose the
best fitting algorithm. The last component of the scheduling system is the scheduling
algorithm, which is responsible for producing efficient schedules (see [1]).

As the objective function is only needed for choosing the appropriate scheduling algorithm,
the developed simulation program has to focus on handling the scheduling policy and
algorithm. The program must be designed to interpret the scheduling policy from its
input configuration. Adding or adapting rules of the scheduling policy will be done by
changing the configuration.

However, the scheduling algorithms often cannot simply be defined via configuration pa-
rameters as their behaviour is too complex and too different for mapping them on a simple
set of parameters. The simulator will support a set of popular scheduling algorithms such
as First-Come-First-Served or List-Scheduling, which can be chosen in the simulator’s
configuration. The extensibility of the simulation program will then allow to adapt the
provided scheduling algorithms to the specific needs of a supercomputer. New scheduling
algorithms can be integrated into the simulation program as additional classes defining the
algorithm’s strategy. As a result, the program provides an extensible basis for predicting
various job scheduling systems.



4 CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

This thesis comprises eight chapters. Chapter 2 deals with the analysis of the given prob-
lem. It proposes a mathematical definition of the scheduling problem, which has to be
solved by the simulated batch systems, and presents the existing scheduler simulation to-
gether with the monitoring environment, in which the developed simulation program has
to be embedded. The third chapter documents practical examples for approximating the
optimal solution of the previously defined scheduling problem. In doing so, the popular
and often implemented scheduling algorithms First-Come-First-Served, List-Scheduling
and their extension by Backfilling are introduced. It also summarizes the batch system ar-
chitectures, configuration parameters and scheduling algorithms of Loadleveler and Moab
in order to allow for abstracting their similarities into a generic simulation program.

After this analysis of the current state, chapter 4 focuses on the concept of the devel-
oped scheduler simulator. Design decisions are documented as well as how the simulation
program tries to balance the conflicting targets of generalization, efficiency, flexible config-
uration and extensibility. The main components of the simulation and their interactions
are presented by analysing needed data structures and algorithms. In order to improve the
simulation’s efficiency chapter 5 investigates the time consuming parts of the implemented
algorithms and outlines approaches for optimising them. Afterwards, chapter 6 deals with
implementation details including guidelines for extending the developed code basis and
the description of used libraries.

Chapter 7 documents how the simulation program can be tested. The process of generating
example input files is documented and the simulation’s algorithms are retraced with the
help of real workload examples. The last chapter summarizes the findings of this project
and provides an outlook for extensions of the developed simulation program.



Chapter 2

Problem analysis

This chapter collects information about the scheduling problem, which has to be solved by
the simulation program, and documents the current status of the monitoring environment,
which forms the technical basis for the simulator. In order to avoid circumscriptions the
simulation program, which is developed within this thesis, is herein after referred to as
JuFo. This especially allows for distinguishing JuFo from the existing simulator, which is
part of LLview.

2.1 The scheduling problem

The problem defined in this section has to be solved by the scheduling machines and at
the same time by the tool JuFo. This section tries to grasp the intuitively given scheduling
problem in a more theoretical approach. In this context job scheduling means to generate
a mapping of the input jobs to a dispatch time and to resources, on which the job is
executed. JuFo functions as on-line scheduler prediction. The actual job duration is
unknown, since the simulator is usually run before the jobs are executed. But the wall
clock limit provided by the users, which represents an upper limit for the job’s run time,
can be used as a corresponding approximation. The following definitions are needed for
modelling the scheduling problem:

n : number of scheduled jobs

J = {1, . . . ,n} : set of job indices

M : set of possible resource requests

R : set of totally available resources provided by the supercomputer

The input data for each job with index j ∈ J is given by a resource request r j ∈M and a
wall clock limit w j ∈ R>0. The possible kinds of resource requests in M are not defined
explicitly in order to keep the problem definition generic. This set M could contain requests
for processors, memory or network topologies, for example. In the same manner the set
R can be seen as a template for resources provided by the supercomputer. Note, that the
request type has to correspond with the provided resources. If the model only allows to
request processors, the provided resources must contain processors as well. Otherwise the



6 CHAPTER 2. PROBLEM ANALYSIS

jobs can never be dispatched. The schedule, which has to be generated by the simulation,
is then given by

s = (s1, . . . ,sn)T

where each s j ∈ R≥0, j ∈ J represents the predicted dispatch time of job j. The resource
requests r j have to be mapped to the actual resources in R, which can be achieved with
the help of the following function:

T = R
f : M×T →P(R)

Note, that P(R) represents the power set of R. It contains every possible subset of R.
Function f receives a resource request and a time value within the simulated time span.
It returns a subset of the actual resources available at the given time. For instance, the
supercomputer could merely provide processors as resources. Valid resource requests would
then be subsets of processors, which each job requires. This would lead to R = {1, . . . ,m}
and M = R, whereat m specifies the total number of configured processors. While each
element in R identifies a processor, each element in M represents the requested number
of processors for a job. Then the task of f is to map a resource request at a given time
to a matching subset of available processors, which is returned when calling f . In a real
system the central resource manager is responsible for realizing this function.

A generated schedule is only valid, if the resources of all running jobs are pairwise disjoint
at any time within the schedule. The set of running jobs of a schedule s at a given time t
is defined by g(t,s) with

g : T ×Rn
≥0→P(J),(t,s)→ g(t,s) := { j ∈ J|s j ≤ t ≤ s j + w j}

The above condition for the validity of a schedule can now be expressed by

f (r j, t)∩ f (ri, t) = /0,∀i, j ∈ g(t,s), i 6= j,∀t ∈ T (2.1)

With these definitions given the scheduling problem consists in the search of a valid sched-
ule, which maximizes the objective function. This function introduced in section 1.1.1
needs to implement the following constraints

V = {s ∈ Rn
≥0|(2.1) is true for s}

o : V → R

V contains all valid schedules and the objective function o evaluates their quality. A
reasonable example for an objective function is to calculate the total duration needed to
execute all queued jobs. The corresponding function can be defined by

s→ o(s) :=−max
j∈J

(s j + w j)

The maximum term is negated so that the objective function has to be maximized in order
to find the optimal schedule.

Finally, the scheduling problem is given as selecting the schedule sopt ∈V so as to

o(sopt) = max
s∈V

o(s)



CHAPTER 2. PROBLEM ANALYSIS 7

This defines the task of the schedulers. They have to manage the available resources R
and allocate subsets of them to each job. A job requests resources for a coherent period
of time. A schedule specifies the placement of the jobs into both the resource and time
dimension, which causes this problem to be that complex. Feitelson et al. [7] address this
complexity by stating the following

“Scheduling on a parallel computer is complex since it involves scheduling over
two dimensions, time and space”

Among all valid schedules in V , which cover both of these dimensions, the optimal schedule
is searched according to the objective function, which allows for comparing the generated
schedules.

A more general scheduling problem is examined carefully by Brucker et al. [8]. It de-
fines the resource-constrained project scheduling problem (RCPSP), which consists in the
combinatorial optimization of a schedule regarding an objective function and which can
be applied to a wide range of practical examples. In this problem, the jobs are called
activities and they require renewable resources of different types for a specific time period.
The number of totally available resources is constant and the activities are only allowed to
use disjunct sets of resources simultaneously. Additionally, precedence rules are included,
which define dependencies between the activities. This allows to specify, that an activity
has to wait for another activity to complete. Schedules are modelled as n-dimensional
vectors, too. As a result the scheduling problem defined above represents a specialisation
of the RCPSP. However, the precedence rules are disregarded in order to focus on the
problem’s core, although this concept is reasonable for batch jobs as they might depend
on the results of previous jobs. Brucker et al. [8, p. 34] prove that the optimization
problem given by RCPSP is NP-hard. I.e. there is no known algorithm for solving this
problem in polynomial time. That is one reason for applying heuristic solutions to this
scheduling problem as finding the exact solution cannot be achieved at acceptable costs.

2.2 Current status

JuFo is embedded as a stand alone module into the monitoring environment based on the
following three major components

LLview – the monitoring tool for supercomputers consisting of a server application, which
gathers current status information of the monitored system, and a client application
for visualizing the gathered information

LML – XML format for the description of a supercomputer’s status

PTP – the Parallel Tools Platform is a collection of intertwined Eclipse plug ins for
supporting developers of parallel applications (the project documentation can be
found in [9])



8 CHAPTER 2. PROBLEM ANALYSIS

After providing an overview of the environment built by these tools and after describing the
connection of these components each is presented in detail within this section. Moreover,
the integration of JuFo into this environment is outlined.

Figure 2.1: overview of the monitoring environment

The overall connection and data flow of the three mentioned components is demonstrated
in figure 2.1. The environment, in which the scheduler simulator is embedded, represents
a client server architecture. LLview provides the server application LML da for gathering
status information of a supercomputer. Thereby relevant information about the resources
provided by the monitored system such as details about running and queued jobs, the
status of the compute nodes and submitted reservations is collected, which is highlighted
by the step 1 arrows between LML da and the supercomputer. The second step processed
by this server application is the generation of a raw LML file containing the status of
gathered jobs, nodes and reservations. LML was designed to describe the status of a
parallel system in such a way, that it can be visualized as easy as possible. This simplifies
the development of monitoring clients for visualizing LML data. The LML file produced in
the third step provides exactly this kind of format close to a possible visualization, while
the raw LML file’s format is an abstraction of the information directly gathered from the
supercomputer.

JuFo requires the raw LML format as input, because its target is not visualization but
mapping jobs and reservations to available nodes in order to produce a predicted schedule.
Thus, the simulator processes a raw LML file and extends the job information by additional
attributes, which hold the predicted dispatch and completion time as well as allocated
resources for each job or reasons, why a specific job could not be started within the
duration of the simulation. The extended LML file is handed back to LML da, which
converts it in the third step into standard LML. This LML file is subsequently passed
via SSH, HTTP or other suitable protocols to the visualization clients of LLview or PTP.
Their task is parsing the LML information and converting it into a corresponding graphical
representation. Therefore, LML provides XML tags for tables, charts and text boxes, which
contain the gathered status information and have simple graphical representations.

LML functions as communication layer between programs, which gather the supercom-
puter’s status information, and those programs, which are responsible for the visualiza-



CHAPTER 2. PROBLEM ANALYSIS 9

tion. This allows the exchange of the client and server components as both sides rely
only on the creation and interpretation of valid LML. The validity of the generated LML
files is guaranteed by a corresponding XML Schema and an additional tool, which checks
semantic constraints not covered by the XML Schema. In almost the same manner, LML
works as a layer between JuFo and LML da. The raw LML file contains all necessary
information and configuration for the scheduler simulator, which optionally extends this
input file. Thus, the simulator becomes an encapsulated module, which could even be
excluded from the depicted workflow of figure 2.1.

In the same way other LML processing applications can be embedded into this environ-
ment. For example the prediction module implemented as part of LLview is included into
this workflow in the manner described except that it has been developed before LML was
established and is therefore based on an older XML format.

2.2.1 Job scheduling prediction of LLview

Besides the monitoring components such as a job table or statistical charts LLview already
provides a simulator for job schedulers, which is called prediction (see [4]). Its actual
implementation is named SchedSim, which is used in the following to refer to the scheduler
simulator implemented as part of LLview. This prediction module is the origin for this
thesis and forms a basis for the concept of JuFo. This section analyses the design of
SchedSim and outlines the data structures and algorithms of the given implementation.

The prediction module is separated into the simulation and visualization part, which
matches with the client server architecture of LLview. The simulation works on a set of
jobs, reservations and nodes and produces an estimated schedule based on the current sys-
tem status. The visualization parses the produced schedule from the added job attributes
and plots it in the prediction component shown in figure 2.2.

Figure 2.2: prediction component in LLview (source [4])

This graph draws a rectangle for each job in the schedule. The domain represents the pre-
dicted time slot covered by the schedule, while the co-domain is divided into the compute
nodes allocated to the jobs. However, the rectangles’ positions do not define the absolute
position of the job on the system, but only the number of nodes allocated to the job.

SchedSim works on a simple structured XML format, which is defined implicitly by LLview.



10 CHAPTER 2. PROBLEM ANALYSIS

Only LLview controls this XML format, which allows arbitrary modifications to the XML
structure and semantic. The reason for that, is that LLview was not originally designed
to be extended by external applications. Consequently the XML format represents an
internal format for simply passing data through the different workflow steps of LLview.
Due to the idea of possible extensions and enhanced interface definitions for LLview, LML
replaces the implicit format.

SchedSim is written in Perl and is especially designed for the supercomputers maintained
at JSC. It has been steadily adapted regarding configuration changes and new requirements
of the monitored systems. Thus, a huge range of configuration details and job attributes
are considered by this prediction module. This improves the accuracy of SchedSim, but
also increases its complexity and runtime.

As a result, for JuFo the three modules for gathering status information of the simulated
system, for the core simulation and for its visualisation need to be separated from each
other as these are independent steps. For this reason LML is used as communication layer
between these steps.

Data structures

The main data processed by the prediction software comprises the nodes, reservations,
queues and jobs of the supercomputer. Nodes are parts of the machine, which provide
processors, memory and other resources to the allocated jobs. The numbers of these
resources are passed to the prediction as key value pairs listed for each node. Reservations
assign sets of resources to a specific user group in order to provide faster access to the
reserved parts of the system. In this context a queue is a category, to which a job is
submitted. Each queue is connected to corresponding scheduling policies, which amongst
others define how many jobs of one queue can be started or the number of simultaneously
started jobs per user. A queue also determines the allowed number of cores, which can
be allocated to all jobs of one queue. In addition, the job queue specifies explicitly, which
compute resources are allowed to be allocated to jobs of the particular queue. E.g. this
allows for cutting the system into halves by assigning each half’s compute nodes to a
corresponding queue. As a result, the system would act like two disjunct supercomputers.
To conclude, jobs are grouped in queues and each queue possesses its own set of scheduling
rules. The job data passed to SchedSim holds running and waiting jobs, for which dispatch
and completion times have to be estimated.

SchedSim makes extensive use of nested hashes, which hold the simulation data. Although
no explicit classes are defined, these hashes and the global functions, which work on them,
form a set of implicit classes. The most important classes are depicted in diagram 2.3.
However, this figure only displays the main excerpt of the prediction’s implementation as
this analysis rather intends to give an overview than to document all configuration details.

The Simulation class is the entry point of this module. It collects the input nodes, reser-
vations and jobs in corresponding lists. Moreover, the simulation aggregates one Timeline
and one SystemState instance. The Timeline represents a list of events, which occur during
the simulated time interval. An event is caused either by a job or a reservation, which are
started or completed. It usually changes the system state, because resources are consumed
or released by the event source. The events are sorted by their time stamps. The System-



CHAPTER 2. PROBLEM ANALYSIS 11

Figure 2.3: major classes within SchedSim

State instance manages the state of the resources provided by the simulated machine. It
keeps track of available nodes and checks the constraints given by queues. The System-
State represents the simulation of the resource manager, which is in a real supercomputer
responsible for managing and allocating compute resources. In its nodes attribute it stores
a copy of the Simulation’s nodes in order to adjust the number of compute resources pro-
vided by the nodes. Events in the Timeline are also saved as SystemState instances. For
this purpose SchedSim creates thin copies of the SystemState, which only contain global
resource attributes such as freeCPUs and usedCPUs. The attributes connected to each
node like the number of processors used by each queue are not copied, because this in-
formation is not required for every event of Timeline. Next to the global state attributes
each event stores a type –such as job start or completion– and a time stamp.

The currentState instance of the Simulation holds status information about the resources
provided by the simulated supercomputer. The status information is altered throughout
the simulation process. Each event in the Timeline affects resources by consuming or
releasing them. On the one hand, the Timeline is required for logging the generated
schedule. On the other hand it allows to determine, if a job started at a given time would
interfere with another job or reservation in the future.

As a result, the data model is built by highly configurable nodes, reservations and jobs. The
simulation working on this data model is divided into three major packages: Simulation,
Timeline and SystemState. They implement the scheduling algorithm, the log of the
simulation events and the management of available compute resources. Although they form
a very flexible simulation basis, it is hard to extend SchedSim. The scope of each package
is too large and they strongly depend on the implementations of the other packages.
I.e. changing the implementation of one package would force the adaption of the entire
simulation program. JuFo needs to strictly separate these modules so that they only rely



12 CHAPTER 2. PROBLEM ANALYSIS

on abstract interfaces, but not on the actual implementation. Moreover, the functional
range of the packages has to be reduced by dividing them into independent sub tasks.
This helps to understand each package’s function and improves extensibility.

Algorithms – overview

At first the Simulation’s simulate function is called, which consecutively scans the input
data, inserts already dispatched jobs and places reservations into the Timeline. Then it
triggers the insertWaitingJobs function, which executes the main simulation. It sorts the
waiting jobs by fixed priority criteria. The Timeline is iterated and after adapting the
SystemState by each event with a call of moveForwardOneStep, the waiting jobs list is
traversed in order to place as many suitable jobs into the system as possible. This ap-
proach matches with the List-Scheduling algorithm, which is analysed in section 3.1.2.
The prediction module can also be configured to place a given number of highest priori-
tised jobs at the first matching time slot. These jobs are called top dogs. Afterwards,
lower ranked jobs are used for backfilling the idling resources before the top dog dispatch
(compare with section 3.1.3).

The classes SystemState and Timeline each provide functions for inserting jobs and reser-
vations. Inserting a job into the SystemState means to assign required resources to the
job. These resources are consumed and afterwards unavailable throughout the job dura-
tion. The SystemState does neither save any past nor future information. It just manages
the number of currently available resources and the jobs, which are assigned to them.
The insertion of a job into the Timeline is done by adding corresponding events. Jobs,
which were dispatched before the simulation’s begin, produce only one event for logging
their completion time. For the other jobs a second event is added, which records the job
start time. Before the actual insertion of a job, the checkJobPlacement functions deter-
mine, whether sufficient resources for the passed job can be allocated. The corresponding
function of the Timeline directly inserts the job if possible.

SchedSim implements two actually independent scheduling algorithms –List-Scheduling
and backfilling– in a single function. When re-designing the simulation program the im-
plementations have to be isolated from each other. This allows for independently changing
and testing each scheduling algorithm.

Scheduling algorithm framework

After introducing the main classes and the function call hierarchy the following section
presents the core algorithms implemented in SchedSim. The most important part of the
prediction is the placement of waiting jobs as the insertion of running jobs and reserva-
tions is already specified by the batch system of the supercomputer, which selects the
assigned resources. Figure 2.4 shows a simplified version of the Simulation’s function in-
sertWaitingJobs illustrated by a Nassi-Shneiderman diagram (NSD). This function builds
a framework for the implemented scheduling algorithm. It is responsible for interactions
between Timeline and SystemState.

Its first step is sorting the waiting jobs with the help of a comparator function. It compares



CHAPTER 2. PROBLEM ANALYSIS 13

void insertWaitingJobs()

sortWaitingJobs( waitingJobs )

backfilling

T F

handleTopDogs()

posintimeline = 0, numinserted = 0

posintimeline < timeline.size() && numinserted < MAXNUMJOBS

jobNr = 0

jobNr < waitingJobs.size()

job = waitingJobs[jobNr]

currentState

T F

.checkJobPlacement(job)

inserted = timeline.checkJobPlacement(job, posintimeline)

inserted

T F

numinserted++

break

JobNr++

posintimeline++

posintimeline < timeline.size()

moveForwardOnestep()

event

TRUE FALSE

.getTime() == timeline[posintimeline+1].getTime()

posintimeline++ break

Figure 2.4: NSD for insertWaitingJobs function of the Simulation class

two jobs by a sequence of priority criteria. The first evaluated criterion is the system
priority, which can be requested from the scheduling machine. If this value is equal for both
jobs the smaller step number gets a higher rank. The step number sorts jobs among each
other, which are submitted by the same user and as part of job chains. A job with a higher
step number in one chain usually depends on the results of prior job steps. If the jobs are
still ranked equally, a few less relevant criteria such as comparing the job names are applied
in order to achieve unambiguous sorting. The first jobs in the sorted list are the top dogs,
which are inserted into the Timeline by the handleTopDogs function explained later. The



14 CHAPTER 2. PROBLEM ANALYSIS

number of jobs handled as top dogs can be configured. Another configuration parameter
–named MAXNUMJOBS– is the maximum number of jobs, which are inserted into the
generated schedule. This parameter allows to limit the execution time of SchedSim. The
outer loop traverses the events stored in the Timeline. At the beginning of the simulation
the Timeline contains events for the completions of already running jobs and events for
inserted reservations. The top dog placement adds the corresponding events at the first
time slots, where the top dogs can be inserted into the system.

At each event two inner loops are executed: the first loop searches for jobs, which can be
inserted into the current SystemState, and adds corresponding events to the Timeline. The
second loop actually processes the events and is responsible for altering the SystemState.
The first loop iterates over remaining waiting jobs. It tests, whether the current state
allows the job’s insertion, by calling the checkJobPlacement function of the SystemState.
If this was successful, it has to be checked by the Timeline’s checkJobPlacement function,
if the job would interfere with any future event such as a starting top dog or reservation.
This function has to make sure that the system possesses sufficient resources for the passed
job throughout the entire estimated job duration. As this prediction implements an on-line
scheduling simulation, there is no reliable information about the job completion time. The
users configure a wall clock limit, which is an upper limit for the job execution time. Both
checkJobPlacement functions are presented later within this section. If a job is inserted
successfully into the Timeline, the first inner loop is finished. Afterwards, the second loop
executes all successive events with the same time stamp and thereby changes the resource
states managed by the currentState instance.

Since JuFo has to realize a set of different scheduling algorithms, a common framework for
their implementations has to be extracted from the draft provided by SchedSim. The only
function of the Simulation class, which depends on the particular scheduling algorithm,
is insertWaitingJobs, while the functions for the insertion of reservations and already
dispatched jobs are unaffected by the scheduling algorithm. Thus, a reasonable approach
for varying these algorithms is to implement a common simulation framework and adapt
the insertWaitingJobs function to the needs of each scheduling algorithm. Moreover, the
strategy for sorting the jobs according to the system priority is an independent task, for
which JuFo can introduce an additional package in order to reduce the complexity of the
Simulation class. Parameters such as MAXNUMJOBS for limiting the run time of the
simulation also have to be used in JuFo to ensure that it can be applied as on-line scheduler
prediction. Besides a resource manager the new simulation program must use a Timeline
to allow the implementation of resource reservations. The used list of events along with a
reference to a corresponding system state is a promising data structure.

Top dog placement

The handleTopDogs function is called, if the prediction’s configuration defines to use the
backfilling algorithm. A shortened version of the implementation of this function is shown
in figure 2.5.

It tries to insert a number of NUMTOPDOGS jobs into the Timeline by traversing the
pre-sorted waiting jobs list. This function implicitly implements a state machine for each
job. The initial state of a job is NOTFOUND, which means that no start position is found



CHAPTER 2. PROBLEM ANALYSIS 15

void handleTopDogs(waitingJobs, posintimeline)

jobNr = 0, inserted = 0

jobNr < waitingJobs.size() && inserted < NUMTOPDOGS

job = waitingJobs[jobNr], pos = posintimeline, mystate = NOTFOUND

tmpState = currentState.copy("ALL")

pos < timeline.size() && mystate != ENDFOUND

event has same timestamp

moveForwardOneStep()

mystate

TRUE FALSE

 == NOTFOUND

tmpState

T F

.checkJobPlacement()

mystate = STARTFOUND, startTimePos  

= pos

startTime = timeline[pos].getTime(), endTime =

 timeline[pos].getTime() + job.getWall()

saveState = tmpState.copy("ALL")

minState = tmpState.copy("ALL")

pos++

continue

mystate

T F

 == STARTFOUND

timeline

T F

[pos].getTime() > 

endTime

endTimePos = pos-1, mystate = ENDFOUND

break

reduce minState by consumed resources

!

T F

 minState.checkJobPlacement

()

mystate=NOTFOUND, pos = 

startTimePos, tmpState = saveState

pos++

continue

pos

++

mystate

T F

==ENDFOUND

timeline.insertJob(job, pos)

inserted++

Figure 2.5: NSD for handleTopDogs function of the Simulation class

so far. This state transits to STARTFOUND, when the function detects the first Timeline
position with sufficient resources for the current top dog. The last state is ENDFOUND
assigned to the job, if a completely matching time slot is found within the Timeline.

For each top dog this function searches a coherent time slot, in which the SystemState al-
lows the job’s insertion at any time and on identical resources. It is not sufficient to simply
check the SystemState’s checkJobPlacement function at each event within the job duration,
because the resource set, on which the job is started, could change every time. Changing
the resources during the job runtime is not allowed for this simulation as the migration of
jobs is no option for the simulated supercomputers. The currentState is copied completely
into the tmpState variable. This allows to simulate the subsequent events in the Timeline
without altering the actual SystemState. The inner loop implements job state transitions.
At first the dispatch position is searched as long as the state is set to NOTFOUND. On



16 CHAPTER 2. PROBLEM ANALYSIS

the first event with sufficient resources tested by tmpState.checkJobPlacement() the state
is switched, the predicted dispatch and completion times are calculated and tmpState is
copied into saveState and minState. While minState is needed to store the minimal set of
available resources throughout the job’s time slot, saveState is used as a checkpoint state.
This state is restored, when the job cannot be inserted into a future system state.

After a possible start time is found for the job, each iteration of the inner loop tests,
whether the job can still be inserted after updating tmpState by calling moveForward-
OneStep for all events with the same time stamp. This test is executed on the minState,
which is updated in each iteration by comparing it to the current tmpState. All resources,
which are marked as unavailable at a single position in the Timeline, are removed from
the resources of minState. This ensures, that the job does not need to be migrated from
one resource set to another. If the checkJobPlacement test fails at one time position,
the state machine switches to the initial NOTFOUND state and tmpState is restored
to the checkpoint state. Furthermore, the search for a new time slot is started at one
event position after the startTimePos value. This is reasonable as unavailable resources
at startTimePos might be released by a job completion at the following event. If a job can
be inserted into minState at all events within its estimated duration, the corresponding
endTimePos is set and mystate switches to ENDFOUND. Finally, the job is inserted into
the Timeline at the detected time slot.

The backfilling algorithm requires the knowledge of available resources throughout a sim-
ulated time span. For the top dogs the future events of the Timeline are executed in a
forward simulation. This requires to copy the entire system state in order to use it as data
model for this forward simulation. In the same manner, for placing a job it is not suffi-
cient to check for available resources only at the current position in timeline. Therefore,
JuFo has to allow for efficiently copying the system state and needs to implement forward
simulations on a copied state. Furthermore, a data structure for the resources allocated
to a job is required. SchedSim manages these resources with a list of the node IDs used
by each job. A more efficient data structure would be beneficial.

Placing other jobs

With the two functions for inserting the waiting jobs and reserving time slots for the
top dogs described the main idea of SchedSim is outlined. Both functions depend on the
checkJobPlacement functions of the Timeline and the SystemState, which are explained
in the following. The Timeline’s function is basically a subset of the handleTopDogs
functionality. It answers the question, whether a passed job can be inserted at a given
position in Timeline. Therefore, it has to be checked at each event within the predicted
job duration, if the simulated SystemState possesses sufficient resources. This is equal to
the algorithm in the handleTopDogs function, when mystate is set to STARTFOUND. But
if an event is found, which does not allow the insertion of the job, the checkJobPlacement
function does not search for another dispatch time. It will simply return that an insertion
is not possible at the requested position in the Timeline.

The last described function is the SystemState’s checkJobPlacement, which is responsible
for monitoring and allocating the compute resources to the jobs. It simulates the resource
manager of a supercomputer. A code diagram of this function is depicted in figure 2.6.



CHAPTER 2. PROBLEM ANALYSIS 17

bool checkJobPlacement( job )

jclass = job.getClass(), cpus = job.getCPUs()

taskspernode = job.getPPN(), nummachines = job.getNodes()

check whether job is in a not started reservation

check starters constraints

check maximum allowed jobs constraints

check jobstep dependencies

system

TRUE FALSE

 is not blue gene

nodenumber[]

for( nodenr = 1; nodenr <= nodes.

size() && nummachines > 0; nodenr

++)

taskspernode

T F

 <= 

startersOnNode[

nodenr][jclass]

nodenumber.add(nodenr)

nummachines--

find all available nodes with sufficient cpus and mark them in freemp[x][y][z]

nummachines

T F

 - free nodes > 0

return false

job

T F

.getShape() == "0x0x0"

shapes = findAllCuboids( nummachines ) shapes = { job.getShape() }

for( shapeNr = 0; shapeNr< shapes.size(); shapeNr++)

checkBglShape

T F

(freemp, shapes[shapeNr])

generate nodenumber list

return true

return nummachines == 0

Figure 2.6: NSD for the SystemState’s checkJobPlacement function

This function only works on a single position in time. In contrast to the Timeline, it does
not need to consider any past or future information of the simulation. The most important
job requirements, which have to be met by the SystemState, are collected in the first two
blocks of the diagram. A job is submitted to a queue, it requests a certain number of
processors, which are spread on a list of nodes. Each of the nodes needs to provide at least
a number of taskspernode processors. The following four blocks execute simple constraints,
which are able to forbid the job’s insertion into the SystemState. At first it is checked, if
the job is associated with a reservation. If the reservation was not started so far, the job
is not allowed to be scheduled either. Afterwards, the function compares the requested
processors with the number of available processors for the job queue. Another fast check
is to control the constraint given by the upper limit for simultaneously started jobs in
total and per user. In addition, the job might be unable to start, if prior job steps are not
finished before the current time position.

After all these constraints are achieved, the further behaviour of the function depends on



18 CHAPTER 2. PROBLEM ANALYSIS

the simulated system type. The simpler case is given for a cluster system such as JUROPA.
The algorithm assumes that for this system type arbitrary nodes can be assigned to a job.
The location of the nodes within the system is dispensable. Thus, all nodes are traversed
in order to filter a set of nummachines nodes, each of which possesses at least a number of
taskspernode available processors in the job queue. If a corresponding node set was found,
the function returns, that the job is allowed to start, and the found resource set is passed
back to the calling function as a job attribute.

For a Blue Gene system searching a suitable set of nodes is more complicated as they
have to be arranged in a sub cuboid of the global cuboid formed by all compute nodes.
A first step is to detect all nodes, which could be part of the resource set with regard to
the required processors on each node. For this reason the tridimensional array freemp is
filled with a zero for each node, which does not possess sufficient resources, and a one for
the suitable nodes. If the number of applicable nodes is lower than the total number of
requested nodes, the job cannot be started and the checkJobPlacement function is aborted.
The structure of freemp complies with the logical structure of the system nodes. They
are placed in a tridimensional torus network, which is examined carefully in section 3.2.1.
Hence, the freemp array allows to locate a subset of nodes, which matches with the job
request. A Blue Gene system allows the jobs to define the shape of the sub cuboid, in
which the assigned nodes should be arranged. The shape is defined by three values, which
represent the edge lengths in each dimension of the cuboid. If no shape is determined by the
user, the function looks for all possible node cuboids with a volume equal to nummachines.
The following loop iterates over all found shapes and tests, whether freemp contains a
subset of suitable nodes in the current shape by calling the function checkBglShape. This
function is quite time-consuming as it has to check for a valid sub cuboid starting at each
location in the freemp array. If an available set of nodes in a proper shape is found, it
is saved as a job attribute and the function returns successfully just like described in the
case of a cluster system.

To conclude, a job needs to fulfil a lot of constraints before it can be dispatched. JuFo
needs to simplify the configuration of these constraints. Furthermore, the given implemen-
tation of the system state handles two resource manager types –JUROPA and JUGENE–
simultaneously. In the new simulation program their implementations must be separated
from each other. A common abstract interface must be defined so that the Simulation
class can use any implementation without knowing the actual type. This also allows for
adding another system state type without adapting the implementation of the simulation
framework.

Summary

LLview’s scheduler prediction is an advanced simulation especially designed for the su-
percomputers maintained at JSC. It processes highly configurable input data comprising
jobs, reservations and nodes. The implementation is composed of a Simulation class, which
applies the scheduling algorithm, a Timeline for logging the events and the SystemState,
which is responsible for allocating resources to the jobs and reservations. The schedul-
ing algorithms List-Scheduling and Backfilling are supported. Moreover, the prediction
module is aware of the simulated system’s topology since the SystemState class manages
each node’s available resources and sub cuboids are searched for jobs requesting the torus



CHAPTER 2. PROBLEM ANALYSIS 19

network on Blue Gene systems. On the one hand, the huge range of configuration details
considered by the prediction improves its accuracy. On the other hand, its efficiency suf-
fers from these details and the growing size of simulated nodes and jobs. In order to keep
the run time of the simulation short it is possible to restrict the number of inserted jobs.

However, with the implicitly defined XML input format and the fact, that the implemen-
tation often had to be adapted to new system configurations, the extensibility of SchedSim
is limited. As a result, a more generic redesign of this prediction module is needed. A
new prediction should provide the same level of configuration, avoid the need of full re-
implementations for new systems and should also feature enhanced efficiency.

2.2.2 LML

The Large-scale system Markup Language (LML) defines the structure of an XML format
for describing status information of massively parallel systems. It was evolved as com-
munication layer between applications, which gather information about supercomputers,
and those, which process and especially visualize the collected data. Therefore, LML is
designed to make the visualization of the collected data as easy as possible by provid-
ing XML tags, which are close to graphical representations. Figure 2.7 depicts the main
components of an LML file.

Figure 2.7: main structure of an LML document

The XML elements within each LML file can be categorized into the groups global data,
graphical components and layout. Global data comprises a list of objects such as jobs,
nodes, reservations or queues, which are identified within this list and referenced by all
other LML elements. This is necessary to connect the data among all LML components.
The information element allows for attaching additional data to each object. For example
for each job its owner, the number of requested processors or any other job attribute can be
saved. As LML is also applicable for data requests from the monitoring clients to LML da,
the request element can be used to transmit various request configurations. Thus, LML
can be used as bidirectional communication language. The global data group forms the
raw LML format, which works as data format for JuFo.

The graphical components contain derived data elements, which are generated with LML da



20 CHAPTER 2. PROBLEM ANALYSIS

by processing a raw LML file. These components easily can be converted into correspond-
ing visualizations, because the data structures are designed close to graphical representa-
tions. The graphical components do not define how the data needs to be rendered, but
they point to possibilities for displaying them. For example the table element consists of a
set of columns and rows so that a corresponding visualization is easy to implement. How-
ever, the final rendering of each monitoring client is allowed to vary. A chart can be used
to shape different types of diagrams, which are essential for statistical system monitoring.
It allows to define charts about the system load, the number of active users or submit-
ted jobs, for example. The usagebar holds information for a special diagram showing all
currently running jobs in a horizontal bar. Each job is displayed as a colored rectangle,
whose width accords with the job size. Finally, the nodedisplay element represents the
most important graphical component. Its task is describing the physical structure of a
supercomputer with the help of a hierarchy of compute resources. For instance a simple
nodedisplay could define a cluster consisting of nodes, each of which contains a set of cores,
in a two-level hierarchy. In the second part of the nodedisplay these compute resources
are connected to currently running jobs. As a result, this graphical component describes
the supercomputer’s architecture and also maps its compute resources to the dispatched
jobs. Users are then able to locate their jobs on the monitored system. A nodedisplay
can be painted with nested rectangles, while each rectangle represents a processor, a node
or any other element of the architecture’s hierarchy. The rectangles are filled with unique
colors in order to identify the job running on the specific compute resource.

The layout group of LML elements is a collection of layout information associated with
each graphical component. This information contains optional hints for configuring the
visualization of LML. For example the tablelayout allows for defining the percentaged
width of each column within a table. Adding these layout tags instead of extending the
graphical components with layout information, separates the plain status data from the
configuration data for the monitoring clients. Each graphical component possesses its own
layout element as configuration parameters differ for each component type. An entire
documentation of the structure and design decisions in LML is provided by [10].

2.2.3 PTP

The Parallel Tools Platform is a set of Eclipse plug ins for supporting the development of
parallel applications. It comprises syntax highlighting, context sensitive code completion
for the programming languages C and Fortran, makefile support, synchronized projects,
which means that the local source code is copied automatically to the remote supercom-
puters, and system monitoring. The latter represents one of the possible monitoring clients
used for visualizing the results of JuFo. JSC is involved in the development of this system
monitoring component provided by PTP. Its functionality is summarized in this section.
The system monitoring of PTP uses LML as communication format. While Eclipse is
usually running on a local client, PTP needs to directly connect to the supercomputer in
order to gather status information, build the parallel application and submit jobs. This
connection and all communication between PTP and the remote machine is established
via SSH. The required authentication is handled by external Eclipse plug ins, which al-
low amongst others the usage of password or public key based authentication. Once the
connection is established, the server application of LLview is copied to the remote system
and reacts on LML requests sent from the PTP client. Corresponding LML responses



CHAPTER 2. PROBLEM ANALYSIS 21

are generated and passed back to the system monitoring, which is then responsible for
rendering the collected status information. As JuFo is written in C++, it needs to be
compiled on the remote machine. Furthermore, it represents a stand alone module, which
is not included into the PTP’s server application. As a result, it needs to be installed on
the remote machine by the system administrator, for example. PTP’s server can then be
configured to run the scheduler simulator as an additional step in its workflow.

The system monitoring is implemented as an Eclipse perspective, which is given as a
set of views arranged in a specific layout. Each view of this perspective comprises the
visualization of one graphical component sent within the LML input file. At present the
tables, an info text box and the nodedisplay are implemented. However, independently
from this thesis the charts, used for visualizing the results of the scheduler simulation
as well as other statistical data, are part of PTP’s future work. The various views are
able to interact with each other by highlighting corresponding information throughout all
components simultaneously. For instance, if the user clicks on a job in the nodedisplay, the
corresponding row in the table of running jobs is also highlighted. In the same manner,
the visualization of the scheduler simulator might be connected to the other components
so that the user is supported as good as possible by linking the shown information. These
enhancements of PTP’s monitoring system are not included in the implementation of this
thesis as it focuses rather on the core simulation than on its visualisation.

2.3 Target

The functionality of the simulation developed within this thesis is generally based on the
presented prediction module SchedSim. However, a few disadvantages of this module
can be extracted from the previous analysis: it lacks extensibility, because its design and
the configuration parameters are specifically tailored to the supercomputers at the JSC.
Additionally, the prediction’s run time has reached the limits for an on-line scheduler
simulation so that its efficiency has to be optimized. A possible method for accelerating
the prediction module is its parallelization, whose practicability needs to be investigated.

This leads to the idea of redesigning the prediction module by trying to enhance the
determinants abstraction, efficiency and extensibility. JuFo needs to provide a firm and
generic code basis, which simplifies the integration of new configuration parameters and
scheduling algorithms. Therefore, the batch systems’ similarities have to be gathered into
reasonable interfaces, which are sufficient for implementing as many scheduling system
variations as possible. Despite the requested abstraction the interfaces need to allow the
implementation of the functionality of LLview’s prediction. In order to prove the usability
of these abstraction, the main part of the given prediction module has to be implemented
as reference implementation, which reduces the overhead of further developments. As a
result, the simulation must be based on these abstract interfaces and must also provide
practical example implementations in order to indicate how the interfaces are meant to
be used. However, the design goal efficiency conflicts with abstraction and extensibility.
Therefore, the simulation needs to balance these objectives in order to find an acceptable
compromise.

Another design goal is to separate the scheduler prediction from the process of gathering
the input data for the simulation. Without embedding the simulation program into the



22 CHAPTER 2. PROBLEM ANALYSIS

monitoring environment outlined in section 2.2 not only the scheduling algorithms, but
also the application for retrieving status information of the simulated supercomputer would
have to be reimplemented for each new system. By relying on LLview and the monitoring
clients JuFo is independent from the interfaces for gathering the supercomputer’s status
information. Thus, it can focus on simulating the scheduling system by processing the
system independent status description language LML.

2.4 Limitations

First of all, despite the objective of abstraction the simulation cannot be applied to every
supercomputer. For example, preemption and migration of jobs are not implemented as
these concepts are of little relevance for large parallel systems. The simulation needs to
make assumptions about the common basis of all possible kinds of batch systems, which
should be simulated. It assumes the system to manage a set of compute nodes with as-
sociated resources, for example. There might be systems, which do not use the concept
of nodes, and therefore cannot be simulated with this application. The more concrete as-
sumptions are made the more efficient and simpler is the corresponding implementation,
but at the same time this implementation becomes less generic. To conclude, the simu-
lation cannot handle all possible scheduling concepts, because otherwise the abstraction
would be a useless generalization.

Moreover, only a small set of possible scheduling algorithms can be covered by the basic
implementation so that it is likely that the provided algorithms have to be extended or
changed for other batch systems. But the simulation is designed to simplify these adaptions
as much as possible. In addition, this simulation only deals with the global schedulers,
which map parallel jobs to the resources provided by the supercomputer. The lower level
schedulers are not included into the simulation.

As SchedSim evolved throughout the production of the simulated systems and has gained
a huge range of configuration parameters, it is not possible to reimplement its full func-
tionality within the given project period. However, the main algorithms certainly can
be transferred into JuFo. In the same manner, the simulation does not represent a fully
reliable emulation of a batch system, but is rather a simplified model, which considers the
most important factors affecting the scheduler’s behaviour. Keeping this model simple is
also crucial in order to limit the run time of the simulation so that it can be applied as
on-line prediction for monitoring purposes.



Chapter 3

Job scheduling

This chapter covers the analysis of frequently used global scheduling algorithms for su-
percomputers. A set of relevant strategies is presented in order to provide an overview of
possible approaches to the scheduling problem. The second section deals with analysing ac-
tually implemented scheduling strategies for the batch systems of JUGENE and JUROPA.
This analysis functions as basis for the design of JuFo and guarantees that it is applicable
as scheduling predictor for these systems.

3.1 Analysis of job scheduling strategies

The scheduling strategies analysed in this section represent heuristic solutions for the
scheduling problem defined in section 2.1. The problem is defined as generating job sched-
ules, which optimise a given objective function. The resulting schedule represents a map-
ping of jobs to available resources and a corresponding time slot. Input values for the
scheduler are jobs requesting resources and the currently available resources provided by
the supercomputer. Jobs have to be placed into the schedule as atomic items. Once started
by the scheduler, it is not allowed to suspend the job or change its allocated resources.
Afterwards, the quality of the schedule can be estimated by given objective functions in
order to compare the heuristic solutions.

The following scheduling algorithms only provide approximations for the optimal solutions.
In order to find the optimal solution all possible schedules would have to be generated.
Afterwards, the evaluation of the objective function for each schedule would allow the
extraction of the best solution. As applying brute force is impossible even for a small
number of jobs, the following heuristic solutions are analysed. These strategies can also
be found in actually implemented scheduling systems, which are described in section 3.2.

3.1.1 First-Come-First-Served

The First-Come-First-Served (FCFS) algorithm is a very simple approach to the scheduling
problem. The jobs are sorted by their queue dates with the earliest submitted job on top.
They are started successively and no job is able to start before all higher ranked jobs were



24 CHAPTER 3. JOB SCHEDULING

started. FCFS tends to produce rather bad schedules concerning objective functions such
as the average throughput, but guarantees fairness as the job positions within the waiting
queue can only decrease (see [1]).

void fcfs(waitingJobs)

sort waitingJobs by queue date

timePos = 0

timePos < timeline.size() && waitingJobs.size() > 0

react on event at timePos

waitingJobs.size() > 0

is

T F

 waitingJobs[0] insertable

insert job into system at timePos

waitingJobs.erase( waitingJobs[0] )
break

timePos++

Figure 3.1: pseudo code implementation of FCFS

A possible implementation of FCFS is outlined in figure 3.1. The Timeline instance
within this diagram consists of events such as the dispatch and completion of jobs, which
are changing the system state. Its task is identical to the Timeline included in LLview’s
prediction implementation SchedSim described in section 2.2. The Timeline is traversed
by the outer loop. In each iteration the algorithm reacts on the current event by either
inserting a new scheduled job into the system or releasing the resources used by a completed
job. The inner loop tries to insert as many jobs from the top of the waiting list as possible.
If a job is insertable, it is placed into the current system state and removed from the waiting
list.

In order to visualize the analysed scheduling algorithms, a simple example workload is
used as input for each algorithm. The most important steps are then simulated with the
help of this example. The input system state for this example is defined in table 3.1. Its
content is similar to the data passed to JuFo.

All time values – such as start-, end-time and wall clock limit – in this example are given
as relative dates in seconds regarding the start of the scheduling. This means, that the
running jobs j2 and j3 started one hour before the simulation start time. For the FCFS-
algorithm waiting jobs are sorted by their queue date, which is the date, when they were
submitted. Therefore, the priority attribute listed for the waiting jobs is derived from
their queue dates. The priority is calculated as the negated value of seconds between the
queue date and the date 1st January 1970. This is the standard time stamp format used in
C++ applications. By negating this time difference the job, which submitted the earliest,
gets the highest priority. The waiting jobs table presents the jobs sorted by their priority.



CHAPTER 3. JOB SCHEDULING 25

resources the system comprises 5 processors, other resource types are neglected in this
example

jobs two jobs have been started before the scheduling started, four other jobs are waiting
to be allocated

running jobs

Job name Totalcores Start time End time

j2 2 -3600 4
j3 1 -3600 9

waiting jobs

Job name Totalcores Priority Wall clock limit

j5 3 -1333368300 2
j1 2 -1333371840 5
j4 1 -1333371900 7
j6 2 -1333373400 6

Table 3.1: example workload for the scheduling algorithms

The schedule generated by the FCFS algorithm is depicted in figure 3.2. Each job is
displayed as a rectangle. Its width shows the time span of the job, the height represents
the number of processors used by the job.

Figure 3.2: results of FCFS scheduling with 3.1 as input

The running jobs are placed at fixed positions determined by a previous run of the sched-
uler. The waiting jobs list is traversed in the given order and the jobs are placed succes-
sively into the schedule as soon as possible. As a result, the job j5 is started before j1
and so forth. In this example it is obvious, that the schedule could have been improved by
starting j4 at second 0, for instance. This would have been allowed, since one processor is
available throughout this job’s duration. However, the FCFS strategy prohibited its start
before the higher prioritised j5. That causes a relative high number of idling resources.

3.1.2 List-Scheduling

The List-Scheduling algorithm sorts the waiting jobs by arbitrarily configurable priorities
calculated from job attributes. A job requests a set of resources such as processors and
memory and possesses additional attributes like its queue date, owner, user group or submit



26 CHAPTER 3. JOB SCHEDULING

queue. Based on these attributes job priorities can be calculated with simple mathematical
terms. For instance the priority could be calculated by CPU ∗MEMORY −QUEUEDAT E,
whereat CPU means the number of requested processors, MEMORY the quantity of
memory in megabytes and QUEUEDATE the queue date of the job in seconds. This term
is evaluated for each job and represents its priority. List-Scheduling then traverses the
sorted list and starts all jobs, for which sufficient resources are available (see [1]).

void listscheduling(waitingJobs)

timePos = 0

timePos < timeline.size() && waitingJobs.size() > 0

react on event at timePos

sort waitingJobs by priority term

jobNr = 0

jobNr < waitingJobs.size()

job = waitingJobs[jobNr]

is

T F

 job insertable

insert job into system at timePos

waitingJobs.erase( job )
jobNr++

timePos++

Figure 3.3: pseudo code implementation of List-Scheduling

The resulting algorithm is depicted in figure 3.3. Differences to FCFS are, that the jobs
queue has to be resorted in each iteration as the priorities could be time dependant or
new jobs could have been queued with higher priorities. Furthermore, the inner loop is
not stopped, if the first job cannot be inserted, but tries to insert lower prioritised jobs.
As a result, List-Scheduling is more complex than FCFS, but it is assumed to produce
schedules with higher throughput as it tries to allocate idling resources to any fitting job.
However, the fairness provided by FCFS is not guaranteed with List-Scheduling, because
new submitted jobs are able to delay those with an earlier queue date.

With the example input of table 3.1 List-Scheduling would produce the schedule shown in
figure 3.4. The priority term is equal to the term used for sorting in the FCFS scheduling.
Thus, jobs are simply sorted by their queue date. However, the jobs are started as soon as
the requested resources are available. This causes j1 to be started at time zero, because
it is the highest prioritised job, which fits into the idling two processors at the start of
scheduling. Even j4 is dispatched before the actually highest prioritised waiting job j5,
because it only requests a single processor, which is available as soon as j2 is completed.



CHAPTER 3. JOB SCHEDULING 27

Figure 3.4: results of List-Scheduling with 3.1 as input

3.1.3 Backfilling

Backfilling represents an enhancement of FCFS. Its development is described by Lifka [11].
It tries to use idling resources in the schedules generated by FCFS without delaying higher
prioritised jobs. However, the jobs are sorted by a generic priority term like described for
the List-Scheduling algorithm. The list is traversed and all matching jobs are inserted.
If a job requires more resources than the system is currently offering, the first time slot
with sufficient resources is reserved for this job. Thus, lower prioritised jobs are not able
to delay the dispatch of this job. But they can be inserted before the reservation in order
to use possibly idling resources, which would have been unused in a FCFS schedule.

A possible implementation of backfilling is shown in figure 3.5. It extends the List-
Scheduling implementation by the creation and handling of reservations. A second pa-
rameter is passed to the backfilling algorithm, which determines the allowed number of
reservations. If a job cannot be started within the inner loop, the described time slot is
searched and reserved. The job is moved from the waiting to the reservedJobs list, so that
it is not used for backfilling afterwards. A corresponding event is added to the Timeline.
In subsequent iterations of the outer loop the algorithm checks, if a previously reserved job
is started. In this case it is removed from the reservedJobs list, which allows the creation
of another reservation in the inner loop again.

The number of created reservations for the highest prioritised jobs, which cannot be
started, leads to the distinction between easy and conservative backfilling (see [1]).

Easy backfilling

Easy backfilling creates a reservation only for the first job, which cannot be started. This
improves the efficiency, but permits the delay of higher prioritised jobs by backfilling
inferior jobs. For example the first and second jobs in the waiting list cannot be started
due to the lack of resources. Easy backfilling reserves a time slot for the first job and tries to
backfill available resources before this reservation. The third job is used for backfilling and
might then delay the second job’s start. This would be impossible when using conservative
backfilling.



28 CHAPTER 3. JOB SCHEDULING

void backfill(waitingJobs, maxReservations)

timePos = 0

timePos < timeline.size() && waitingJobs.size() > 0

react on event at timePos

event

T F

 started reserved job

reservedJobs.erase(job)

sort waitingJobs by priority term

jobNr = 0

jobNr < waitingJobs.size()

job = waitingJobs[jobNr]

is

T F

 job insertable

insert job into 

system at 

timePos

waitingJobs.

erase( job )

reservedJobs

TRUE FALSE

.size() < 

maxReservations

reserve time slot of job

timeline.addEvent(reservation)

reservedJobs.add(job)

waitingJobs.erase( job )

jobNr++

timePos++

Figure 3.5: pseudo code implementation of generic backfilling

The implementation of easy backfilling would set the maxReservations parameter in figure
3.5 to one.

Conservative backfilling

Conservative backfilling allows the creation of any number of reservations. As soon as the
algorithm detects a job, which cannot be started, the first matching time slot is reserved.
Lower prioritised jobs are used for backfilling, but are not allowed to delay the reserved
resources. If a lower prioritised job cannot be started with backfilling, the algorithm
also reserves a corresponding time slot for this job. Thus, conservative backfilling avoids
any delay of a higher ranked job, but leads to a more complex implementation. It is



CHAPTER 3. JOB SCHEDULING 29

implemented by setting the maxReservations parameter to a higher value than the number
of jobs, which are to be inserted, in order to allow the creation of a reservation for each
job.

Example

The results of the Easy backfilling algorithm processed on the above example workload
are depicted in figure 3.6.

Figure 3.6: results of Easy Backfilling with 3.1 as input

The used type of backfilling allows for creating only one reservation for the highest priori-
tised job, which cannot be inserted at a given position in the timeline. At second 0 it tries
to insert j5 into the available resources of two processors. Since this job requires three
processors, the first future time slot with sufficient resources is reserved. In this example
the requested resources are found at second 4 as the completion of j2 releases two addi-
tional processors. After placing the reservation the other jobs are used for backfilling the
remaining processors. The backfilled jobs do not need to be finished before the reservation.
However, they are not allowed to use any reserved resources throughout their duration.
Therefore, searching suitable jobs, which are allowed to be started at a given time, is
more difficult than placing jobs in the previous scheduling algorithms. While FCFS and
List-Scheduling only have to check at the current time position, whether a job can be
inserted into the system, Backfilling also needs to make sure that the inserted job does
not collide with any future reservation. For that reason j1 cannot be inserted at second
0 as it would consume two processors throughout its duration of 5 seconds. This is not
allowed, because j5 would not be able to use its reserved three processors from second 4
to 5. Although sufficient processors are available for j1 at second 0, its insertion is denied
because of the future reservations. The following job j4 only requires one processor so that
it does not interfere the reserved resources and can be used for backfilling the available
processor in the time span 0 to 7. As soon as j5 is actually started, it is removed from the
list of reserved jobs, which allows for creating a new reservation for j1. In doing so, the
scheduler detects the first position, at which the job can be inserted into the system state
throughout its entire duration. The same method is applied for the last job j6, which can
be inserted after the completion of j4.



30 CHAPTER 3. JOB SCHEDULING

3.2 Practical examples

Although the job scheduler simulator aims to be as configurable as possible, it is important
to stay close to real supercomputers and their demands. Implementing configurability is
only useful, if a wide range of relevant aspects defining the job scheduler’s behaviour
can be covered by the given configuration parameters. According to this, the scheduling
systems Loadleveler and Moab are analysed in detail within this section. This allows the
extraction of a common basis for scheduling systems. Moreover, the analysed scheduling
systems will be used for testing the simulation. As real workload and schedule data can be
gathered from the supercomputers JUROPA and JUGENE, which are using the analysed
schedulers, these tests can estimate the accuracy and quality of the simulation.

3.2.1 Loadleveler

Loadleveler is used as job management system for the supercomputer JUGENE. The
following description of this scheduling system is based on its documentation in [12].
Loadleveler is able to handle job allocations for a set of controlled machines. Its main
components are depicted in figure 3.7.

Figure 3.7: components of Loadleveler (compare [12, p. 16])

The supercomputer is in this context abstracted, so that it consists of the central manager,
the scheduling and the execution machine. All three components could be placed on a
single physical system, although they are separated in this figure. The standard use-case
for Loadleveler is shown given by a user, who submits a job to the scheduling machine.
This machine is responsible for executing the scheduling algorithm and therefore sorts
all submitted jobs by their priority. The central manager monitors the supercomputer
resources – such as processors, memory and disk space – and responses to resource requests
of the scheduling machine. Resource requests are sent in order to check, whether sufficient
resources are available for a submitted job. If the central manager finds fitting resources,



CHAPTER 3. JOB SCHEDULING 31

the scheduling machine starts the job on the execution machine. The scheduler simulator
has to implement the central manager’s and the scheduling machine’s algorithms only, as
the execution machine does not affect predicted schedules.

Scheduling machine

Loadleveler supports three types of schedulers: LL_DEFAULT, BACKFILL and invoking an
external scheduler. The BACKFILL scheduler is the only relevant type for this analysis,
because LL_DEFAULT is merely applicable to serial jobs and external schedulers cannot be
covered completely by JuFo.

The BACKFILL scheduler implements a compromise between easy and conservative back-
filling. This means, currently waiting jobs are sorted by their priority. The sorted list is
traversed starting with the highest priority. For each job the central manager is asked,
if there are sufficient resources available. If this is the case, the job is started by the
scheduling machine. However, the first jobs, which cannot be started, are marked as top
dogs. Via the MAX_TOP_DOGS attribute the number of jobs treated as top dogs is set. A
top dog is placed in the schedule at the first time slot, in which sufficient resources are
available. As a result, high prioritised jobs are not delayed by other jobs with less resource
requirements.

After the top dog placement the scheduling machine tries to backfill the system with jobs
of lower priority by using idle resources available before the top dog executions. These
jobs will only be placed, if they do not interrupt the top dog’s resource requirements. For
this algorithm the scheduling system needs information about the execution times of jobs
used for backfilling. This information is provided by the wall clock limit specified in the
job submission data. As this limit might be imprecise, it is still possible that top dogs
are delayed in comparison to a schedule, which would have been generated based on exact
execution times (see [12, p. 110-113]). E.g. the running job A defines a wall clock limit
of one hour. The top dog requires resources, which are currently used by job A, so that
the top dog reservation is placed after the completion of job A. This allows to backfill the
remaining resources by another job B, which runs for only 30 minutes. Job A finishes early
after 10 minutes. As a result, the top dog is now blocked by the lower prioritised Job B,
which would not have been backfilled, if the exact execution time of job A was known.

The job priority is calculated by combining the system and user priority. While the system
priority is calculated as a simple function depending for instance on the job class, user
group and queue date, the user priority is defined by the user individually as a scalar value
in order to sort the jobs of the user by an additional ranking (see [12, p. 230-232]).

Another important aspect, which the scheduling machine has to handle, are reservations.
Authorized users are able to reserve compute resources for a given time slot. This is useful
for reducing wait times for important tasks and maintenance. Within a reservation only
jobs bound to the reservation are submitted. For the scheduling system a reservation is
similar to a top dog with highest priority. Other jobs cannot delay a reservation, if they
are submitted after the reservation (see [12, p. 25-27]).

The backfill scheduler also supports the preemption of jobs, which is the process of sus-
pending low prioritised jobs to release needed resources for a top dog. As preemption is



32 CHAPTER 3. JOB SCHEDULING

not enabled on JUGENE and rarely on other larger massively parallel systems, this option
is not further investigated.

Central manager

The central manager determines based on a set of rules, whether a submitted job can be
started according to currently available resources. One simple rule is for instance, that
there have to be as many nodes available as requested by the job. Any resource requested
by a job, which can be used by only one job simultaneously, is called consumable resource.
Examples are the number of needed processors, memory, disk space and software licenses
(see [12, p. 22]). The central manager compares available resources with those requested
by a job. It manages the resource changes caused by job starts and completions.

Further rules are given by the concept of job classes. A job class represents a queue, to
which jobs are submitted. Each queue might have different scheduling rules. In partic-
ular, administrators define for each class the maximum number of concurrently started
jobs. This could allow for example to avoid the start of too many jobs with low resource
requirements by defining the classes Small and Large. The administrator could set the
maximum starting numbers for the first class to a low value and to a high value for the
second class. Therefore, the central manager has to keep track of the number of jobs
started for each class and needs to check the constraints for each job request. Next to the
classes, setting the MAX_STARTERS attribute in the configuration of Loadleveler limits the
total number of concurrently started jobs on the entire supercomputer (see [12, p. 55-56]).

Another important aspect when mapping jobs to the compute resources is allocating the
communication network. According to Sosa et al. [13] a Blue Gene/P System administers
five different networks for the various communication tasks. It provides a three-dimensional
torus network for point-to-point operations, a global collective network for communication
involving all processors, a global interrupt network, one network for external I/O oper-
ations and the control network for monitoring and diagnostic purposes. Since only the
torus network is used exclusively by the parallel applications, this network also represents
a consumable resource, which limits the number of simultaneously running jobs on the
system.

A torus network is defined as a set of point-to-point connections of nodes, which are
arranged in cycles for each dimension. As a result, a 1D torus is simply a ring of nodes,
while in a 2D torus each node is part of two network cycles. The higher the torus dimension
is the more point-to-point connections are installed, which increases the total bandwidth.

Jobs on a Blue Gene/P System request their resources as partitions (see [14]). A partition
is a set of midplanes, each of which is a group of 512 compute nodes. Depending on the
user request the midplanes can be connected either in a 3D mesh or a torus network. It
is also possible to request a partition smaller than a midplane, but this only allows to use
a mesh topology. As each sub mesh or torus are dedicated explicitly to the corresponding
application, the resource manager has to consider the available partitions before allocating
resources to a job. Besides the network topology the user is also able to request the
partition’s shape by passing the three dimensions of midplanes, which build the partition.
Thus, before a job is dispatched the resource manager has to search for a sub partition in
the desired shape within the set of all available compute nodes.



CHAPTER 3. JOB SCHEDULING 33

3.2.2 Moab

Moab represents another scheduling system used by the JSC for the supercomputer JUROPA.
The technical documentation of Moab introduces it as “a highly advanced scheduling and
management system designed for clusters, grids, and on-demand/utility computing sys-
tems” [15]. The following analysis of Moab is mainly based on this documentation.

Moab is combined with resource managers like Torque, which observe available resources
provided by the supercomputers and pass current status information back to Moab.
Moab’s task is comparable with the scheduling system, which is described as a part of
Loadleveler. It prioritises waiting jobs, asks the resource manager, whether a given job
can be started according to available resources, and allocates jobs to the resources by
sending corresponding requests to the resource manager. The process of scheduling is for
Moab divided into the following successive steps: refresh reservations, schedule reserved
jobs, schedule priority jobs, backfill jobs, update statistics, update state information and
handle user requests (see [15, p. 47]). From these steps the main part of the simulation
for Moab can be derived. The first step is inserting active reservations, which must not
be interrupted by any other job submission as reservations possess the highest priority
for the scheduler. Afterwards the current job priorities are calculated based on many job
attributes like the group priority, the number of requested processors or needed memory.
Jobs within a reservation are scheduled before normal jobs. The priority of each job deter-
mines the scheduling order. Like Loadleveler Moab supports backfilling of idle resources,
which can be used by lower prioritised jobs without delaying the start of superior jobs.
Another step is updating the status of the compute resources and jobs by requesting the
resource manager. The state of available compute nodes as well as the current state of
jobs is updated, which for example allows to detect a job completion. Finally, the schedul-
ing system reacts on user requests. Examples for that are users altering reservations or
sending new job submissions.

Moab also uses the generic concept of consumable resources, which is introduced in section
3.2.1. The supercomputers provide resources of different types. Job submissions require
certain resources. The resource manager keeps track of the available resources and de-
termines, whether current job requirements can be met. For Moab the main consumable
resources are: processors, memory (real memory), swap (virtual memory) and disk space
(see [15, p. 35]). However, any type of resource might be connected to the system and
requested by jobs.

Scheduling algorithm

Moab’s scheduling algorithm is comparable with the one used in Loadleveler. It also
implements a combination of easy and conservative backfilling (see [15, p. 540-546]). Time
slots for the highest prioritised jobs, which cannot be started, are reserved in order to avoid
the delay of these jobs. The RESERVATIONDEPTH configuration parameter is equivalent to
the MAX_TOP_DOGS parameter described in section 3.2.1. However, Moab’s documentation
provides more details about the implemented backfilling strategies. Moab supports among
others the backfill policies FIRSTFIT, BESTFIT and GREEDY. After reserving the time
slots for the highest priority jobs, backfill windows are extracted. A backfill window is
defined by a set of concurrently idling nodes and the time span, in which they can be used



34 CHAPTER 3. JOB SCHEDULING

for backfilling. For example nodes A, B and C are idling from 1 pm to 2 pm. This defines
a backfill window of three nodes covering a time span of one hour. Afterwards node B
and C might be reserved for a job, while node A is still idling. Thus, a second backfill
window is given by node A with an unlimited time span. As a result, the backfill windows
can overlap. The backfill algorithm implemented by Moab iterates over all found backfill
windows starting with the window covering the highest number of nodes. For each backfill
window fitting jobs are filtered. The FIRSTFIT policy implementation simply starts the
highest job in the filtered job list. The BESTFIT algorithm calculates the degree of fit in
order to select the most appropriate job. The degree of fit is a function, which takes a job as
variable and returns a scalar value. Possible functions are the number of used processors,
the product of processors and time span or simply the job time span. The GREEDY
implementation calculates the sums of the degree of fit of all possible job combinations for
the current backfill window and starts all jobs of the maximizing combination.

Resource manager

Moab is capable of interacting with a wide range of resource managers. A resource manager
is represented as an encapsulated object, which is responsible for monitoring currently
running jobs and nodes. Jobs are consuming resources, while nodes are providing them.
Moab communicates with resource managers via well defined interfaces. This interface
consists of functions for querying and modifying the scheduling objects jobs, nodes and
queues (see [15, p. 705-706]). Moreover, it allows to start and cancel jobs on a given set
of nodes. Thus, the following four functions compose the basis for a fully usable resource
manager integrated into Moab (see [15, p. 739-740]):

GETJOBINFO requests job information and attributes

GETNODEINFO requests the status of the nodes

STARTJOB starts a job on a set of resources

CANCELJOB cancels a job immediately

A program, which provides this small set of functions, can be configured to be one of
Moab’s resource managers. The communication interface is extended by additional func-
tions providing more detailed information about the managed resources. This allows the
optimization of the generated schedules regarding given objective functions. Based on this
interface concept Moab facilitates among others the integration of Loadleveler and Torque
as resource managers. As Torque is the currently used resource manager for JUROPA its
functionality is summarized in the following section.

Torque

Torque is an open-source resource manager. It manages allocated resources and grants
access to them for submitted jobs. Torque monitors the resource attributes categorized
into configuration, utilization and node states (see [16, p. 107]). While the configuration
category consists of attributes concerning totally available resources such as memory and



CHAPTER 3. JOB SCHEDULING 35

processors, the utilization deals with the number of currently used resources. The node
state information saves mainly the current status of each node. For instance valid node
states are busy, down or free, which mean that the corresponding node is currently occupied
by other jobs, detected a system failure or for the third case is waiting for additional jobs.

Examples for resources, which can be requested by a job from Torque, are the maximum
value of needed memory, the number and types for nodes, on which the job should be
started, and the wall clock limit. Via a resource request of the type other passed to
Torque system specific resources can be requested (see [16, p. 39-42]). This allows a
highly flexible usage of Torque as a resource manager for any kind of shareable resources.

Simulation mode

In addition to running Moab in the default mode, which needs full access to the resource
manager and the administrated supercomputer, a simulation mode is provided. This
special mode only requires the Moab server to be installed without a running connection
to any resource manager and is capable of simulating a real batch system. It allows –
similar to JuFo or SchedSim– for testing parameter changes of a real system. However, it is
developed especially for Moab and cannot be applied to other scheduling systems. Possible
test scenarios for this simulation include adding or removing hardware, increasing the
workload by simulating additional users, adapting the scheduling policies and algorithms
or changing any configuration of the batch system (see [15, p. 839]). These tests would
be of high risk, when executed at supercomputers in production, as they could affect
the system’s efficiency and stability. Thus, a simulation of the full system in this mode
is needed to test crucial changes of the system and in order to predict their impact in
advance.

The simulation runs Moab’s server encapsulated from the real system. It requires the
following three configuration files, which contain all information usually requested from
the connected resource manager:

Resource Trace File stores available compute resources and their state changes during
the simulation

Workload Trace File provides submitted jobs, which should be executed on the simu-
lated system

moab.cfg contains scheduling policies and the system configuration in the format, which
is also used in a production system

While the resource trace file comprises a list of compute node descriptions, the workload
trace file specifies events regarding the simulated jobs. Hence, this simulation is event
driven, which not only allows for simulating job completions or failures, but also changing
the node states from available to drained, for example. Using these events enables to test
even unexpected issues such as maintenance, hardware or application failures during the
simulated time span. The global configuration file moab.cfg can be taken from the setup
of a real supercomputer and might be extended afterwards. Alternatively, this file can
be written from scratch in order to develop a configuration specifically designed for the



36 CHAPTER 3. JOB SCHEDULING

simulation run (see [15, p. 840-841]). As the configuration data format accords with the
format used for the normal mode of Moab, successfully tested parameter changes can be
integrated easily into the production system.

The simulation is executed interactively via a command line interface. It is started with
the three configuration files specified and is usually paused before the first run of the
scheduling system. The scheduler is simulated by running it repeatedly after an adjustable
interval in the simulation time domain. Thus, it is executed in equidistant time intervals
independently from the events, which might be specified in the trace files. The simulation
can be paused after each run of the scheduler, which allows for detailed requests of the
current system state. These requests are sent to Moab via the normal commands, which
would be used on a real system. They provide information about the jobs and configured
nodes. Moreover, reasons for the scheduler to not dispatch a queued job can be retrieved
and workload statistics can be collected. In addition, it is even possible to change any
configuration parameter of the simulated scheduling system interactively. To conclude,
this mode provides an entirely configurable simulation of Moab with the possibility to
suspend the system at any time in order to check the current state via the same command
line interface and applications used in real production.



Chapter 4

Simulation’s design

The previous chapter summarises a set of scheduling algorithms, which are often imple-
mented on actual supercomputers. Furthermore, the job schedulers of Loadleveler and
Moab are analysed in order to extract their similarities. Based on this theoretical back-
ground, the major task of this thesis is to develop a highly configurable job scheduler
simulation program named JuFo. The concept of this simulation program and the process
of its development is outlined in this chapter. The first section introduces the main idea
of the simulation program and presents the most important classes by grouping them into
packages and by documenting their interactions. Afterwards, each package is analysed in
detail with the help of class diagrams, which ensures the simulation’s extensibility. With
the classes and data structures described the most relevant algorithms are documented in
section 4.3. Finally, the simulation’s complexity is examined, the use of LML within JuFo
and the possibilities for configuring the simulation parameters are described.

4.1 Overview

The problem of simulating job schedulers can be divided into a set of interacting packages.
They provide the basis for JuFo. The major packages of the developed simulation program
are depicted in figure 4.1. This figure divides the simulator into eight packages and presents
how the packages are connected to each other. Each package lists its most important
classes, which are analysed in detail in the following section about Data structures.

The task of the simulation can be summarised as parsing the scheduling objects defined
in the input LML file, generating a predicted schedule with a given scheduling algorithm
and extending the LML file by attributes, which allow for reconstructing the schedule.
The Simulation package represents the core component. It connects the different packages
in a main workflow and implements the scheduling algorithm. The scheduling algorithms
are realized by extending the abstract Simulation class, which provides a framework for
the simulation workflow. The requested algorithm is defined in the LML input file. The
Configuration class triggers the parsing of this file, extracts relevant parameters, chooses
the suitable scheduling algorithm, runs the simulation and generates the output LML. The
class structure of SchedSim consisting of the Simulation, SystemState and the Timeline,
which are described in section 2.2, is also reflected by the packages of JuFo. However,



38 CHAPTER 4. SIMULATION’S DESIGN

Figure 4.1: package overview of JuFo

each of these former implicitly defined classes is implemented as package in this context
so that the range of tasks is subdivided into several classes. This decreases the number of
functions covered by each class and simplifies to reconstruct their scopes.

Considering the Timeline design of LLview’s prediction module SchedSim and the mod-
elling of jobs and nodes with events in Moab’s simulation mode, JuFo also processes events
for each activity occurring throughout the simulated time span. Besides the Timeline class
as a list of events, the Timeline package comprises the Event class, which collects the type,
time and reason of an event, and the Time class for abstracting the time format used by
the simulation. In addition to a Timeline instance, the simulation requires a Statefactory,
which creates the ResourceManager. While the Simulation class only uses the interface
of the abstract SystemStateFactory, the Configuration determines the proper factory and
passes it to the Simulation. As a result, the Simulation does not know the actual type
of the factory and the produced ResourceManager instances, but simply relies on their
abstract interfaces. This concept is known as the Factory Method design pattern, in which
the subclasses of the abstract factory interface decide which concrete product –in this
case resource managers– is created (see [17, p.107]). Relying only on the abstract inter-
faces allows for exchanging the major parts in the simulation framework without changing
its implementation. Thus, arbitrary combinations of scheduling algorithms and resource
managers are possible.

A ResourceManager simulates resource managers of real supercomputers such as Loadleveler’s
central manager or Torque. It is responsible for managing available compute resources,
for deciding, whether a job can be started at the current state, and for actually placing
the jobs into the simulated system. Separating the creation of a resource manager from
its use ensures, that the implementation of the different scheduling algorithms in the Sim-
ulation package is independent from the type of the resource manager as constructor calls
are outsourced into the factory classes. Moreover, the process of converting the parsed



CHAPTER 4. SIMULATION’S DESIGN 39

compute resources into the initial state of the resource manager is also moved to the State-
factories package. When requesting, if a job can be inserted into the current system state,
the resource manager returns a ResourceSet. It contains the available resources, on which
the job might be dispatched. The Range and RangeSet classes implement an optimised
version of the LML nodedisplay. They allow for storing the exact position of a job on
the supercomputer by specifying the used nodes and cores. These classes are used in the
NodeResourceSet, which extends the ResourceSet class and represents a subset of all nodes
provided by the supercomputer. With the help of resource sets it is possible to separate
the function for checking, whether a job can be inserted, from the actual insertion of the
job. While the former function searches for suitable compute resources and returns them
in a ResourceSet, the latter only marks the found resources as occupied by the inserted
job.

Since JuFo processes LML data, the LMLParsing package is needed to import the schedul-
ing objects such as jobs, nodes and reservations into usable object hierarchies. Several
attributes of these objects are adapted or added by the simulation and the results are then
converted back into LML by the LMLParsing package. Besides the parsing of LML into
objects, the main task of this package is to search for all information tags associated with
each object. For each of these objects an LMLObject instance is created, which is amongst
others extended by the Job and Node classes. These extensions simplify their utilisation
by adding functions for retrieving specific attributes for each object type. E.g. a function
is added to the Job class for requesting the number of needed processors. Most of the
packages access the generated scheduling objects since they represent the data model for
the simulation. The Timeline uses jobs as origins of events, the ResourceManager has
to monitor the node states and the Simulation extracts its configuration from a set of
LMLObject instances.

Finally, the Jobsorting package comprises abstracted classes for sorting the lists of simu-
lated jobs by defined priority criteria. The package is mostly used for sorting the waiting
jobs based on priorities defined by the supercomputer’s scheduler. Again an abstract in-
terface for sorting a list of jobs is given with the JobSorter class, which is implemented
by corresponding class extensions such as the FormulaJobSorter. However, the scheduling
algorithms within the Simulation package make only use of the abstract interface, because
this allows to easily switch the actual implementation.

To conclude, the simulation program is based on a set of abstract interfaces, which are
designed to allow the implementation of as many different scheduling systems as possible.
These interfaces are derived from the common basis of functionality provided by batch
systems of actual supercomputer, which are analysed in the previous chapter. Moreover,
each abstract class is implemented by at least one reference implementation so that a fully
functional simulation can be created by putting together the different implementations. In
order to allow changing the implementation behind each interface, the packages have to be
strictly encapsulated. E.g. the Jobsorting package must not know or depend on the chosen
ResourceManager as this would eliminate the possibility of adding new implementations
of the ResourceManager without adapting the Jobsorting classes. As a result, a package is
only allowed to call the abstract interfaces of the other packages. By using polymorphism
any implementation of the abstract interfaces can be passed to each package. As a result,
the design of JuFo especially complies with the following two concepts: “Program to
an interface, not an implementation” [17, p.18] and “Favor object composition over class



40 CHAPTER 4. SIMULATION’S DESIGN

inheritance” [17, p.20]. The first is applied to the simulator by introducing abstract classes
working as interfaces for those parts of the simulation, which are expected to be extended
and adapted frequently. The second corresponds with the idea of including objects, which
implement these interfaces, into other classes such as the Simulation class in order to use
their functionality without depending on their concrete implementation.

4.2 Data structures

After grouping the simulation framework into a set of packages, each of these packages
is explained in detail within this section. A class diagram documents each package by
depicting the interfaces of its classes and by outlining how the classes interact with each
other and with the classes of other packages. At the same time the extension points of
JuFo are highlighted in order to support the adaption of the simulation program to new
supercomputers. I.e. the meaning and constraints of the abstract interfaces, which are
meant to be implemented by possible extensions, are reconstructed with the help of the
example implementations.

4.2.1 Simulation

This package builds the main framework for the simulation. The class diagram in figure
4.2 shows the Configuration class, whose task is putting together the simulation packages,
and the abstract Simulation class, which is implemented by the scheduling algorithms
FCFS, backfilling and List-Scheduling.

The Configuration is created by passing an LML file, which is converted into an object
hierarchy by the LMLParsing package. The parsed objects are stored in the lml attribute
of Configuration. Besides the scheduling objects such as jobs, reservations and nodes the
LML file contains all parameters affecting the simulation’s behaviour. The parameters
specify amongst others the scheduling algorithm, the type of the resource manager, the
resources, which have to be managed, and the priority term for sorting waiting jobs be-
fore their insertion. These parameters are interpreted by the Configuration class, which
subsequently chooses the corresponding implementation classes, calls their constructors
and passes the instances to the constructor of the Simulation class. E.g. the LML file
could specify that the backfilling algorithm should be simulated along with a NodeState as
resource manager and the waiting jobs should be sorted by their queue date. This causes
the Configuration to create a FormulaJobSorter with the priority term −queuedate. More-
over, a NodeStateFactory is generated by passing the parsed compute nodes to it and both
instances are forwarded to the constructor of the BackfillingSimulation. As a result, the
Configuration class functions as concrete factory for a single Simulation instance.

The frame of all simulations is provided by the abstract Simulation class, which runs on a
Timeline, the passed JobSorter and the SystemStateFactory for creating the initial system
state assigned to the systemState attribute. The simulate function triggers the insertion
of already dispatched jobs and reservations by calling insertRunningJobs and insertReser-
vations. Afterwards, the most important function insertWaitingJobs is called, which is
responsible for predicting the dispatch times for the currently queued jobs. Since this



CHAPTER 4. SIMULATION’S DESIGN 41

Figure 4.2: class diagram for Simulation package

simulation step depends on the particular scheduling algorithm, the function is declared
to be abstract and has to be implemented by the Simulation subclasses. Thus, in order
to add another scheduling algorithm either the Simulation class itself or any of its sub-
classes has to be extended. In doing so, basically the insertWaitingJobs function has to be
overridden just like for the three implemented scheduling algorithms. The simulate func-
tion implements the Template Method design pattern by calling abstract functions such
as insertWaitingJobs, whose behaviour is defined by the subclasses of Simulation (see [17,
p.325]).

However, the extensions are allowed to adjust any simulation step to their needs by also
overriding other functions of the Simulation class. E.g. the Backfilling simulation opti-
mises the reactOnEvent function, which applies the changes caused by an event to the
passed systemState. While the Simulation class simply calls the resource manager’s inser-
tion function without any additional information, the Backfilling implementation passes a
resource set, which is searched in a previous check for free resources. As the Simulation’s
algorithm frame is expected to change rarely and its subclasses should mainly adapt the
function insertWaitingJobs, class inheritance is here preferred to object delegation. This
simplifies the adaption of the Simulation class, because subclassing makes the Simulation’s
internals visible to the implementations of the scheduling algorithms (see [17, p.19]).



42 CHAPTER 4. SIMULATION’S DESIGN

A simulation administers one list of running jobs and another for waiting jobs. The first
list contains all jobs, which have actually been started in the systemState. Therefore, it
might also contain completed jobs, which is reasonable, because all started jobs can be
neglected in further simulation steps. The simulation intends to traverse the Timeline
in order to find sufficient resources for all waiting jobs so that they can be started and
consequently can be moved to the list of running jobs. However, it is possible that not
all waiting jobs can be dispatched as the simulated time span or the number of inserted
jobs might be restricted in order to limit the run-time of the simulation. As soon as a
job is explicitly inserted into the system state, its dispatch and completion times can be
saved as job attributes. A job, which lacks these attributes after the simulation finishes,
was not inserted. All other jobs then possess an assigned time span and a resource set,
on which they can be started. These jobs form the schedule generated by the simulation.
The result of the simulation is written into the original object hierarchy parsed from the
LML file. It can be accessed with the getOutput function.

The classes of the attributes allInfos and jobGatherer are part of the LMLParsing package.
They simplify the handling of the scheduling objects. While the jobGatherer provides
functions for retrieving job instances by their IDs, the allInfos instance comprises references
to every LML object. One of these LML objects with the type system saves the start time
of the simulation as well as the date format used for the job queue and dispatch dates.
This information is extracted within the Simulation’s constructor and passed to each job
instance. Thus, the jobs are able to calculate time differences between their queue dates
and the current system date so that all time values in the Timeline are saved as time
values relative to the start time of the simulation. In order to avoid that each job has to
parse this global information about the supercomputer, a SimulationInfo instance collects
the information and is passed to the jobs.

To sum up, the Configuration produces the Simulation with its needed components for
sorting jobs and creating a resource manager. While the Simulation provides an abstract
framework, which executes those steps, which are mostly independent from the scheduling
algorithm, the subclasses actually implement the behaviour of the scheduling algorithm
by focusing on the function for inserting waiting jobs.

4.2.2 Timeline

Since the simulation is event driven, a data structure is required for efficiently handling
the occurring events. The Timeline package comprises three simple classes for this task,
which are displayed in figure 4.3.

An Event instance represents a point in the Timeline, at which the simulation state
changes. Each event is associated with its origin, which causes the event, and a Time
instance for identifying the event date. The origin is saved in the source attribute, while a
Source is a lightweight superclass for all scheduling objects. Additionally, the event type
is stored along with each event. Possible event types are the start and completion of jobs
or reservations. Two dummy events are always added to the Timeline for marking the
simulation start and end. Other event types such as broken compute nodes or unexpected
job failures could also be implemented. Events can be compared to each other in order to
sort them chronologically.



CHAPTER 4. SIMULATION’S DESIGN 43

Timeline

Timeline
Defines the time covered by the

simulation. Lists all occurring events.

#events: Event[0..*]

+addEvent(event)
+deleteEvent(event)
+getEvents(): Event[]

Event
Collects information about one event.

#source: Source
#time: Time
#type

+compare(event): int

1

0..*

Time
Saves relative time values. Converts

time into various units.

#seconds: double

+Time(simulationStart,thisTime,format)
+Time(seconds:double)
+getDifference(time:Time): Time
+getSeconds(): double
+getMinutes(): double
+getHours(): double

Figure 4.3: class diagram for Timeline package

The Timeline is modelled as sorted list of events. It allows for adding, deleting and
retrieving the events. A new event is inserted before the first event, which is evaluated to
be bigger than the new event. The main comparison criterion is the time value. However,
events with identical time values are sorted according to their event types. E.g. a job
completion should always be executed before an insertion so that the resources are released
at first and consumed afterwards. Figure 4.4 shows an example Timeline holding all events
for two jobs and one reservation. The resulting Timeline contains eight events starting with
the simulation start and ending with the simulation end event. Thus, a Timeline allows for
reconstructing all actions, which take place throughout the simulated time period. With
each event pointing to the corresponding origin a chronological log can be generated by
traversing the sorted list of events.

time [s]

resources

Job 1

Job 2 Res 1

-start Job 1

-start Job 2

-end Job 2 -end Job 1 -start Res 1

-end Res 1

-end Simulation

-start Simulation

Figure 4.4: example Timeline with possible events

The Time class is build into this package in order to add an abstraction layer for time
calculations. Internally it uses seconds for all operations such as time comparisons or



44 CHAPTER 4. SIMULATION’S DESIGN

subtractions. However, a Time value can be set by passing any time unit like seconds,
hours or days. Additionally, it is able to parse an absolute date with a given time format
and then it calculates the time difference to the simulation start. As a result, all time
values in the Timeline are relative to the simulation start, which itself gets the value zero.
Except for adding new event types, the Timeline package is not designed to be extended
as it only represents a tool for managing and sorting the events of the simulation. The
Time class is not only used within this package, but for all time attributes in JuFo.

4.2.3 ResourceManager

The ResourceManager package deals with the simulation of the resource managers de-
scribed in section 3.2. It is especially based on the simple interface required by Moab,
which expects a resource manager to only provide functions for retrieving information
about the jobs and nodes and for starting and cancelling jobs. Considering the abstract
scheduling problem in section 2.1 this package is responsible for monitoring the set of
available resources R. It implements the function f for mapping resource requests to ac-
tual resources and at the same time ensures the validity of the schedule by assigning only
disjunct resources to the jobs like demanded in equation (2.1). The classes implementing
this functionality are outlined in figure 4.5.

ResourceManager

SystemState
Manages available resources and assigns

them to jobs.

+copy(): SystemState
+isJobInsertable(job:Job): ResourceSet
+insertJob(job:Job,resourceSet): boolean
+deleteJob(job:Job)
+reduceResources(newState:SystemState,event)
+insertReservation(reservation)
+deleteReservation(reservation)

NodeState
Manages available nodes and 

their cores in a nodeResourceSet.
Explicitly maps jobs to nodes and

cores.

#nodes: map<int,Node>
#nodeResources: NodeResourceSet
#globalQueues: map<string,Queue>
#maxJobs: int
#maxJobsPerUser: int

+copy(): SystemState
+isJobInsertable(job:Job): ResourceSet

AttributeState
Generic resource manager. 
Arbitrary resources allowed.

#resNames: string[]
#freeResources: double[]
#totalResources: double[]
#jobs: Job[]

+copy(): SystemState
+isJobInsertable(job:Job): ResourceSet
+getFreeResources(resName): double
+addResource(resName,amount:double)

Queue
Waiting queue for jobs.

#name: string
#starters: int
#jobCount: int
#jobCountPerUser
#maxJobs: int
#maxJobsPerUser: int

+addFreeStarters(amount:int)
+isJobInsertable(user,amount:int): boolean
+insertJob(user,amount:int)
+deleteJob(user,amount:int)
+reduce(other:Queue)

1

0..*

Figure 4.5: class diagram for the ResourceManager package

The SystemState is the abstract interface, which should be used by the other packages
when interacting with a resource manager. It provides functions for inserting and deleting
jobs as well as reservations. Before a job is inserted, the function isJobInsertable searches
for a currently available set of resources, which are sufficient for the job requirements. If
the job cannot be started at the moment, an empty resource set is returned. Otherwise,



CHAPTER 4. SIMULATION’S DESIGN 45

the resource set can be passed to the insertJob function, which marks these resources to
be assigned to the inserted job. In terms of the abstract scheduling problem the check for
available resources implements the function call f (r j, t), which returns a subset of R. The
actual insertion has to reduce the available resources by executing R′ = R \ f (r j, t), while
the deletion of a job reverses this operation with R = R′ ∪ f (r j, t). E.g. the set R could
hold five available processors {1, . . . ,5}, a job request for three processors could return
f (3, t) = {1,2,3}. By inserting this job the remaining resources would be R′ = {4,5}. Note
that this is only a simple example of a SystemState since the resource managers do not
only have to manage processors, but a variety of consumable resources.

Besides simply simulating a resource manager, the SystemState can be used to identify the
minimal set of resources available throughout a time span. This is needed for all scheduling
algorithms, which use the concept of reservations. A reservation blocks resources for a
specific time span. Thus, even if a job can be inserted into the current SystemState, it has
to be checked, whether the resources assigned to the job collide with future reservations.
The first approach to this problem is to simulate all future events and check for these
resource collisions. A more efficient idea is to identify the resources, which are available
throughout the entire job duration. Then the job is inserted into these resources only once,
while the former approach would have to start from scratch each time a resource collision
is detected in the future. In order to find the minimal set of resources a deep copy of the
SystemState is generated by calling its copy function. By iterating over all future events
the original state executes all changes defined by the events, while for the copied state only
the reduceResources function is called for each event. This function removes all resources,
which are marked as unavailable due to the current event. As a result, the copied state
only keeps those resources, which are available throughout all simulated events. A similar
algorithm is used in the handleTopDogs function described in section 2.2.1.

Two SystemState implementations are provided by the classes AttributeState and NodeState.
They have to implement all functions defined in the SystemState, which is only indicated
by adding the isJobInsertable function to the subclasses in order to keep the class diagram
simple. The AttributeState administers a set of resource types, each of which is associated
with a number of currently available resources of this type. E.g. an AttributeState could
contain the resource types processors and memory and in its initial state the system could
have 10 processors and 5 GB memory, which can be split among the jobs running on
the system. Another AttributeState could manage the resources rooms and chairs, which
are used for meetings. Hence, this concept allows for simulating arbitrary consumable
resources, which are requested by the jobs. Each resource is identified by a name, which
is used as attribute name in the job definitions of the LML file. The attribute values of
the jobs specify the number of requested resources of each type. As a result, searching
available resources for a job means simply to parse the number of requested resources and
to check, whether the system currently offers enough resources for each type. While the
insertion of a job decreases the available resource numbers, a deletion increases them. In
spite of the generality and simplicity of this approach, it does not always produce valid
schedules. Its disadvantage is in the fact, that a job is assigned to a number of resources
without specifying, which of the resources are assigned. This problem is visualized with
the help of figure 4.6.

The example uses an AttributeState, which only manages processors. Two jobs are already
inserted into the schedule with the first job running on processor one and the second on



46 CHAPTER 4. SIMULATION’S DESIGN

time [s]

CPU

Job 1

Job 2
1

2

1 2

Res 1

3

Job 3

Figure 4.6: schedule example with two jobs and a reservation

processor two. A reservation is included for one processor starting after two seconds. A
third job is simulated, which requests one processor for two seconds and which is not
allowed to run within the reservation. The simulation has to search the first coherent time
span of two seconds, in which one processor is available. This time span is found starting
at second one, although the first half offers processor 1 and the second half processor
2. The AttributeState is not able to identify, which of the processors is available, but
only determines the number of available processors. As job migration is not allowed, the
produced schedule is invalid. This problem is solved by the NodeState.

The NodeState explicitly manages the states of the compute nodes in its nodes attribute.
It identifies the nodes by their IDs and assigns subsets of them to the running jobs.
Moreover, it is even aware of which cores are allocated to each job, because otherwise the
described lack of the AttributeState would just be shifted to the core level. The NodeState
extends the AttributeState and uses its functionality for managing the number of available
processors globally. If the super class then returns that a job cannot be inserted, because
there are not enough free processors, the more complicated tests of the NodeState can be
skipped as they cannot be successful. Unfortunately, this implementation looses generality
as it expects the simulated system to possess compute nodes so that both implementations
are valuable for possible extensions. In addition, identifying the nodes assigned to the jobs
highly increases the complexity of the implementation. While the AttributeState models
the system with a single numerical value, the NodeState has to manage a list of available
nodes with each node containing a list of cores. Moreover, copying a NodeState requires
to copy the entire list of nodes, while the AttributeState only has to copy the short list of
resource names and numbers.

By using the NodeState each job is assumed to request a number of nodes and a number
of cores within each node. Searching a corresponding resource set means to traverse the
list of available nodes and to extract the nodes with enough free cores. If a resource set
is found, it is saved as a job attribute so that these nodes can be released at the job
completion. Due to the increasing number of compute nodes in today’s supercomputers
–JUROPA comprises more than 3000 nodes– the traversal of the node list for each job
insertion can become very time-consuming. A more efficient data structure for mapping
jobs to compute resources is given by the nodedisplay included in LML. Therefore, the
Resources package implements an optimised and more abstract version of the nodedisplay,



CHAPTER 4. SIMULATION’S DESIGN 47

which is built into the NodeState with the nodeResources attribute. This object allows
for efficiently retrieving the set of nodes, which provide the requested number of cores.
The explicit list of all nodes is still required for more detailed checks such as the queue
constraints, which can be defined individually for each node.

Each job is associated with a queue, which specifies its own scheduling rules. A queue
defines in its starters attribute how many processors can be used by the jobs in the par-
ticular queue. It limits the number of simultaneously running jobs of the same queue with
the maxJobs value as well as the number of jobs with identical owner defined in maxJobs-
PerUser. The NodeState parses the queue configuration from the node objects. Each
node has to manage its own set of allowed queues, while the NodeState accumulates all
node queues in a list of global queues. The global queues are used for optimisation similar
to the use of the AttributeState’s functionality. If the global queue returns that there
are not enough available processors of this job queue on the entire system, the expensive
iteration over all nodes can be skipped. The functions of the Queue are used similar to the
corresponding functions of the NodeState. By inserting a job into a queue, the starters at-
tribute is decreased by the number of consumed processors, while jobCount and the owner
specific jobCountPerUser value are increased by one. The reduce function of the Queue
has to be called for all global queues within the NodeState’s reduceResources function. To
each queue the corresponding modified queue is passed, so that it can potentially decrease
the number of available starters or increase the number of started jobs. Thus, the queues
also contain the minimal set of resources throughout a simulated time span.

4.2.4 Statefactories

The Simulation class makes use of the resource managers, but it is only allowed to access
the abstract interface given by the SystemState class. Hence, it does not know the class,
which actually implements the SystemState. However, the Simulation should be able to
create the resource manager at run-time by calling its constructor. Without being aware
of the class the creation of the resource managers has to be implemented by an abstract
factory. This design pattern separates the use of an object from its creation. As a result
the Statefactories package is developed. Its classes are shown in figure 4.7.

The design of this package is simple: the interface SystemStateFactory is used by the
Simulation and it is implemented by the classes NodeStateFactory and AttributeStateFac-
tory. They provide a single public function for the creation of a resource manager with
the corresponding type. The resource manager configuration is extracted from the parsed
LML object hierarchy, which is passed to the factory constructors. The AttributeState-
Factory just adds the defined cores of all nodes and generates an AttributeState with the
resource type processors and an initial number of the calculated sum of cores. In possible
extensions other consumable resources such as memory or network might be added to the
managed resources. This demonstrates another advantage of the factories: in order to add
new resource types a new factory can be implemented without the need for adjusting the
implementation of the Simulation or of the AttributeState. The configuration only has to
switch the factory, which is passed to the Simulation.

The NodeStateFactory takes an infoGatherer as parameter, which comprises all nodes
listed in the input LML file. Moreover, it parses the queue limits from the scheduler



48 CHAPTER 4. SIMULATION’S DESIGN

Statefactories

SystemStateFactory
An object, which generates a system

state from a parsed LML-file.

#lml: lgui_type

+produceSystemState(): SystemState

NodeStateFactory
Creates NodeState instances.

#infoGatherer
#scheduler: LMLObject

+NodeStateFactory(lml,infoGatherer,scheduler)
+produceSystemState(): SystemState

AttributeStateFactory
Creates AttributeState instances.

+produceSystemState(): SystemState

Figure 4.7: class diagram for the Statefactories package

configuration and then calls the appropriate NodeState constructor. If a new resource
manager is implemented, it is required to also add a corresponding factory implementation
so that the Configuration class is enabled to pass the factory to the Simulation.

4.2.5 Resources

In order to connect the SystemState’s functions isJobInsertable and insertJob a Resource-
Set needs to be defined. A ResourceSet represents a subset of the available resources
managed by a SystemState. Since the resource administration differs for each implemen-
tation of the SystemState, each resource manager requires its own type of ResourceSet.
While the class ResourceSet is used within the AttributeState, the NodeState deals with
instances of the NodeResourceSet. Moreover, the classes Range and RangeSet form the
optimised representation of the nodedisplay. They are integrated into the NodeResource-
Set so that the compute nodes can be managed more efficiently. The described classes are
depicted in figure 4.8.

Each SystemState implementation is aware of the used type of ResourceSet. I.e. the
AttributeState knows that all functions are using ResourceSet instances and the NodeState
exclusively uses NodeResourceSet instances. This is reasonable, because the resource sets
must represent subsets of the actually managed resources so that the NodeState cannot
use resource sets produced by an AttributeState. However, the interface of SystemState
is implemented by both NodeState and AttributeState. Thus, although the NodeState
only creates and uses the NodeResourceSet, its interface defines to use the superclass
ResourceSet. The common interface of the resource managers requires the resource sets
to also use a common interface. Since the implementation of the resource set for the
AttributeState is very simple and at the same time generic, the abstract interface for the
resource sets, which is used by the other packages, is directly given by the ResourceSet
class. If a new resource manager is implemented, it can either use one of the existing
resource sets or has to implement a subclass of the ResourceSet in order to accord with
the interface of the SystemState. Internally the resource managers can cast the passed
resource sets to their particular type, because they can expect that these resource sets are



CHAPTER 4. SIMULATION’S DESIGN 49

Resources

ResourceSet
Set of resources. Used to define the

resources consumed by a job.

#resources: string[]
#amounts: double[]

+addResource(name,amount)
+getResourceAmount(name): double

NodeResourceSet
Next to global resources, nodes are

managed as resources.

#nodeResources: RangeSet

+addNode(node,coreAmount:int)
+getNodeRequest(numMachines,tasksPerNode): RangeSet
+getNodeResources(): RangeSet

Range
Interval of resources with RangeSet as

children.

#min: int
#max: int
#children: RangeSet

+Range(min,max)
+Range(orig:Range)
+isMergable(range:Range): boolean
+merge(range)
+intersection(range): Range
+setChildren(newChildren:RangeSet)

RangeSet
A list of ranges.

#ranges: Range[]

+RangeSet(orig:RangeSet)
+RangeSet(rangelist:string)
+isEmpty(): boolean
+add(range:Range)
+add(rangeSet:RangeSet)
+minus(range:Range)
+minus(rangeSet:RangeSet)
+extractRangeSet(widths:int[]): RangeSet

1

0..1 1

0..*

Figure 4.8: class diagram for the Resources package

the results of calling their own function isJobInsertable.

The structure of the ResourceSet is comparable to the structure of AttributeState. It stores
a list of resource names along with the corresponding numbers of resources requested by
a job. One can only add resources to the ResourceSet, because it is merely meant to
construct a subset of resources, while the deletion of resources is left to the resource
managers’ functionality.

The NodeResourceSet extends the ResourceSet by explicitly identifying the nodes and
cores of the resource subset. It provides a function for adding a given number of cores
within a specific node to its resources. By calling this function for the entire list of nodes,
the resource set would contain all configured resources of the simulated supercomputer.
The function getNodeRequest extracts an available subset of nodes, while each of the nodes
provides a number of tasksPerNode free cores. This allows for using the NodeResourceSet
not only for the subsets of resources used by each job, but also for managing the totally
available resources administered by the NodeState.

Instead of collecting the nodes in a simple but inefficient list of IDs, they are modelled
as recursive integer intervals with the help of the classes Range and RangeSet. A Range
represents an integer interval from the min value till its max value inclusively. It can store
both node and core ranges. E.g. when using it as node range the range [1,3] includes
the nodes with the IDs 1, 2 and 3. Thus, instead of storing a list of 3000 node IDs for
JUROPA, the range [1,3000] has the same meaning. If a job requests five of these nodes,
its resource set would be [1,5], while the remaining resources can be saved with [6,3000].
When the nodes in a resource set do not possess coherent IDs, multiple ranges are needed.
E.g. a job could be assigned to the processors 1, 2, 5 and 6. This can be mapped to
the range list [1,2], [5,6]. A list of ranges is saved in a RangeSet instance. As each node
comprises a list of processors, the concept of ranges is used recursively: every range saves
a RangeSet, which represent its child elements. E.g. for modelling the nodes with IDs 1,



50 CHAPTER 4. SIMULATION’S DESIGN

2 and 3, each of which has 2 cores, one could create the node range [1,3] and set its child
range set to [1,2]. If these compute resources would be modelled as recursive ID lists, the
resulting tree would have 6 leaves, while the equivalent range data structure consists of
only two nested range objects. This example is depicted in figure 4.9.

RangesRecursive ID list

Node 1 Node 2 Node 3

Core 1 Core 2

Node [1,3]

Core [1,2]

Figure 4.9: comparison of the data structures recursive list and nested ranges

This idea of replacing ID lists by ranges is borrowed from the data structure used for the
nodedisplay in LML. The definition of the nodedisplay and methods for minimising its
memory footprint are documented in [10, p.53 – 61]. However, with the Range classes
the pure data structure is extended by set operations working on the nested ranges. Like
explained in section 4.2.3 the SystemState manages the resources R and executes set op-
erations on it such as calculating differences or unions. As the set R is modelled by a
RangeSet, these set operations are implemented with the functions add and minus. They
allow for example to calculate [1,3]∪ [4,10] = [1,10], which complies with a call of the
add function on the range [1,3] with the passed range [4,10]. The Range’s merge function
joins two coherent ranges, if they possess identical child elements. Moreover, the RangeSet
provides the extractRangeSet function, which returns an available subset of this range set
according to a job request. E.g. a job could request two nodes each with 10 cores. By
passing the integer array {2,10} a corresponding subset is extracted, which fulfils these
requirements.

Without the recursive component of the ranges the set operations such as union and
difference can be reduced to the default mathematical set operations. Each range can
be mapped to an integer set containing all IDs covered by the range. Then the well
defined default set operations are applied to these sets. For the above example calculating
[1,3]∪ [4,10] is equivalent to {1,2,3}∪{4, . . . ,10}. However, this only defines, which results
the functions should produce, but does not describe the actual implementation. Based on
the ranges it would be very inefficient to convert the ranges into integer sets, then execute
the default set operations and afterwards convert the sets back to the ranges data structure.
How these operations are implemented for the ranges is documented in section 4.3.

As soon as a range possesses child ranges, the operations become more difficult. The union
of two recursive range sets is achieved by the following steps:

1. calculate the intersections of both ranges on the node level

2. split node ranges into intersecting and disjunct parts



CHAPTER 4. SIMULATION’S DESIGN 51

3. insert the disjunct parts entirely

4. execute the union recursively on the core level for all intersecting nodes

For calculating the difference of two recursive range sets the last two steps of the union
algorithm are replaced by the following steps:

3. execute the difference recursively on the core level for all intersecting nodes

4. remove node ranges, if all core elements are deleted in the previous step

Figure 4.10 shows examples for each of these operations. The upper operation demon-
strates the union of two ranges. Their node intersection is [3,4], for which the union has
to be executed recursively. The node range [1,2] is not modified, while the disjunct node
part [5,5] is entirely inserted as defined in the third step of the algorithm. The example
for the difference operation corresponds with the insertion of a job, which requires two
nodes each with four cores. The disjunct node ranges [1,2] and [5,5] stay unchanged and
the core ranges of the nodes [3,4] are reduced by the core IDs [1,4].

[1,4]

[1,10]

[3,5]

[11,15]

+ =
[1,2]

[1,10]

[3,4]

[1,15]

[5,5]

[11,15]

[1,5]

[1,10]

\
[3,4]

[1,4]

=
[1,2]

[1,10]

[5,5]

[1,10]

[3,4]

[5,10]

Figure 4.10: examples for recursive range set operations

In order to keep the description simple, the operations are defined for a two level range set
with the levels nodes and cores. However, these operations can be executed in the same
manner on arbitrary hierarchies.

4.2.6 LMLParsing

JuFo processes LML files and therefore has to deal with XML. The classes shown in figure
4.11 provide support for parsing LML into object hierarchies, for adapting the parsed
objects and for generating the modified output files.

The package makes use of CodeSynthesis XSD, which allows for mapping the XML Schema
given by LML to a corresponding class hierarchy (see [18]). According to the CodeSynthe-
sis documentation this technique is called XML Data Binding. While this project generates



52 CHAPTER 4. SIMULATION’S DESIGN

Figure 4.11: class diagram for the LMLParsing package

C++ classes from the XML Schema, the same concept is used by the Java Architecture
for XML Binding (JAXB) in order to derive a Java class hierarchy (see [19]). The XML
Schema defines the structure of valid XML files. Based on the Schema, classes are de-
rived, which match with the semantic of the XML elements. The XML Binding libraries
also include functions for parsing XML files into instances of the generated classes and
for serialising these instances into XML files again. Thus, the handling of XML files is
encapsulated by these libraries. They produce easy to use object hierarchies, which can
be read and modified just like all other objects. Afterwards, the changes can be serialised
automatically to the XML format.

The most important classes of the class hierarchy generated by CodeSynthesis XSD are out-
lined in the CodeSynthesis sub package with the types lgui type, object type and info type.
Their names accord with the names of the LML tags. The root element in an LML file is
called lgui, the scheduling objects are identified by object tags and information associated
with each object is listed in info tags. A simple interface for parsing and serialising LML
files is implemented by the LMLParser class. StringOperations collects functions in class
scope for supporting string related operations such as converting string values to numerical
values and vice versa.

Finally, the classes InfoGatherer and JobGatherer use the parsed object hierarchy passed
to their constructors in order to generate the scheduling objects, which form the data
model for the simulation program. These objects simplify the access to their attributes.
E.g. the InfoGatherer composes each object tag along with all corresponding info tags in an
LMLObject so that all attributes given for an object can be retrieved from this generated
instance. The scheduling objects are created in the constructors of these classes and placed
into lists, which either can be returned entirely or allow for requesting a specific object by



CHAPTER 4. SIMULATION’S DESIGN 53

passing its ID. The upper constructor of the InfoGatherer generates the scheduling objects
by directly processing the CodeSynthesis object hierarchy. The second constructor is able
to copy another InfoGatherer or to filter scheduling objects of a specific type. Thus, the
first constructor simply parses all objects of the LML file, while the second could be used
to extract the jobs from the LMLObject instances generated by another InfoGatherer.
A JobGatherer works similar to the InfoGatherer, but creates instances of the Job class,
which requires to convert the mostly used attributes of the jobs into numerical values in
order to optimise the access to them. An LMLObject stores all attributes as strings. If
this class was used for jobs, each time an attribute is requested as integer value a string
conversion would have to be called. As a result, the string conversions are executed once
in the Job’s constructor and saved as corresponding attributes of each job.

4.2.7 SchedulingObjects

This package contains classes for the basic data model of JuFo. The Source class is the
super class for all kinds of event origins. An event can be caused by the dispatch of a
job or the crash of a compute node, for example. It has the optional attributes start and
end for specifying the time span of the event. The LMLObject is a Source parsed from
the LML file. It is produced by the InfoGatherer and saves all information about a single
object. It provides functions for getting an attribute value as string or numerical value,
which is searched in the list of all info tags related to the object.

SchedulingObjects

Source
Source for an event. This is the reason

for an event to happen.

#start: Time

#end: Time

+getTimeSpan(): Time

Job
Saves core attributes of each Job.

#wall: Time

#priority: double

#simInfo

#numMachines

#tasksPerNode

#queue

#resourceSet: ResourceSet

#nodelist: RangeSet

+Job(orig:Job)

+Job(lmlObject,lml,infos,simInfo)

+getPriority(): double

+setPriority(priority)

+forwardCoreDataToOutput()

#initCoreAttributes()

LMLObject
Combines object- and info tags

of one LML object.

#object: object_type

#lml: lgui_type

#infos: info_type[]

+getAttributeValue(attribute): string

+getNumericalValue(attribute): double

+setAttributeValue(attribute,value)

Node
Collects important information and core

states for one compute node.

#freeCores: int

#totalCores: int

#freeClassMap: map<string,int>

#totalClassMap: map<string,int>

#freeCoreRanges: RangeSet

+useCores(number,queue,cores:RangeSet): boolean

+releaseCores(number,queue,cores:RangeSet): boolean

+reduce(node:Node)

Figure 4.12: class diagram for the SchedulingObjects package

The classes Node and Job are specialisations of the LMLObject and extend it by attributes
and functions, which are needed frequently for each type. The Job adds amongst others
attributes for the wall clock limit, the priority and the requested nodes and processors.



54 CHAPTER 4. SIMULATION’S DESIGN

These attributes are extracted once in the Job’s constructor so that it can work as fast
attribute cache for all data, which is used often throughout the simulation. After the
simulation finishes, the cached attributes are written back to the CodeSynthesis object
hierarchy, which is serialized afterwards.

The Node class is also introduced for optimised access to important attributes. Moreover,
it manages the available cores in the range set freeCoreRanges and the job queues, which
can be defined individually for each node. In doing so the totally allowed processors used
by each queue are saved in totalClassMap, while the freeClassMap holds the currently
available processors, which is altered throughout the simulation. If parts of a node are
allocated to a job, the function useCores has to be called. A job is removed from a node
by calling releaseCores. The reduce function has the same task like the corresponding
function of the Queue class in the ResourceManager package. It is needed to get the set
of resources, which is available throughout an entire time span.

4.2.8 JobSorting

The JobSorting package implements the sorting strategy for a job list. In order to sepa-
rate the sorting algorithm from the core scheduling algorithm this package is introduced.
It allows to exchange the sorting implementation without exchanging the scheduling al-
gorithm itself. The JobSorter class defines the abstract interface, which is used by the
Simulation and which has to be implemented by the concrete sorting strategies. This pack-
age is based on the Strategy design pattern, which encapsulates independent algorithms
into exchangeable instances implementing a common abstract interface (see [17, p.315]).

Figure 4.13: class diagram for the JobSorting package

The FormulaJobSorter is the only implementation of the JobSorter interface so far. It
calculates the job priority with the help of a user defined mathematical term. The term
contains numerical job attributes as variables and connects them with standard mathe-
matical operators. E.g. the term could be defined as totalcores ∗ 1000− queuedate. Jobs
with a high number of requested processors and an early queue date would get high prior-



CHAPTER 4. SIMULATION’S DESIGN 55

ity values. The term is evaluated by parsing the job attributes with the names according
to the variables of this term. Then the parsed values are inserted into the term and it
is evaluated numerically. The result is a scalar, which represents the job priority. Af-
terwards, the jobs are sorted by their priorities in descending order. The compareJobs
function returns, whether the first job has to be ranked higher than the second. The
FormulaJobSorter aggregates the FormulaParser, which provides functions for evaluating
generic mathematical terms. It parses the formula passed as a string and extracts the vari-
ables of the term. Each variable value can be assigned by the setVariableValue function.
Evaluating the term is executed by calling getValue. For each job the FormulaParser has
to be filled with the job attributes in order to calculate the job priority. If another sorting
algorithm is required, the JobSorter interface has to be implemented, the Configuration
class has to be aware of the algorithm and has to pass the corresponding instance to the
Simulation’s constructor.

4.3 Algorithms

While the previous section presents the classes and data structures involved in the sim-
ulation, this section focuses on the most important algorithms defining how the various
packages interact with each other. At first an overview of the messages exchanged by the
major components is illustrated. Afterwards, special features of the implemented backfill-
ing algorithm are presented along with the algorithms for the resource managers and for
the range set operations.

4.3.1 Interaction Overview

Although the packages and their classes are documented in detail in the previous section,
an explanation of the calling sequences and of the algorithmic internals is still pending.
Figure 4.14 depicts a possible sequence of function calls throughout a simulation run on
the basis of its most important classes. It does not show every involved class, but helps
to roughly understand how they are linked with each other. The Configuration class is
designed to be a simple entry point for creating and using a Simulation instance. It is
instantiated by passing an LML file. The simulation parameters as well as the scheduling
objects, which form the data model for the simulation, are parsed by the Configuration.
The configured SystemStateFactory and JobSorter strategy are created and passed to the
proper Simulation’s constructor. Note that the diagram only uses the abstract interfaces
Simulation, StateFactory, SystemState and JobSorter in order to indicate that any concrete
implementations of these interfaces can be inserted as the actual instances. The shown
simulation’s interactions are unaffected by exchanging these implementations except that
the scheduling algorithm might adapt the loops in the lower part of the diagram.

The Simulation’s constructor calls the StateFactory’s function for the production of a Sys-
temState instance, which manages the simulated resources. Additionally, dummy events
are added to the Timeline and the job lists are sorted at least once independently from
the scheduling algorithm, which implements the insertWaitingJobs function.

The created Simulation instance is returned to the Client, who triggers the main part of



56 CHAPTER 4. SIMULATION’S DESIGN

alt [can be 
inserted]

loop traverse
timeline

loop

:Configuration

:Simulation
<<create>>

:StateFactory<<create>>

:JobSorter
<<create>>

produceSystemState :SystemState<<create>>

:Timeline

add dummy events 

sort(runningJobs), sort(waitingJobs)

Client

<<create>>

systemState

simulate insertRunningJobs

insertJob

addEvent

traverse
running jobs

insertWaitingJobs

isJobInsertable
ResourceSet

insertJob(ResourceSet)

sort(waitingJobs)

addEvent

getOutput

lml object hierarchy

Figure 4.14: overview of interactions in JuFo

the simulation by calling the simulate function. Then the Simulation inserts the running
jobs in order to initialise the SystemState with its start situation. As the running jobs
are required to fit into the available resources, they only need to be inserted without
checking for a suitable resource subset. Afterwards, the actual prediction is performed by
the insertWaitingJobs function. The diagram illustrates the scenario given for the FCFS
algorithm. The event list of the Timeline is traversed. In each iteration the waiting jobs
are sorted as their attributes and therefore their priorities could change due to the effects
of previous events. A second step is searching available resources for the waiting jobs
by sending corresponding requests to the SystemState. If a subset of resources is found
for a job, it is inserted into the system similar to the insertion of the running jobs. The
sequence of function calls within insertWaitingJobs depends on the particular scheduling
algorithm. However, the possibilities of interaction between Simulation and SystemState
are similar for each implementation, as the access to the resource managers is limited to
the abstract interface of the SystemState.

After the simulate function is finished, the results are written into the object hierarchy



CHAPTER 4. SIMULATION’S DESIGN 57

generated by CodeSynthesis. The Client requests these results by calling the getOutput
function of Simulation so that they can be analysed according to the schedule quality or
serialised to the output LML file.

4.3.2 Extension of the backfilling algorithm

Since the scheduling algorithms implemented in the simulation program are analysed in
detail in section 3.1, this section only shortly discusses a special part of the backfilling algo-
rithm, which is responsible for extracting the minimal set of resources available throughout
the run-time of a job in order to check for resource collisions with future reservations. It
is left out in the scheduling algorithm analysis, because it is easier to understand based
on the knowledge of the resource manager design. In general, the scheduling algorithms
are implemented as described in section 3.1. However, the parts related to the resource
managers are suppressed in this analysis in order to focus on the scheduling. Thus, the
backfilling algorithm is strongly abbreviated concerning the check, whether a job can be
inserted into the system. For this check suitable resources have to be searched not only at
the current position in timeline, but for the entire job run time. This algorithm is derived
from the corresponding part of the handleTopDogs function described in section 2.2.1.
The implementation of this algorithm for JuFo is outlined in figure 4.15. It represents a
good example to comprehend how the simulation accesses the SystemState as most of its
functions are used within this algorithm.

At first, it is tested, whether the job can be inserted into the current position with a call
of isJobInsertable. If so, the passed resource manager is copied twice. The minState is
used to hold the minimal set of resources, which is available throughout the entire forward
simulation performed in this function. The tmpState functions as temporary replacement
of currentState in order to avoid, that the actual system state of the simulation is changed.
The loop traverses the timeline starting at the position after timePos. In each iteration
the time span, which is simulated so far, is calculated. If it exceeds the wall clock limit,
the job can be inserted without any collisions, as it could be inserted into the resources
provided by minState at any time within its duration. Otherwise, the current event takes
place within the job duration. The effects of the event such as consumption of resources
by an inserted job are applied to tmpState by calling reactOnEvent. If this operation
removes resources from the tmpState, they are also removed from minState with a call of
reduceResources. Afterwards, it is checked, whether the resources stored in minState are
still sufficient for dispatching the job. As soon as this check fails at any position in the
timeline, the function returns that the job cannot be inserted at the given start position.
However, if the job is inserted successfully into all simulated system states, the last set of
resources, which is found by the isJobInsertable function, is saved as a job attribute. It is
ensured, that this resource set does not collide with any future reservations. As a result,
this resource set can be used to actually insert the job into the system.

On the one hand, this function is used to check, whether a job can be inserted at a
certain position in the timeline. On the other hand, creating a reservation for a top dog
also makes use of its functionality: the timeline is traversed in a forward simulation until
the isJobInsertable function returns true for the first time. Then the found time span is
reserved for this job.



58 CHAPTER 4. SIMULATION’S DESIGN

bool isJobInsertable (Job job, SystemState currentState, int timePos)

resourceSet = currentState.isJobInsertable (job)

resourceSet

T F

 == 0

return false job.setResourceSet(resourceSet)

minState = currentState.copy(), tmpState = currentState.copy()

startTime = timeline.getEventAt(timePos).getTime()

for(i=timePos+1; i<timeline.size(); i++)

currentEvent = timeline.getEventAt(i)

currentTime = currentEvent.getTime()

currentTime

T F

 - startTime >= job.getWall()

return true

reactOnEvent(currentEvent, tmpState)

minState.reduceResources(tmpState, currentEvent)

resourceSet = minState.isJobInsertable (job)

resourceSet

T F

==0

return false job.setResourceSet(resourceSet)

return true

Figure 4.15: algorithm for searching a resource set for a job while avoiding future collisions

4.3.3 Resource manager algorithms

JuFo provides two implementations for the SystemState interface. While the Attribute-
State is a simple and generic resource manager for any kind of compute resources, the
NodeState is explicitly aware of the resources allocated to each job. Due to the simplicity
of the AttributeState’s implementation this section focuses on the details of the NodeState
algorithms.

Like explained in section 4.2.3 a SystemState comprises functions for searching resources
according to a job request and for actually inserting and removing a job. The first function
named isJobInsertable is the most interesting as the others depend on the results of this
function and only implement simple modifications to the SystemState’s attributes. As a
result, isJobInsertable is explained comparatively detailed, while the other algorithms are
merely summarized.



CHAPTER 4. SIMULATION’S DESIGN 59

AttributeState algorithms

The AttributeState resource manager stores a set of resource types in the array resNames
and for each resource a value expressing the quantity of the particular resource type within
its attribute freeRes. In this context a resource set for a job request represents a list of
used quantities for each resource type. These resource sets are generated by the function
isJobInsertable. Its implementation is depicted in figure 4.16.

ResourceSet isJobInsertable (job)

job

T F

 is already inserted

return empty set

create new ResourceSet in resources

for(i=0; i<resNames.size(); ++i)

double requestedAmount = job.getAttributeValue(resNames[i])

requestedAmount

T F

 > freeRes[i]

return empty set resources.addResource(resNames[i], requestedAmount)

return resources

Figure 4.16: isJobInsertable implementation of class AttributeState

At first, it checks, whether the passed job was inserted before, in order to avoid multiple
insertions of identical jobs. Afterwards, the loop tests for each resource type, if sufficient
resources are available according to the job requests. The quantity of each resource type
requested by the job is parsed from the LML input file. If the job requests more resources of
a specific type than the AttributeState offers, an empty resource set is returned. Otherwise,
the list of requested resources is handed back, which is later used by the functions for the
actual insertion and deletion of the job.

Inserting a job into an AttributeState means reducing the values of freeRes by the re-
quested quantities. By removing a job from the system, the consumed resources are
released again.

NodeState algorithms

The NodeState extends the AttributeState’s functionality by explicitly identifying the
nodes and processors allocated to each job. It also allows for checking constraints defined
by the queues of each node. Since the queues are an important tool for configuring the
scheduler behaviour, they highly influence the produced schedule so that the resource
managers should consider queue constraints before inserting a job. By including these
extensions the isJobInsertable implementation shown in figure 4.17 becomes more complex
and time consuming than the corresponding AttributeState’s function.

Initially, the function makes use of its super class AttributeState in order to efficiently
check, whether the system globally possesses sufficient processors for the passed job. Then



60 CHAPTER 4. SIMULATION’S DESIGN

ResourceSet isJobInsertable (job)

create resourceSet by calling isJobInsertable  of AttributeState

get core attributes (numMachines, tasksPerNode, queue) from job

check global queue constraints

resultResources = new NodeResourceSet(resourceSet)

job

T F

 is running

add resources of the job nodelist attribute to resultResources

return resultResources

freeNodes = get nodes with at least tasksPerNode cores from nodeResources as range set

for(rangeId = 0; rangeId < freeNodes.size() && numMachines>0; ++rangeId)

currentRange = freeNodes[rangeId]

for(i = currentRange.getMin(); i <= currentRange.getMax() && numMachines > 0; ++i)

node = nodes.find(i)

node

T F

 has tasksPerNode starters in given queue

add node to resultResources

numMachines--

numMachines

TRUE FALSE

 == 0

return resultResources return empty resource set

Figure 4.17: isJobInsertable implementation of class NodeState

the job attributes such as numMachines, tasksPerNode and the job queue are retrieved,
which form the job request. The global queues stored in the NodeState add up all available
processors on the compute nodes for each queue. This allows for a fast check, whether the
job can be started. If there are not enough processors available in the global queue, the
time consuming traversal of the entire nodes list can be skipped. For a running job, the
allocated resources are defined by the input data. Thus, they do not have to be searched.

However, a waiting job requests a number of numMachines nodes each having tasks-
PerNode processors. These resources are extracted from the RangeSet stored in the
nodeResources attribute of the NodeState instance. But, not every node with sufficient
available processors is automatically suitable for every job request as nodes could prohibit
the execution of a certain queue. Therefore, all nodes with sufficient processors have to
be extracted from the range set in order to traverse the nodes list and check the queue
constraints for each node individually. An extension of the RangeSet’s extractRangeSet
function, which is explained in the following section, is used to gather all suitable nodes.
Then the freeNodes variable of type RangeSet contains all nodes, which provide at least
tasksPerNode free processors. The ranges have to be traversed in the subsequent loop
so that the individual queue checks can be executed. While the outer loop traverses all



CHAPTER 4. SIMULATION’S DESIGN 61

ranges, the inner loop iterates over each ID within the current range. The node according
to each ID is searched in the nodes list and assigned to the node variable. If the queue
checks are successful for the particular node, it is added to the result resource set. Finally,
the function returns this resource set, if sufficient nodes are found. Otherwise an empty
set is handed back.

At first glance, this algorithm appears to be more time consuming than simply traversing
the entire nodes list. However, as long as the ranges stored in nodeResources do not
become too fragmented, it is more efficient to iterate over a few node ranges instead of
hundreds of single nodes. Especially, when the system is completely filled with jobs, the
benefits of using ranges are obvious: the nodeResources do not contain any suitable ranges
so that the extractRangeSet function quickly returns an empty set. Without the ranges,
the nodes list would have to be traversed entirely just to recognize that there is no node
with enough processors.

The insertion of a job, for which a resource set is found, consists of the following steps:

1. adapt the global queue by reducing the available processors of the job queue

2. subtract the job resources given as range set from the nodeResources

3. traverse all nodes allocated to the job and adapt their queues

In order to delete a job, the inverse operations have to be applied. Since the job resource
set is stored within each job, the deleteJob function only requires the job instance, which
has to be deleted, as parameter.

4.3.4 Range set operations

The range sets are recursive integer intervals. They are used for efficiently storing available
resources in a system state as well as resources allocated to a job. Since range sets are
similar to mathematical sets, appropriate operations are defined on them. A union of two
range sets corresponds with releasing a job resource set and adding it back to the available
resources saved in the resource manager. The inverse operation is given by calculating the
difference of two range sets, which represents the consumption of resources due to a job
dispatch. In addition, a function is required for extracting a subset of resources according
to a job request. E.g. a job could request five nodes each having ten processors. This
function would search a matching subset or abort, if the requested resources cannot be
found. The implementation of these operations is examined in this section.

Range set union framework

The union of two range sets is implemented by the add function of the RangeSet class. A
rough overview of the algorithm’s idea is outlined in 4.2.5. The described four steps are
reflected by the implementation depicted in diagram 4.18.

Note, that the ranges variable contains the list of all ranges for this RangeSet instance,
on which this function is called. At first, the highest level of toAdd is copied to notIn-



62 CHAPTER 4. SIMULATION’S DESIGN

void add(toAdd)

copy top level of toAdd to notIntersecting

for( rangePos = 0; rangePos< ranges.size(); rangePos++)

interSec = ranges[rangePos].intersection(toAdd)

interSec

T F

 is not empty

notIntersecting.minus(interSec)

addRangeToRange(ranges[rangePos], toAdd, interSec)

copy entire toAdd into toInsert

for( traverse notIntersecting ranges)

topLevelRange = current range

copy min and max value of topLevelRange to toInsert

addNotIntersectingRange(toInsert)

Figure 4.18: framework for the union operation on range sets

tersecting. The first loop traverses all ranges and calculates their intersections with the
range toAdd. By calling the minus function, the intersections are removed from notIn-
tersecting so that it only contains those intervals of toAdd, which are disjunct from all
existing ranges. Thus, the range toAdd is split into intersecting and disjunct intervals.
The function call addRangeToRange is responsible for calculating the union of the ranges
recursively. If toAdd intersects with any part of a range in the ranges list, its children
are added to the children of the range. In doing so, it is possible that the range has to
be split, because toAdd might intersect only with parts of each range. After the recur-
sive union the second loop simply inserts the disjunct parts of toAdd. The ranges within
notIntersecting are traversed and each range is added to the ranges list by calling addNot-
IntersectingRange, which inserts the new range at its appropriate position. The range list
is sorted in ascending order according to their min attributes.

Recursive range set union

For the intersecting parts the union has to be calculated recursively. E.g. a range set
could be used for a two-level hierarchy of nodes and processors. Adding a node set to
another requires to unite the processor sets of intersecting node ranges. The function add-
RangeToRange implements this recursive union. A pseudo-code diagram for this function
is shown in figure 4.19.

This function only unites the two ranges orig and toAdd within the range of orig. Those
range parts of toAdd, which do not overlap with orig, are disregarded by this function as
they are already handled by the RangeSet’s add function. The addRangeToRange function



CHAPTER 4. SIMULATION’S DESIGN 63

void addRangeToRange(orig, toAdd, intersection)

toAdd

T F

.getChildren().isEmpty()

return

intersection

T F

 is empty

return

minIntersection = intersection.getMin(), maxIntersection = intersection.getMax()

minIntersection

T F

 == orig.getMin()

maxIntersection

T F

 == orig.getMax()

add children of toAdd recursively to orig

return

split orig into r1 = [orig.getMin(), maxIntersection] and r2 = [maxIntersection+1, orig.getMax()]

insert r2 as disjunct range and add children of toAdd recursively to r1

return

maxIntersection

T F

 == orig.getMax()

split orig into r1 = [orig.getMin(), minIntersection-1] and r2 = [minIntersection, orig.getMax()]

insert r1 as disjunct range and add children of toAdd recursively to r2

return

split orig into r1 = [orig.getMin(), minIntersection-1] and r2 = [minIntersection, maxIntersection] 

and r3 = [maxIntersection+1, orig.getMax()]

add r1 and r3 as disjunct ranges and add children of toAdd recursively to r2

Figure 4.19: algorithm for recursive range set union

has to be called for each range in the RangeSet’s list. Their intersection on the top level
is passed as parameter. E.g. orig could be [5,7], toAdd could be [1,6] so that their
intersection is [5,6]. Although orig and toAdd might have children, the intersection is
calculated only on their top level. Similar to the RangeSet’s add function, this algorithm
also has to distinguish between intersecting and disjunct parts of the ranges. For the
intersection, the add function has to be called recursively. But the disjunct parts are not
changed by this operation. As a result, the intersection of these two ranges has to be
calculated and the orig range needs to be split. E.g. the orig range could be [5,10]. Then
the algorithm has to consider four possible cases:

Case Example for toAdd Disjunct parts Intersection

left intersection [1,6] [7,10] [5,6]
right intersection [8,20] [5,7] [8,10]
subset range [8,9] [5,7], [10,10] [8,9]
identical [2,20] /0 [5,10]

Figure 4.20: possible intersections between two ranges



64 CHAPTER 4. SIMULATION’S DESIGN

The interval of toAdd could overlap with a left sub range of orig. Moreover, it could over-
lap with a right sub range or it could be a real subset of orig. Finally, their intersection
could cover the entire interval. These possibilities are handled one after another in the
addRangeToRange function. For the first two cases the orig range is split into two ranges,
while the subset case requires to split it into three parts. If toAdd covers the entire orig
range, it is not split as there are no disjunct parts. While the children of the intersect-
ing ranges are united recursively with the children of toAdd, the disjunct parts keep the
children given by orig.

The functionality of this algorithm can be retraced with the help of the example union in
figure 4.10. It is assumed that the range set with the nodes [1,4] is the instance, on which
the add function is executed, while the nodes [3,5] are passed to this function as toAdd
parameter. The first loop of the add function calls the addRangeToRange function for
these range sets. Their intersection is calculated as [3,4] so that the disjunct part is [1,2],
which must not be modified. As a result, addRangeToRange detects a right intersection,
which causes the range [1,4] to be split into r1 = [1,2] and r2 = [3,4]. The children of
the latter are united with the children of toAdd, while the children of r1 stay unchanged.
Afterwards, the second loop of the RangeSet’s add function inserts the ranges of toAdd,
which do not intersect with the existing range [1,4]. Thus, the range [5,5] is added entirely
with its child range [11,15].

Range set difference operator

Since the difference operator is similar to the union in major parts, it is not documented
as detailed as the union algorithm. The difference operator has to be calculated on a
range set, because ranges might need to be split, which is not possible on a single range.
Nevertheless, this operator is executed separately for each range in the ranges list. The
bigger part of the algorithm deals with –similar to the union operator– detecting the type
of intersection. Possible types are collected in table 4.20. Afterwards, the current range
is split into disjunct and intersecting parts. The children of the intersections are reduced
by the children of the subtracted range set. If all children are removed, the parent range
instance is also removed from the range set.

This allows to fully understand the second example in figure 4.10. The intersection of
the node ranges is [3,4], which is a real subset of range [1,5]. Thus it is split into three
ranges, whereat only the middle range [3,4] has to execute the difference recursively. The
processor set difference [1,10]\ [1,4] = [5,10] is calculated. If the result set was empty, the
entire middle range would be removed from the range set.

Extract range set

Range sets are used for managing the available resources of a simulated supercomputer.
Jobs request parts of these resources. The standard use case of the range sets is a two-
level hierarchy of nodes and processors. A job requests a number of nodes each having a
number of cores. From a more abstract perspective, an arbitrary hierarchy of range sets
is possible. A job can request a number n1 of resources on the highest level, each of which
possesses n2 children on the second level, and so forth. These requests are handled by



CHAPTER 4. SIMULATION’S DESIGN 65

the RangeSet’s extractRangeSet function. A list of integer numbers containing [n1, . . . ,nN ],
with N as the number of hierarchy levels, is passed to this function. It either returns an
empty range, if the resources are not available, or a matching subset of the RangeSet’s
resources. This function is outlined in figure 4.21.

RangeSet extractRangeSet(widths)

create a new RangeSet res

leftWidth = widths[0], width = leftWidth

remove first element from widths

for(rangeId = 0; rangeId<ranges.size() && leftWidth > 0; ++rangeId)

rangeWidth = ranges[rangeId].getMax() - ranges[rangeId].getMin() + 1

rangeWidth

T F

 > leftWidth

rangeWidth = leftWidth

widths

T F

.size() > 0

children = ranges[rangeId].getChildren().extractRangeSet(widths)

children

T F

 is empty

continue

create toAdd with min = ranges[rangeId].getMin(), width = rangeWidth and found children

res.add(toAdd)

leftWidth -= rangeWidth

insert width into widths at the beginning again

leftWidth

T F

 > 0

return empty set return res

Figure 4.21: algorithm for the extractRangeSet function

The function saves the number of elements, which are requested on the current level, in
the leftWidth variable. The loop traverses the ranges list and calculates the number of
elements in each range, which is assigned to rangeWidth. If widths still contains requests
for lower level elements, the corresponding child elements are extracted by the recursive
call of extractRangeSet. If this is successful, the current range is added to the result set and
the number of remaining elements, which have to be searched, is reduced by the range’s
width. It is possible, that not enough elements are found so that the function has to return
an empty result set. This indicates, that the job request cannot be fulfilled by this range
set.



66 CHAPTER 4. SIMULATION’S DESIGN

4.4 Complexity

After simply describing, how the scheduling simulation works, another step in the analysis
of JuFo is evaluating its complexity. Therefore, this section identifies the input determi-
nants influencing the simulation run-time.

The simulation program is formed by three major components: sorting of jobs, scheduling
algorithm and resource manager. Multiple implementations exist for each of these com-
ponents, which can be combined arbitrarily. While FCFS, backfilling and List-Scheduling
are possible scheduling algorithms, the simulation can choose between NodeState and At-
tributeState for the resource manager type. As a result, the simulation run-time strongly
depends on the combination of these components so that no general formula or upper limit
can be extracted. E.g. the number of nodes is crucial for a simulation using the NodeState
resource manager, because the node list has to be traversed for each job insertion check.
But in an AttributeState nodes are managed as a single scalar value so that increasing the
number of nodes does not affect the simulation run-time.

Furthermore, not only the number of jobs and nodes determine the simulation run-time,
but also their specific configurations. E.g. a job, which requests many compute resources
and thus stays in the waiting job list for many iterations, is more expensive to insert than
a job, which has little resource requests and which can be inserted at the beginning of the
simulation. In the same manner one would expect the complexity of the simulation using
a NodeState to increase with a growing number of nodes as more node instances have
to be traversed to search for available resources. But if the number of nodes exceeds the
accumulated requested resources of all jobs, all of them can be inserted at the first timeline
iteration. As a result, the pure numbers of input scheduling objects is not sufficient for an
estimation of the simulation run-time.

At least the number of simulated jobs is a factor, which influences any combination of the
simulation components. The core complexity of the implemented scheduling algorithms is
given by the following two nested loops: the outer traverses the timeline events and the
inner iterates over waiting jobs in order to insert them at the current time position. This
loop structure can be found in every scheduling algorithm, even if especially the backfilling
algorithm nests further inner loops by searching reservations for top dogs or running
forward simulations to check, whether a job can be inserted without future collisions. The
number of iterations in the outer timeline loop as well as the number of iterations in the
waiting jobs loop directly depend on the number of simulated jobs. The more jobs are
simulated, the more events are placed into the timeline and the more jobs are available
in the waiting jobs list, which has to be traversed in each timeline iteration. Although
the number of waiting jobs might decrease in each timeline iteration the simulation run-
time rises in worst case for each scheduling algorithm with the square of the number of
simulated jobs.

The list of waiting jobs is sorted at most once in each timeline iteration. Since the order
of the jobs is assumed to barely change, the waiting jobs list is nearly-sorted so that for
example bubble sort allows to update the sorting with linear effort (see [20]). As the inner
loop over waiting jobs, which tries to insert them at each time position, also depends at
least linearly on the number of waiting jobs, the sorting of jobs does not affect the overall
complexity of the simulation.



CHAPTER 4. SIMULATION’S DESIGN 67

To conclude, the simulation complexity cannot be expressed by a simple formula based on
the pure numbers of nodes and jobs. The combination of the different components and
the wide range of configuration parameters complicate the estimation of the simulation
run-time. However, a main structure of at least two nested loops, which depend on the
number of jobs, can be found in each scheduling algorithm so that the number of simulated
jobs strongly influences the simulation run-time.

4.5 Data format

JuFo uses LML as data format for input as well as output files. Although LML is actually
designed to collect status information for supercomputers, which is easy to visualise, it also
provides a core data model for identifying the objects described in each LML file. These
objects are jobs, nodes, reservations, scheduler and system. LML allows for attaching
information as list of key-value pairs to each object. As a result, all attributes of the
objects are optional and at the same time any new attribute can be added in order to
extend the information basis. However, the simulation program expects a set of core
attributes to exist for each object type. E.g. a job should specify the number of requested
processors, because otherwise the generation of a meaningful schedule is not possible. A
shortened example input file is shown in listing 4.1.

Listing 4.1: LML input example

1 <lml:lgui >

2 <objects >

3 <object color="#f00" id="j1" name="myjob" type="job"/>

4 <object id="node1" type="node"/>

5 <object id="sys" type="system"/>

6 <object id="sched" name="scheduler" type="scheduler"/>

7 </objects >

8
9 <information >

10 <info oid="j1" type="short">

11 <data key="owner" value="carsten"/>

12 <data key="queuedate" value="05/31/12 -08 :27:00"/>

13 <data key="nummachines" value="3"/>

14 <data key="taskspernode" value="8"/>

15 <data key="totalcores" value="24"/>

16 <data key="wall" value="3600"/>

17 <data key="queue" value="medium"/>

18 </info>

19 <info oid="node1" type="short">

20 <data key="ncores" value="8"/>

21 <data key="avail_classes" value="(small ,4)(medium ,8)"/>

22 </info>

23 <info oid="sched" type="short">

24 <data key="system_sysprio" value="-DATEqueuedate"/>

25 <data key="system_state" value="NodeState"/>

26 <data key="scheduling_algorithm" value="Backfilling"/>

27 </info>

28 <info oid="sys" type="short">

29 <data key="system_time" value="05/31/12 -08 :30:00"/>

30 </info>

31 </information >

32 </lml:lgui >



68 CHAPTER 4. SIMULATION’S DESIGN

This example specifies four objects and assigns an ID to each of them within the objects
element. The information element attaches one info element for each object. Note, that
multiple info elements are allowed for each object so that for example a short summary
information is provided along with a more detailed version. Each info is mapped to the
corresponding object via its oid attribute referencing the IDs defined in the objects ele-
ment. An info element is formed by the mentioned list of key-value pairs. Both attributes
key and value can contain arbitrary strings, which are not liable to any validity constraints.
JuFo parses the object attributes and uses default values for possibly missing mandatory
attributes. At least the attributes listed in this example should be provided to the simu-
lation program. Otherwise, default values have to be used for this important input data,
which might compromise the accuracy of the simulation. A job is required to define an
owner, the queue date, the number of requested nodes and processors on each node as well
as the total number of needed processors. Moreover, the estimation for the job duration
in seconds should be passed with the wall attribute and its queue.

The node information collects all consumable resources for the particular node. This
usually covers the number of processors and the configured queues. In the example above,
the node has eight processors. Four of them can be used by jobs submitted to the queue
small, while jobs of queue medium are allowed to consume all eight processors. These
queue configurations are specified separately for each node, which allows for the definition
of very flexible scheduling policies.

The scheduler object works as global configuration for the simulation behaviour. It is
interpreted by the Configuration class, which chooses the actual implementations for the
interfaces JobSorter, SystemStateFactory and the scheduling algorithm implemented by a
subclass of Simulation. In this example the jobs are sorted by their queue dates. Usually,
the FormulaJobSorter implementation directly converts the job attributes into numerical
values and inserts them into the current priority formula. But the date values cannot be
parsed directly into numerical values. They have to be interpreted according to their date
format. Then they are converted into scalar values expressing a time difference, which
is inserted into the formula. The string DATE before the actual attribute name in the
priority formula indicates, that this variable is given in date format. The type of resource
manager, which must be used by JuFo, is specified in the system state attribute. Currently
allowed values are NodeState and AttributeState. Finally, the scheduling algorithm is
chosen by the corresponding attribute of the scheduler object. Valid algorithms are FCFS,
List and Backfilling. If JuFo is extended by an additional implementation for sorting
of jobs, resource managers or scheduling algorithms merely the Configuration class has
to be adapted. It has to check for the new attribute values and pass the appropriate
implementation to the Simulation class.

The system object contains general information about the simulated supercomputer. Here,
it only defines the current system date in order to set the job queue and dispatch dates in
relation to a fixed start date of the simulation.

This input file is processed by JuFo. It adds attributes to the job information, which
contain the estimated dispatch time or reasons, why a job cannot be started with the given
configuration. For jobs, which can be started, the allocated resource set is also written to
the output file. This resource set depends on the resource manager type: for a NodeState
the actual IDs of allocated nodes and processors are returned, while an AttributeState is
only able to return the numbers of consumed resources. To conclude, the output LML file



CHAPTER 4. SIMULATION’S DESIGN 69

is equal to the input file except that a well defined set of additional attributes extend the
job information.

This core part of LML is very flexible and extensible. It only defines the allowed types of
scheduling objects, but does not restrict the information attached to each object. There-
fore, any information, which might influence the behaviour of the scheduler, can be passed
to the simulation. New implementations of the simulation’s extension points are simply
integrated as new attribute values within the scheduler object, which does not require any
modification of the data format. However, the same flexibility given by this data format
is also required for JuFo. It cannot rely on the existence of mandatory attributes and has
to check the validity of the input data before starting the simulation. Moreover, reason-
able default values have to be defined in JuFo for possibly missing job or node attributes.
On the one hand, this loose data format allows for flexible modification and extension
of passed data. On the other hand, semantic validity checks are shifted from the LML
Schema definition to the simulation program.



70 CHAPTER 4. SIMULATION’S DESIGN



Chapter 5

Optimisation

The previous chapter documents in detail the structure of JuFo, outlines its components
and their interactions and analyses the major algorithms, which form the basic implemen-
tation of the simulation framework. While this analysis covers the required design goals
extensibility and abstraction, the third major target for this simulation program is effi-
ciency. The first two goals are achieved by the generic and solid component architecture
explained in the previous chapter. However, in order to enhance the efficiency of the sim-
ulation the algorithms have to be investigated in detail so that possible performance hot
spots are acquired. This chapter extracts the crucial parts of the existing algorithms and
provides approaches for decreasing the simulation’s run-time by simultaneously keeping
its functionality identical. At first, ideas for improving the serial algorithms are outlined,
while the last section analyses how to parallelise the simulation.

5.1 Similar job requests

A simple idea for optimising the standard algorithm described in the previous chapter is
given by the assumption that users often submit similar job requests. Jobs are considered
as similar if they request similar resources. More precisely if the job insertion check fails
for a job, it will also fail for all similar jobs. Instead of checking, if a job can be inserted,
separately for each job, those jobs, which are similar to other currently blocked jobs, can
skip this expensive test. For similar jobs their most important parameters such as the job
owner, its queue, the number of requested processors and the wall clock limit are equal.

Moreover, users can submit consecutive job requests, which depend on each others com-
pletion. In doing so, a user could send a set of identical job requests enumerated by step
numbers. Each job has to wait for all jobs with lower step numbers to be completed. As a
result, all jobs depending on another job request, which cannot be started at the current
position of the timeline, are also blocked from starting.

The generic scheduling algorithms of the previous chapter do not consider these assump-
tions and still check each job request separately. Instead of that, in each timeline iteration
a list of all jobs, which cannot be started, has to be stored in order to compare subse-
quent jobs with this list for similarity. If another job is similar to one of the jobs in this



72 CHAPTER 5. OPTIMISATION

list, the expensive forward simulation can be skipped. Since checking for similarity is a
fast operation, this optimisation reduces the number of these forward simulations with
little additional effort. Its implementation can be inserted easily into existing scheduling
algorithms. However, the definition of similarity could differ for each batch system and
resource manager type. If jobs are misleadingly evaluated to be similar, it is possible that
jobs are delayed without cause. As a result, it is recommended to rather use too many job
parameters, which have to accord, than block misleadingly similar jobs from starting. But,
the more parameters are included in the similarity check the less jobs will be evaluated to
be similar, which decreases the positive effect of this optimisation. Thus, the best solution
is to include as few parameters as possible, but sufficient to avoid incorrect similarity tests.

5.2 Handling simultaneous events

JuFo is event driven and manages all occurring events such as job starts or completions with
a timeline, which sorts these events chronologically. The scheduling algorithms traverse
these events one after another, execute their effects like consuming or releasing resources
in the resource manager and add future events for inserted or reserved jobs. The presented
algorithms execute each event separately and try to dispatch waiting jobs afterwards. For
the backfilling algorithm a job insertion requires a forward simulation, which executes
all future events within the current job duration in order to check for possible resource
collisions. If many events occur at identical time, these forward simulations conduct the
same events repeatedly. Assuming that all events at a specific time consume all available
compute resources, these forward simulations are run needlessly as any job insertion at
that time will fail. This problem is reconstructed with the help of the example timeline
depicted in figure 5.1.

time [s]

resources

Job 1

Job 2

-start Job 1

-start Job 2

-end Job 2 -end Job 1

Job 3

-start Job 3

-end Job 3

Job 4Resource limit

Figure 5.1: example timeline with simultaneous events

This timeline shows three running and one waiting job. All running jobs are started at
the same time. The running jobs are assumed to consume all available compute resources
so that job 4 has to wait for the completion of job 2 and job 3, which release the needed
resources. By executing only one event in each timeline iteration, a forward simulation is
run for job 4 for each job insertion event. I.e. after the insertion of job 1 the algorithm



CHAPTER 5. OPTIMISATION 73

tries to add job 4 to the timeline, which fails since the forward simulation will detect a
collision with job 2 and 3. The same happens after the actual insertion timeline point of
job 2 and 3 in following timeline iterations. The obvious solution for this inefficiency is to
execute all events with identical time values at once. As a result, all running jobs would be
inserted within a single timeline iteration and the number of forward simulations for job 4
would decrease from three to one. In the same manner the simultaneous job completions
for job 2 and 3 would be executed at once, which also reduces the number of insertion
checks for job 4.

To conclude, JuFo can be optimised by executing all events with identical time values at
once instead of iterating over every single event. This can reduce the number of forward
simulations, because the total number of timeline iterations, in which the scheduling al-
gorithms try to insert waiting jobs, is decreased. However, this optimisation might alter
the resulting schedule. E.g. without this optimisation another waiting job 5 requesting
the same number of processors as job 2 could delay the higher prioritised job 4. At first
only job 2 would be removed from the resource manager so that there are not sufficient
resources available for job 4. Assuming that job 4 is no top dog, job 5 can be started
before the completion of job 3. When executing the job completions of job 2 and 3 at
once, job 4 could be dispatched without being delayed by smaller jobs. As a result, this
optimisation favours the dispatch of higher prioritised jobs with comparatively large re-
source requests. This is beneficial since the preference of large jobs often accords with the
scheduling objectives for supercomputers. Large jobs have to be saved from starvation,
which is achieved by avoiding the fragmentation of the system with small jobs. E.g. Moab
addresses this policy with the opportunity to enable “Backfill chunking” [15, p.545], which
allows to gather released resources for jobs larger than a configured size in order to reduce
fragmentation. Note that the optimisation described in this section only influences the
produced schedule, if events occur at identical times, which is probably a rare situation
for real workload examples.

5.3 Backfill windows

The following optimisation can be applied merely to the backfilling algorithm. Since this
algorithm represents the most complex and practically most relevant of the implemented
scheduling algorithms, it is reasonable to especially focus on its optimisation. So far,
backfilling is implemented by iterating over the timeline events and conducting a forward
simulation for each waiting job. This causes that identical events are simulated multiple
times without sharing the information generated by previous forward simulations. The
introduction of backfill windows, which are also mentioned in the description of Moab’s
backfilling solution in section 3.2.2, allows for sharing the information gathered in a single
forward simulation among the insertion checks for all currently waiting jobs. This ap-
proach strongly reduces the number of forward simulations without changing the resulting
schedule.

A backfill window is defined by a set of compute resources together with a time span, in
which these resources are available. E.g. ten processors available for one hour define a
backfill window. They are used to model free resources before future reservations for top
dogs. These resources can be backfilled by smaller jobs, which do not interfere with top



74 CHAPTER 5. OPTIMISATION

dog reservations. Figure 5.2 depicts backfill windows in an example schedule.

time [s]

resources

Job 1

Job 2

Res 2

Resource limit

Res 1

BW 3
BW 2

BW 1

current position

Figure 5.2: schedule with backfill windows

It shows two running jobs as well as two future reservations. The backfill windows are
generated starting at the time position marked by the current position arrow. In general,
the number of backfill windows exceeds the number of future reservations –relative to the
current time position– by one. Since there are two reservations after the current time po-
sition in this example, three backfill windows are extracted. Extracting backfill windows
is simple: a forward simulation is run starting with all currently available resources. As
soon as an event such as a job dispatch or any future reservation consumes resources the
available resources before this consumption form a backfill window together with the time
span from the start of the forward simulation till the time of this event. The particu-
lar resources are consumed and the forward simulation is continued. As a result, each
reservation causes the creation of a backfill window. Additionally, a backfill window is
generated covering those resources, which are available throughout the entire time span of
the forward simulation. In the example above this backfill window is named BW 3. Note
that the backfill window resources can only be reduced throughout the forward simulation.
They contain solely those resources, which are available for the entire time span.

Backfill windows have to be generated for each position in timeline. The results of previous
timeline positions cannot be reused as soon as jobs are removed from the system. The
additional resources released by the completed jobs cannot simply be added to the backfill
windows, because this could overwrite the effects of future events on the same resources.
E.g. in figure 5.2 the generation of backfill windows starting after the dispatch of job 2
creates effectively a single backfill window similar to BW 3 except that it starts earlier.
This window cannot be reused for the backfill windows generated at the position marked
with current position. By releasing the resources of job 2 within the backfill window, one
would get a backfill window with the resources, which BW 1 provides. But this does not
determine the time span of this altered backfill window. As a result, all future events
would have to be repeated on this backfill window in order to retrieve the time span,
in which its resources are available. However, this approach is identical to recreating all



CHAPTER 5. OPTIMISATION 75

backfill windows at each timeline position.

After generating the backfill windows, testing, whether a job can be inserted at the current
time position, is a trivial task. For each job a backfill window is searched, which covers a
time span wider than the job duration and which provides sufficient resources for the job
request. The efficiency of using backfill windows in comparison to the previous backfill
algorithm, which conducts forward simulations separately for each job, becomes apparent
by analysing the main loop structure of both implementations shown in figure 5.3 and 5.4.

void backfilling()

traverse timeline

react on event

traverse waiting jobs

isInsertable = true

traverse future timeline

simulate event

job

T F

 is not insertable anymore

isInsertable = false

break

isInsertable

T F

insert the job into the timeline

Figure 5.3: overview of the old backfilling
algorithm described in section 3.1

void optimisedBackfilling ()

traverse timeline

react on event

traverse future timeline

event

T F

 == JobStart

copied = copy simulated systemState

backfillwindows.add( copied, currentTime )

simulate event

traverse waiting jobs

isInsertable = is job insertable into backfillwindows

isInsertable

T F

insert the job into the timeline

Figure 5.4: overview of optimised backfilling
algorithm

The most important difference of both algorithms is that the old algorithm nests three
loops, while the optimised version places two separated loops into the outer loop, which
traverses the timeline. To sum up, the innermost loop responsible for running the forward
simulation for each job is extracted and replaced by a loop directly nested into the timeline
loop. However, this extracted loop becomes more complex. While in the old version the
forward simulation is aborted as soon as the particular job collides with future reservations,
the forward simulation for extracting backfill windows is forced to traverse the entire
timeline in order to detect all future reservations. Moreover, the job insertion check of the
optimised version actually has to execute an additional nested loop, which traverses the
generated backfill windows for each job. Since the number of backfill windows is limited
by the usually small number of reservations, the impact of this loop can be disregarded.
Overall, backfill windows allow to implement the same behaviour with two instead of three
nested loops. The produced schedule is identical for both implementations so that this
optimisation does not affect the simulation’s results. The optimised backfilling algorithm
highly increases the efficiency of JuFo, which is reflected by the following complexity
analysis. This analysis only focuses on how the simulation runtime is influenced by the
number of jobs. Assuming that n is the number of jobs, F holds the complexity function
for one insertion check of a job and m is the number of top dogs, the functions b1 and b2
model the complexity of the old backfilling and the optimised backfilling algorithm:



76 CHAPTER 5. OPTIMISATION

b1(n) = n3 ∗F ⇒ b1 ∈Θ(F ∗n3)

b2(n) = n∗ (n + n∗ (m + 1)∗F)⇒ b2 ∈Θ(F ∗m∗n2)

The term f (n) ∈ Θ(g(n)) expresses that f (n) “is within a constant multiple of g(n)” [21].
I.e. f grows asymptotically as fast as g. For the functions b1 and b2 it is assumed, that
the number of timeline iterations depends linearly on n. As a result, the old backfilling
algorithm nests three loops, which depend on n, while the optimised algorithm only nests
two loops. The factor F is identical for both complexity functions and is influenced by
the chosen resource manager implementation. The number of inserted top dogs m is
constant. Thus, its impact can be disregarded as long as it is significantly smaller than
the actual number of jobs n. Since the number of jobs is –next to the number of simulated
compute nodes– the most important determinant influencing the runtime of the simulation,
these complexity functions reveal the gained efficiency of this optimisation. While the old
backfilling algorithm depends cubically on n, the runtime of the optimised version only
rises quadratically with n.

Finally, using backfill windows allows to simulate Moab’s backfill algorithm more precisely.
The presented optimised backfill algorithm at first iterates over waiting jobs and nests an
inner loop, which traverses generated backfill windows. In contrast, Moab’s algorithm
swaps these loops: the outer loop traverses the backfill windows starting with the window,
which possesses the highest amount of resources, while the inner loop searches for jobs
matching the current window. Note, that backfill windows with wider time spans can only
possess equal or less resources than those with small time spans, since the resources of
a backfill window are only reduced in the future. By sorting the backfill windows in the
mentioned way, at first those windows with smallest time spans are checked for fitting
jobs. As a result, Moab’s algorithm favors short jobs as they are likely to be inserted
before higher prioritised jobs with longer wall clock limits. To conclude, the optimised
algorithm can be adapted easily to Moab’s behaviour. This is not possible based on the
original backfill algorithm, because the required backfill windows are not extracted by this
algorithm.

5.4 Parallelisation

An obvious approach for improving the simulation efficiency is parallelisation. So far
merely a solid application architecture for a serial simulation program is developed along
with ideas for optimising the implemented serial algorithms. Although the described
optimisations strongly shortened the duration of the simulation, there appears to exist po-
tential for parallelising the computationally intensive parts of these algorithms. However,
JuFo is designed to be highly configurable and allows to combine the various implementa-
tions of the major simulation components such as the job sorter, the scheduling algorithm
and the resource manager. Depending on the chosen component combination the focus
of the simulation can vary. E.g. one simulation could use a complex and time consum-
ing sorting algorithm in combination with a comparatively simple scheduling algorithm,
while another could combine an expensive scheduling algorithm and might not sort the
jobs at all. I.e. there is no generic approach for parallelising JuFo. Instead this section



CHAPTER 5. OPTIMISATION 77

extracts the most complex parts of the simulation and provides ideas for partitioning the
sequential algorithms into separated tasks, which can be conducted simultaneously. While
the optimisations of the previous sections are actually implemented, this section merely
outlines ideas for parallelisation.

5.4.1 Profile analysis

Before collecting ideas for parallelisation the current status of JuFo has to be analysed
for performance hot spots. This can be achieved by profiling the application with gprof
[22]. It instruments the profiled program in order to count, how often a function is called,
and monitors the execution time of each function dynamically (see [23]). This allows to
extract, how much time is spent in each part of the simulation, by running a set of example
simulations and evaluating them with gprof. With this information it is more reliable to
predict the impact of parallelising a particular function. E.g. parallelising a function,
which only consumes 5% of the total simulation time, will not cause significant speedup.

JuFo is tested and partly optimised for the supercomputer JUROPA. This system repre-
sents a challenge for the performance of the simulation program, because it provides more
than 3000 compute nodes. In addition, on average more than 1000 jobs are queued by
the scheduling system. Thus, it is reasonable to profile example simulations on JUROPA.
Moreover, according to Fenlason et al. gprof is subject to “Statistical Inaccuracy” [22]
so that its results are more reliable the longer the application’s duration is. JUROPA
currently provides the most time consuming input examples. As a result, these examples
are suitable for profiling JuFo.

For this analysis ten example snapshots of JUROPA are chosen, which were collected
from the 10th till 23rd of July 2012. Each LML file comprises 3290 compute nodes and
between 900 and 1600 jobs. Between 12 and 26% of these jobs are running, while the
remaining jobs have to be inserted within the simulation. These examples are simulated
on a 64Bit OpenSuse 11.4 system with two cores at a speed of 2.53GHz. The simulation’s
duration varies depending on the executed example between 16 and 65 seconds. Detailed
information about the example files can be found in table A.1 in appendix A.

The example files configure to sort the jobs by a priority term derived from the actual
Moab configuration for JUROPA. They use backfilling with a maximum number of one
reservation per queue. Note that JUROPA is split into two disjoint partitions. For each
of them one top dog is allowed. The NodeState is chosen as resource manager, which is
configured to forbid the sharing of compute nodes. This accords with the scheduling policy
of JUROPA. The major part of the simulation’s duration is spent in the insertWaitingJobs
function of the scheduling algorithm. As a result, the profile analysis focuses on the
composition of child functions invoked by insertWaitingJobs.

All results of the profiled examples are listed in table A.2 in appendix A. They are sum-
marised and interpreted in the following. In average 89% of the total simulation time is
spent in the simulate function of the backfilling algorithm. The remaining time is mostly
spent for handling LML files with CodeSynthesis. The bigger part of the simulate function
accounts for the insertion of queued jobs within the insertWaitingJobs function. On aver-
age 88.8% of the total simulation time is spent in this function, which is more than 99%
of the time used by the calling simulate function. Thus, the composition of the compute



78 CHAPTER 5. OPTIMISATION

time for insertWaitingJobs is examined in detail as it represents the simulation’s core.

56,9

19,3

6,5

6,4

10,9

backfillWindows

sort

reserveTopDogs

isInsertable

other

Figure 5.5: compute time composition of functions called within insertWaitingJobs

The pie chart 5.5 illustrates, which fraction of the compute time of insertWaitingJobs
is spent on average in each called function. More than 56% of the time accounts for
the generation of backfill windows. As described in section 5.3, backfill windows have
to be extracted for each position of the timeline. Afterwards, the backfill windows are
filled with suitable jobs. In the same manner, all waiting jobs need to be sorted by the
given priority term at each timeline position. This includes the calculation of the current
priority for each job as well as the actual sorting of jobs. This function consumes on
average 19.3%. For the reservation of compute resources for top dogs forward simulations
have to be executed, which takes 6.5% of the time spent in insertWaitingJobs. Since the
usage of backfill windows simplifies the job insertion checks, they only consume 6.4%. The
remaining 10.9% of compute time is among others spent for the execution of current events,
logging the simulation status and comparing the current job with similar job requests.

5.4.2 Parallelisable algorithms

Due to the modular design of JuFo the entire simulation program has to be analysed for
possibilities of parallelisation. The more parts of the simulation are run in parallel the
higher is the chance of improving its efficiency. Moreover, considering Amdahl’s law [24]
the portion of a program, which cannot be parallelised, limits the possible speedup. Thus,
it is beneficial to involve as many components of the simulation as possible while searching
for parallelisable parts of the implemented algorithms. Thereby, the previous profile anal-
ysis helps to identify, which part of the simulation is promising for parallelisation. This
allows to prioritise, which approach for parallelisation should be implemented first.



CHAPTER 5. OPTIMISATION 79

Parallel I/O

The first step of each simulation run is parsing the LML input data. The process of
generating the object hierarchy from the LML file via CodeSynthesis cannot be parallelised,
because it is a library call. However, this object hierarchy is converted into instances of the
SchedulingObjects package. This conversion prepares the input objects for the simulation
by parsing the most relevant attributes into actual attributes of a Job or Node instance.
Thereby, these attributes can be accessed more efficiently and the refined objects are
more comfortable to use within the other parts of the simulation. This conversion can be
parallelised, since each job, node or reservation is processed independently. In the same
manner, the inverse process of appending the simulation results to the object hierarchy of
CodeSynthesis can be run in parallel. For each job its predicted dispatch and completion
time as well as consumed resources have to be stored in the original CodeSynthesis data
object. Since these input and output operations have to be run only once per simulation,
the time currently spent for them is small. As a result, their parallelisation is not expected
to significantly enhance the performance of the current simulation program.

Job sorting

Another simple approach for parallelisation is given for sorting jobs. In each presented
scheduling algorithm all waiting jobs are sorted once for each event in the Timeline. E.g.
for JUROPA that causes about 1000 jobs to be sorted at each event. For the implemented
sorting strategy jobs are ordered in two steps: calculate the current priority for each job
depending on the configured priority term and sort the jobs afterwards. Example profiles
for JUROPA show that the priority calculation accounts for about 90% of the entire sorting
algorithm. Thus, the priority calculation offers an effective way for parallelisation, since
the job priorities at a given position in the timeline are calculated independently from each
other. Note that there are job attributes such as the number of active jobs per user, which
involve multiple jobs for the calculation of the attribute. However, the calculations can
still be conducted independently, since these attributes are calculated globally prior to the
actual sorting. Alternatively, JuFo could sort the jobs less frequently and use the same
priorities for multiple timeline iterations. But this might change the simulation’s results.
Sorting of waiting jobs on average accounts for 17.1% of the total simulation time (see
table A.2). Considering that the implementation of this parallelisation is comparatively
simple, it represents a reasonable way for optimisation.

Scheduling algorithm

Most of the simulation time is spent for the insertion of waiting jobs. The presented
scheduling algorithms have in common that they are nesting two major loops: the traversal
of the timeline events and at each event the traversal of waiting jobs searching for a job,
which can be inserted at the current position. The outer loop needs to be run sequentially
as each iteration depends on previous iterations. However, the inner loop allows to be
parallelised as long as no jobs are inserted into the resource manager. In this case JuFo
only reads data, but does not modify the simulation’s state. As a result, all jobs can be
checked simultaneously. This allows to partition the inner loop among a number of parallel



80 CHAPTER 5. OPTIMISATION

threads or processes. But, if a job can be inserted, the state of the resource manager has
to be changed by consuming the resources requested by the particular job. Therefore, the
threads either have to check in a given interval, if another thread has found a suitable
job, or insertion checks of jobs might need to be repeated for all jobs with a lower priority
than the new inserted job. This parallelisation approach can be applied to all implemented
scheduling algorithms regardless of the used resource manager or job sorting strategy. But,
the effect on the performance of the simulation will vary depending on the parallelised
scheduling algorithm and on the input data. E.g. the former backfilling algorithm (see
figure 5.3) has a rather complex insertion check, because a forward simulation is executed
for each job. In contrast, the insertion check of the optimised backfilling algorithm makes
use of the previously generated backfill windows, which strongly reduces the complexity
for each insertion check. While the insertion checks of the former backfilling algorithm
account for a big part of the simulation time, the optimised version requires more time to
generate backfill windows (56.9% of the compute time spent in insertWaitingJobs) than
for the traversal of waiting jobs (6.4%). Thus, a comparatively small part of the simulation
duration can be parallelised by this approach so that the speedup is expected to be low
for the optimised backfilling algorithm.

Unfortunately, the generation of backfill windows cannot be parallelised efficiently so far.
It requires to iterate sequentially over the timeline events starting at the current timeline
position in order to simulate the future state of available resources. Moreover, this process
has to be repeated for each timeline position as new jobs might have been inserted, which
alters the backfill windows produced in the last iteration.

Resource manager

Another way to accelerate job insertion checks is to parallelise the isJobInsertable function
of the resource manager. E.g. the NodeState retrieves eligible compute nodes for a job
request with the help of range sets. But each node is able to configure individual queues,
which are allowed to start jobs on the particular node. As a result, all eligible nodes have
to be traversed in a loop, of which each iteration is independent from the other iterations,
since each node’s queues can be checked separately. Thus, this node traversal can simply
be partitioned to parallel threads.

This function will require considerable more compute time once JuFo is extended for
Loadleveler. As described in section 3.2.1 on Blue Gene systems Loadleveler has to allocate
an exclusive torus or mesh network to each job. Therefore, a coherent unused sub block
of the entire network has to be found, which matches with the shape requested by the
particular job. A Blue Gene/P system provides a 3D torus network among all midplanes.
In a simplified model they are arranged logically in a cuboid, where each midplane is
connected with all adjacent midplanes. Additional cabling and allowing midplanes to
forward network packages of foreign applications also connects midplanes, which are not
directly adjacent (see [14]). These extensions are disregarded in the following explanations
in order to keep the parallelisation approach simple. Each job requests a sub cuboid of a
given shape. This leads to six nested loops: the first three loops iterate over the start edge
of the sub cuboid, while the inner loops traverse the shape of the requested cuboid. If all
nodes are available for one start edge, a possible position for this job is found. A similar
algorithm can be applied for networks of higher torus dimension by nesting more loops.



CHAPTER 5. OPTIMISATION 81

The search for a sub cuboid within a 3D array of boolean values, which models the midplane
network, can be directly parallelised. The outer loop of the algorithm can be split into
equally sized parts. Each of these parts is then searched for a coherent sub cuboid. The
idea of this parallelisation is depicted in figure 5.6.

x

y

z

Figure 5.6: parallel search of sub cuboid within torus network

It shows how the search can be partitioned for three parallel threads. Each of the small
cubes represents a midplane. Assuming that the outer loop iterates in x-direction, the
search could be split into the parts identified by the three colours. Each thread can search
independently for available sub cuboids starting at the midplanes assigned to the particular
thread.

In the same manner other extensions of JuFo could become the most time consuming
parts of the simulation. A profile analysis is helpful to identify the performance hot spots,
which are worth for optimisation or even parallelisation. However, these optimisations
often contradict with design goals like extensibility or simplicity. It is likely that a par-
allel algorithm is harder to understand than a serial algorithm just as the old backfilling
algorithm is simpler than the optimised version using backfill windows. Thus, an opti-
misation or parallelisation should only be implemented, if the gained efficiency excuses
the increased complexity. Moreover, JuFo will typically be executed on a single computer
with multiple cores. As a result, its parallelisation does not require to be designed and
optimised for high scalability, since the expected speedup is limited by the low number of
parallel threads.



82 CHAPTER 5. OPTIMISATION



Chapter 6

Implementation aspects

While the previous chapters examined the design of JuFo independently from the actual
programming environment and language, this chapter shortly discusses the implementa-
tion details. At first, the development environment is outlined by describing tools and
libraries used for the simulation program. Afterwards, the designated extension points are
summarized in order to simplify enhancing JuFo.

JuFo is written in C++. It is chosen for the simulation program due to its efficiency as a
compiled language and the possibility for object oriented programming (OOP). Moreover,
C++ is a widely spread programming language, which is important for a project designed
for third party extensions like JuFo. It makes extensive use of the OOP features of C++
in order to encapsulate and separate the different components of this simulation program.
Abstract classes are used as interfaces defining how the components are allowed to interact
with each other. The actual implementations inherit from these interfaces and specify the
component behaviour. By only using these abstract superclasses when interacting with
another component, they are kept independent from their actual implementations. E.g.
this allows for implementing new scheduling algorithms independently from the type of
resource manager passed to the Simulation’s constructor. If the scheduling algorithm was
aware of the resource manager implementation, changing one of the components would
probably cause the other to be adapted as well.

6.1 Development environment

The simulation program is developed on Linux and can be compiled with the GNU project
C and C++ compiler (GCC). Eclipse is used as development platform and especially the
C/C++ Development Tools (CDT) plug-in supports programming by providing context
sensitive code completion, on-line code analysis for errors, integrated building and running
of programs and interactive debugging. JuFo is built with a customized makefile, which
defines rules for compiling and linking the source code with various libraries used for the
simulation framework.



84 CHAPTER 6. IMPLEMENTATION ASPECTS

6.1.1 Libraries

JuFo requires several external libraries, which are listed in the following along with a
summary of their tasks.

CodeSynthesis XSD – C++ architecture for XML Data Binding, parsing of LML files
(see [18])

Xerces – XML parser for C++, which is used by CodeSynthesis (see [25])

PCRE – handling of regular expressions, required for parts of LML parsing (see [26])

CppUnit – C++ port of JUnit for automated software testing, almost each class of JuFo
is tested by a CppUnit testcase (see [27])

MathExpr – parsing of arbitrary mathematical formulas, needed for calculation of job
priorities (see [28])

CodeSynthesis strongly simplifies the handling of XML files, which are validated by an
XML Schema like LML. This library parses the LML files, checks for validity and converts
the data into a C++ object hierarchy. These objects can be read and modified like stan-
dard objects. Then the modified objects are serialized back into valid LML automatically.
The PCRE library is used for processing regular expressions within the simulation pro-
gram. It is easy to install and simplifies several parts of interpreting parsed LML data. It
is especially useful as SchedSim makes extensive use of regular expressions, which PCRE
allows to insert without any modifications into JuFo. Small test classes are written with
the help of CppUnit. For every new feature a test case is implemented, which checks
the correctness of new functionality. E.g. test cases are written for parsing dates, for
each scheduling algorithm or for checking, whether LML data is parsed as expected. This
ensures the robustness of JuFo and allows for regression tests, which test, whether old
functionality still works after implementing new features. Moreover, the test cases show
how to use and combine the simulation classes, which simplifies understanding and extend-
ing the simulation program. MathExpr is an open source “mathematical expression parser
in C++” (see [28]). It parses arbitrary formulas, allows to set the values for all included
variables and finally evaluates the formulas. This library is applied to calculating the job
priority in order to sort waiting jobs by the system priority defined by a mathematical
formula.

JuFo intends to minimize the number of external libraries in order to keep the installation
of pre requisites simple. CodeSynthesis and PCRE are required, because implementing
their functionality from scratch would be very time-consuming. CppUnit is merely needed
for development, while simply using JuFo does not depend on this testing library. Math-
Expr represents a single C++ class, which can be compiled without further requirements.
Thus, including MathExpr into the simulation program does not increase the installation
effort. To conclude, three libraries need to be installed on the target system in order to
run JuFo.



CHAPTER 6. IMPLEMENTATION ASPECTS 85

6.2 Extension points

In general, all parts of the simulation basis provided by JuFo can be adapted or extended.
However, several components are especially designed for adding new implementations and
these are summarized within this section. Although all of these extension points are
mentioned throughout section 4, concentrating them in the following paragraphs outlines
how JuFo is meant to be extended. A job scheduler simulation in JuFo is a combination
of three major class implementations: a JobSorter, a scheduling algorithm inheriting from
Simulation and a resource manager implementing the SystemState interface. Each class
can be implemented independently from the others as interactions to other components
are limited to the abstract interfaces of each component. Due to clearly defined tasks
of each component, the actual implementations can be exchanged arbitrarily. Extending
the simulation program by an additional implementation comprises two steps: implement
the abstract interface by a new subclass of the corresponding interface and add this new
implementation to the Configuration class, which selects the actual implementation for
each component by parsing the LML input file.

The JobSorter class implements the strategy for sorting lists of jobs by their priorities. It
is realized by a single function, to which the unsorted list of jobs is passed. In order to add
another scheduling algorithm a subclass of the framework given by the abstract Simulation
class has to be created. Since this framework already inserts running jobs and provides
functions for forwarding the simulation results to the object hierarchy of CodeSynthesis,
the subclass only needs to implement the insertWaitingJobs function. It represents the
core of each scheduling algorithm. This function decides, when the jobs need to be sorted,
how many jobs are handled as top dogs and inserts as well as executes events in the
timeline. Examples for this function are documented in section 3.1 with FCFS, backfilling
and List-Scheduling. The third designated extension point is given by the SystemState
interface, which simulates the behavior of the resource manager. To implement a new
resource manager, functions for inserting and deleting jobs are required. In addition, a
resource manager has to be able to copy its current state so that forward simulations can
be run on a copied state without changing the actual system state within the simulation.
Finally, a function has to be provided, which checks, whether a job can be inserted into
currently available resources.

Since at least one reference implementation is given for each of these extension points, they
can be used as guideline examples for new implementations. It is also possible to subclass
existing implementations in order to add small extensions to the given functionality.



86 CHAPTER 6. IMPLEMENTATION ASPECTS



Chapter 7

Simulation tests

While prior chapters cover the design of JuFo and methods for improving the efficiency
of this simulation program, this chapter discusses approaches for evaluating and testing
the outcomes of the simulator. The first section explains how the different modules of the
simulation are checked with the help of unit tests. This allows to control the functional-
ity of each new implemented feature or component separately. However, these synthetic
and restricted tests are insufficient for investigating the simulation’s accuracy on real su-
percomputers. Although they can be used to test the correctness of the implemented
algorithms, more complex tests are required in order to evaluate the predicted schedules
for actual parallel systems. The idea for these tests is to gather the actual workload of
the particular supercomputer and run the simulation starting in the past. Afterwards, the
predicted schedule is compared with the actual schedule produced by the real scheduler.
The concept of this test is presented in the second section. Based on this test an estimation
for the accuracy of JuFo on the supercomputer JUROPA is acquired.

7.1 Module tests

Since JuFo is composed by a set of mostly independent modules, unit tests can be applied
to control their functionality. Each unit test is used to check the validity of a so-called test
unit, which is defined as a “set of one or more computer program modules together with
associated control data” [29]. A test unit should be kept as small as possible in order to
focus on special parts of the tested application. As mentioned in the previous chapter, the
unit testing framework CppUnit represents the basis for unit tests of JuFo. For nearly all
simulation classes corresponding tests are developed, which run common use-case scenarios
and compare the expected results with the actually obtained results. E.g. the Time class
stores relative time values and allows to calculate the difference of two Time instances. A
corresponding CppUnit test function written in C++ is given by the following listing.

Listing 7.1: minus operator test for the Time class

1 void TimeTest :: testOperatorMinus ()

2 {

3 cout <<"testOperatorMinus"<<endl;

4 Time time1 (100);

5 Time time2 (200);



88 CHAPTER 7. SIMULATION TESTS

6 Time time3 = time2 -time1;

7 CPPUNIT_ASSERT_EQUAL( 100.0, time3.getSeconds () );

8 }

It creates two Time instances and calculates their time distance by calling the difference
operator. The call of CPPUNIT ASSERT EQUAL compares the calculated difference
with the expected value 100.0. If these values differ, an error message will be generated
explaining which test case failed and list expected and actual values. A set of those test
functions forms a test suite, which also provides functions executed prior and after the
actual test cases in order to initialise and release test objects commonly used by all test
cases. More than 20 test suites, which define over 100 test cases, build the module tests
of JuFo. The complexity of the test cases depends on the tested module or feature. While
testing the difference operator of the Time class is a trivial task, the test development
for checking the variety of scheduling algorithms arbitrarily combined with different job
sorting strategies and resource managers is more complex.

In order to test the implemented scheduling algorithms, synthetic LML files are used as
input for running an entire simulation. Afterwards, the produced schedule is compared
with the expected schedule based on the configuration parameters and chosen component
implementations for the scheduling algorithm, the job sorting strategy and resource man-
ager type. The expected schedule has to be acquired manually so that this approach is
only feasible for small input files. These synthetic simulation runs are helpful for testing
any adaption of the scheduling algorithms. E.g. JUROPA does not allow nodes to be
shared by multiple users. Thus, the NodeState resource manager needs to be extended
by a configuration parameter, which forbids node sharing. On the one hand, this feature
could be tested by creating a NodeState instance with node sharing disabled. The insertion
of jobs should then consume entire compute nodes. On the other hand, a corresponding
test file can be created in order to run a simulation. Afterwards, the produced schedule is
checked for validity. While the first approach exclusively tests the NodeState, the latter
test checks the NodeState’s implementation embedded into the simulation framework. If
possible both test ideas are applied to each major feature of the simulation program. In
order to illustrate this test approach the following section documents a synthetic test run
and thereby explains how to use and interpret the results of JuFo.

7.1.1 Simulation example

The entire configuration and input data for JuFo is provided by a single LML file. This file
is parsed in order to read the simulation’s configuration and to run the simulation on given
jobs, reservations and nodes. Afterwards, the output LML file is generated by extending
the input data by attributes holding the predicted dispatch and completion time as well
as used compute resources.

Listing 7.2 shows an example input file, which can be processed with JuFo.

Listing 7.2: input LML file

1 <lml:lgui >

2 <objects >

3 <object id="j000001" name="job1" type="job"/>

4 <object id="j000002" name="job2" type="job"/>



CHAPTER 7. SIMULATION TESTS 89

5 <object id="j000003" name="job3" type="job"/>

6 <object id="node1" name="theNode" type="node"/>

7 <object id="sys" type="system"/>

8 <object id="sched" name="scheduler" type="scheduler"/>

9 </objects >

10 <information >

11 <info oid="j000001" type="short">

12 <data key="queuedate" value="07/12/12 -14 :00:00"/>

13 <data key="dispatchdate" value="07/12/12 -14 :59:00"/>

14 <data key="state" value="Running"/>

15 <data key="nummachines" value="1"/>

16 <data key="taskspernode" value="2"/>

17 <data key="totalcores" value="2"/>

18 <data key="wall" value="65"/>

19 <data key="nodelist" value="(1-1(4-5))"/>

20 </info>

21 <info oid="j000002" type="short">

22 <data key="queuedate" value="07/12/12 -14 :00:00"/>

23 <data key="state" value="Idle"/>

24 <data key="nummachines" value="1"/>

25 <data key="taskspernode" value="4"/>

26 <data key="totalcores" value="4"/>

27 <data key="wall" value="20"/>

28 </info>

29 <info oid="j000003" type="short">

30 <data key="queuedate" value="07/12/12 -14 :30:00"/>

31 <data key="state" value="Idle"/>

32 <data key="nummachines" value="1"/>

33 <data key="taskspernode" value="3"/>

34 <data key="totalcores" value="3"/>

35 <data key="wall" value="4"/>

36 </info>

37 <info oid="node1" type="short">

38 <data key="ncores" value="5"/>

39 </info>

40 <info oid="sched" type="short">

41 <data key="system_sysprio" value="-DATEqueuedate"/>

42 <data key="system_state" value="NodeState"/>

43 <data key="scheduling_algorithm" value="Backfilling"/>

44 </info>

45 <info oid="sys" type="short">

46 <data key="system_time" value="07/12/12 -15 :00:00"/>

47 </info>

48 </information >

49 </lml:lgui >

This LML file specifies three jobs scheduled on one compute node, which has five proces-
sors. The current system time of the simulated parallel computer, which also defines the
start date of the simulation, is given by the system time attribute of the sys object. This
object can be used to provide any information about the simulated system architecture. So
far merely the system time attribute is interpreted. The first job is dispatched before the
current system time and is already running on processors four and five, which is declared
in the nodelist attribute. The other jobs are waiting. While job2 requires four processors
for 20 seconds, job3 requests three processors for only four seconds. The nummachines
attribute defines the number of requested compute nodes. Since there is only one node
in this example, this attribute is set to 1 for all jobs. Finally, the sched object comprises
overall parameters affecting the simulation algorithm. Here it defines to prioritise jobs by



90 CHAPTER 7. SIMULATION TESTS

their queue dates and it chooses to use the resource manager NodeState and Backfilling
as scheduling algorithm.

This input data is sufficient for running JuFo. Considering the given configuration job1
is assumed to finish after five seconds. Since job2 gains a higher priority than job3, the
simulation tries to insert job2 at first. As only three of four required processors are
available at the beginning, a reservation is searched. The requested compute resources
become available as soon as job1 is completed. Thus, job2 is dispatched after five seconds.
This leads to a backfill window of three processors available from the start till second five,
which allows for backfilling job3. The produced schedule is depicted in figure 7.1.

Figure 7.1: predicted schedule for LML input 7.2

A test case can be derived easily from this example scenario. JuFo processes this input
file and generates a predicted schedule. If this schedule differs from the expected schedule,
a corresponding assertion will detect this error and report that the algorithm produces
invalid results. These test examples can be conducted as regression tests. After each
adaption of JuFo all test suites can be executed. This accelerates error detection and
enhances the robustness of the simulation program. Moreover, each test case functions as
example code demonstrating the usage of the tested module. This simplifies understanding
the code basis and provides entry points for further developments.

7.2 Tests on real systems

The described synthetic tests are helpful for controlling implemented algorithms in a num-
ber of well defined and rather theoretical scenarios. However, the question arises how the
predicted schedules for real systems can be evaluated regarding their accuracy.

7.2.1 Concept

A first intuitive approach is running JuFo at a certain time and comparing the actual
dispatch times of all involved jobs with their predicted times. For this comparison the
actual dispatch times can be retrieved by waiting for all jobs to be started. The accuracy
estimation obtained by this test accords with the accuracy, which the user can expect from
JuFo when using it as prediction. But this test strongly depends on the accuracy of the wall
clock limits, which users specify as upper limit for a job duration. E.g. assuming the users



CHAPTER 7. SIMULATION TESTS 91

double all wall clock limits, but the actual run-time of each job stays the same, the test will
downgrade the accuracy estimation of the prediction, although the implementation is not
changed at all. Moreover, future events such as additional job submissions or premature
cancellation of waiting jobs influence the estimated accuracy, although these determinants
are unknown to the simulation program at the time of its execution. As a result, this test
reflects the ordinary accuracy of JuFo, but it is improper for evaluating how precisely the
actual scheduling algorithm is simulated.

A second idea is comparing the predicted schedule of JuFo with existing job scheduler
simulators especially implemented for a target system. E.g. the scheduling system Moab
provides the showstart command for estimating job dispatch times (see [15, p.306]). A
simple test is to run JuFo and the target system specific prediction simultaneously. Af-
terwards, their estimated dispatch times are compared. However, not every batch system
provides such simulation programs. Moreover, showstart has a number of disadvantages
when using it for this test:

• it has to be run separately for each job

• it takes several seconds for estimating the dispatch time of a single job

• the documentation of showstart is sparse

Thus, using the results of showstart as target value for JuFo is questionable. Iterating over
all queued jobs of a large supercomputer with showstart cannot be achieved in a reasonable
time span. That is why reliable dispatch values can be retrieved only for a small number
of jobs. But due to the lack of detailed information about its configuration and algorithms
it is difficult to interpret its results and relate them to the schedule predicted by JuFo.

A more methodical test concept is given by the following algorithm:

1. gather all events relevant for scheduling such as job submissions, starts, cancellations
and completions

2. generate an LML test file containing all gathered events with adjusted wall clock
limits

3. run JuFo as if it was started at the beginning of step 1, i.e. let the simulation predict,
what already happened

4. compare the predicted schedule with real results gathered in step 1

This idea can be summarised as predicting scheduling events of the past and comparing
the results with actually happened events. The first step means to take snapshots of the
system status by calling LML da in a given interval. In the second step all snapshots are
merged into a single LML file, which has the same structure like a normal input file. The
scheduling events are listed as if captured at the system time of the first snapshot. I.e.
jobs are marked as running, if they were running at that time, and future jobs, which are
started ahead of that time, are marked as submitted jobs. Furthermore, all wall clock
limits, which are originally specified by the users, are adapted to the actual run-time of



92 CHAPTER 7. SIMULATION TESTS

each job. This is only possible for jobs, which are completed throughout step 1. Adapting
the wall clock limits eliminates the former shortcoming of the first test approach of this
section. The other shortcoming of missing future events is addressed by adding jobs, which
are queued after the beginning of the first LML snapshot, with a corresponding future
queue date. JuFo supports these jobs by excluding them from the scheduling simulation
until the currently simulated time exceeds their queue date.

The third step of this test algorithm runs JuFo to produce a schedule. Since the actual
dispatch times of all jobs, which are started during step 1, are known, the final step can
compare the predicted with the real schedule. This test focuses on the accuracy of the
simulated scheduling algorithm. It eliminates most of the unpredictable determinants
such as imprecise wall clock limits and future events like job cancellations or new job
submissions.

7.3 Test results for JUROPA

Since JuFo is especially tested for JUROPA throughout the profile analysis in section 5.4.1,
its configuration is already adapted closely to the actual scheduling system. This allows
to run the test concept explained in the previous section on JUROPA. The test evaluates
the accuracy of the used configuration for simulating the actual scheduling algorithm used
by JUROPA.

For eight different days between the 23rd of July and the 7th of August test runs are
documented in the following. The more tests are executed the more reliable is the analysis
of their results. For each test status snapshots in a given time span are merged into a single
test file. The covered time spans vary between about two and more than five hours. In
general, a longer time span causes the simulation to be less precise, because jobs, which are
scheduled inaccurately, also change the scheduling of future jobs. As a result, the described
test concept is more challenging for JuFo than a normal prediction based on a single status
snapshot. For the latter use case at least the position of the running jobs is correct. For
each job dispatched within the test duration its actual dispatch date is compared with
the predicted dispatch date. A prediction error is calculated as the difference of both
dispatch dates in seconds. Thus, a negative error indicates that the simulator schedules
the corresponding job later than it is actually dispatched on JUROPA, while a positive
error is returned for a job scheduled too early. Table 7.1 lists detailed results of the tests.

Test date Duration Jobs Mean[s] Median[s] Min.[s] Max.[s] σ [s]

07/23/2012 01:43:27 107 33.6 34 -3020 4871 1154.3
07/24/2012 03:50:10 226 -38.3 31 -8175 7340 1709.6
07/25/2012 02:12:01 186 -773.6 -116 -7467 3336 1851.0
07/27/2012 04:22:20 191 34.2 42 -11038 7515 1866.3
08/01/2012 02:35:14 122 642.6 76 -4637 6815 1886.8
08/02/2012 04:25:37 280 468.6 64 -10462 14620 3360.9
08/06/2012 03:19:02 133 -326.1 54 -7783 7516 2473.2
08/07/2012 05:39:31 249 289.3 49 -15378 19796 4104.9

Table 7.1: prediction error distributions for example tests on JUROPA



CHAPTER 7. SIMULATION TESTS 93

The Duration column of this table holds the time span covered by each test. The third
column lists the number of jobs, for which the prediction error is calculated. Only jobs
are considered, which are started within the test duration as for these jobs the actual
dispatch date is known. Moreover, jobs are excluded from the error calculations, if they are
predicted to start after the end of the test duration. This ensures that JuFo only simulates
within the actual test duration. The last columns hold the mean, median, minimum and
maximum value as well as the standard deviation σ for the prediction errors. These values
are listed in seconds.

The tests predict between 100 and 280 jobs. The mean values range from about -13 to 11
minutes. Along with the median values between -2 and 1.27 minutes the results show, that
on average JuFo provides a useful simulation for JUROPA’s job scheduler. However, the
minimum, maximum and standard deviation columns indicate the existence of jobs, which
are not scheduled accurately by the simulation. For each test there are jobs, for which the
prediction error is almost as large as the actual test duration. These outliers also explain
the large standard deviations. More detailed information about the error samples can be
found in appendix B.

A possible reason for inaccurately scheduled jobs is that their system priorities are cal-
culated wrong. Moreover, reservations are not collected by LML da so far, which might
influence the predicted schedule. Another reason for completely wrong scheduled jobs
could be the adaption of scheduling policies by system administrators, which cannot be
detected automatically by LML da. E.g. the priority of a certain job could be increased
for test purposes manually throughout the test duration. These system specific adminis-
tration and scheduling details can only be handled by extending both JuFo and LML da
with the help of the particular system administrators in order to adapt the simulation
closer to the actual scheduling system.

The test results demonstrate that JuFo can be applied for the prediction of JUROPA’s
scheduling system. Although the average error is rather low, the variance reveals that
there is potential for improving the simulation’s accuracy. Note that the shown accuracy
is only achieved, because for these tests the wall clock limits are replaced by the actual
job durations. The accuracy of JuFo for on-line predictions still depends on the accuracy
of the wall clock limits provided by the users of the supercomputer. Based on these test
files each adaption of the implemented scheduling algorithm can be tested. If the adaption
decreases the average error as well as its standard deviation, it is likely that it improves
the accuracy of JuFo. Similar tests can be conducted for other supercomputers, which are
predicted by the simulation program.



94 CHAPTER 7. SIMULATION TESTS



Chapter 8

Conclusion and outlook

This thesis documents the major steps conducted in order to design and implement JuFo,
a simulator for job schedulers of supercomputers.

8.1 Conclusion

At first the task is narrowed down to the simulation of the global scheduling layer respon-
sible for partitioning available compute resources among eligible jobs. This layer is of high
interest for administrators as well as users, who would like to know the future dispatch
times of queued jobs. The corresponding scheduling problem is defined mathematically
and related to existing complex scheduling problems. This formalisation is often refer-
enced in the documentation of the design for JuFo in order to avoid circumscriptions and
to pinpoint the scope of each documented component. Next to the problem definition the
technical basis for the implementation of JuFo is examined. While LML da gathers status
information of the supercomputer and passes it to the simulation program as raw LML
data, the visualisation clients included in LLview and PTP will illustrate the predicted
schedules. This ensures that JuFo focuses on the scheduler prediction, since data gathering
as well as visualising the simulation’s results are implemented by the monitoring environ-
ment, into which JuFo is embedded. However, this concept hands the control about which
information is gathered from the parallel computer over to LML da. Thus, the simulator
relies on this information basis and cannot request possibly missing data. The analysis
of SchedSim, which is part of LLview, forms the basic concept of the developed simula-
tor, but also obtains disadvantages such as limited efficiency and extensibility. These are
eliminated in the evolved design of JuFo. After investigating the existing prediction imple-
mentation and monitoring environment, common scheduling algorithms targeted on the
global scheduling layer are introduced. These algorithms are used by the scheduling sys-
tems Moab and Loadleveler, which are analysed from a global perspective in order to gain
a common functionality basis for supported target systems. Both systems apply modifica-
tions of the backfilling algorithm. They separate the actual scheduling from the resource
management. Furthermore, they make use of consumable resources, which are provided
by compute nodes and requested by submitted jobs. Although a major design goal is to
keep the simulator as generic as possible, it still requires the simulated system to provide



96 CHAPTER 8. CONCLUSION AND OUTLOOK

compute nodes and jobs running on them. Based on these considerations the design of
JuFo is developed. It can be roughly divided into eight packages, which interact mostly via
abstract interfaces. This allows for arbitrarily combining various implementations of the
core components for sorting of jobs, resource managers and scheduling algorithms. The
challenging task for JuFo is balancing abstraction and practicability as well as the wide
range of configuration parameters and efficiency. While abstraction is achieved by strictly
separating the major packages from each other, the reference implementations function
as guidelines for the practical usage of the given interfaces. The simulator is configured
with the help of the flexible raw LML format, which simplifies extending the existing
implementation. However, this flexibility increases the effort for correctly parsing the in-
put data. Approaches for enhancing the simulation’s efficiency such as the generation of
backfill windows are examined, which offers entry points for further improvements. The
detailed documentation of all data structures and the core algorithms allows for extending
JuFo or adapting it to additional scheduling systems. The simulation is tested with a large
number of module tests each focusing on a specific aspect. Moreover, a test framework for
adapting the simulation’s scheduling algorithm to a real system’s algorithm is developed.
In spite of the demand for JuFo to simulate the particular scheduling system as precisely as
possible, it can only function as model and cannot cover all possible configuration param-
eters supported by the actual scheduling system. Therefore, the simulator has to take into
account the most significant determinants influencing the schedule. As these determinants
differ for each supercomputer, the simulator’s configuration needs to be adjusted to the
particular target system by the administrators in order to achieve reasonable predictions.

8.2 Future work

This project especially designed for extensibility allows for a lot of further developments. A
first step is adapting the simulator closer to the supercomputers maintained at JSC in order
to optimise the prediction’s correctness. Moreover, new target systems like JUQUEEN –
the Blue Gene/Q successor of JUGENE also scheduled by Loadleveler (see [30])– have to
be simulated with JuFo. The developed test framework, which eliminates inaccuracies of
the input data such as wall clock limits provided by users, is a helpful tool for evaluating
the accuracy of the simulated scheduling algorithm. In doing so, LML da also needs to
be extended. Further status information has to be gathered such as reservation data, a
list of nodes assigned to each queue and user priorities based on site specific accounting.
This will not only improve the simulator’s efficiency, but will also help to understand and
investigate the actual scheduling system by comparing the expected schedule with the real
schedule.

As indicated by the documented approaches for optimising the simulator, there are still
ideas for further enhancing the efficiency. Many components of the simulator might need to
be reviewed repetitively for possible performance hot spots as depending on the particular
configuration different parts of the simulation can consume the majority of its duration.
Especially, parallelisation offers a number of opportunities to further minimise the simu-
lation’s run time. This is crucial for the practicability of JuFo, because the size of parallel
systems and the number of simulated jobs and compute resources is steadily increasing.

The online visualisation of the predicted schedule is still work in progress. Both the



CHAPTER 8. CONCLUSION AND OUTLOOK 97

LLview and PTP clients have to implement parsing the simulator’s results and displaying
them in a diagram similar to the prediction window of LLview. Moreover, alternative
visualisations are required, since the current diagram can become crowded for a large
number of displayed jobs. E.g. the user has to be able to zoom into the diagram or filter
displayed jobs. The schedule could also be visualised as an animated nodedisplay showing
the predicted status of the supercomputer in a given interval.

In addition, the input data for JuFo can be enriched by speculative user data obtained
from historical workload information. Instead of using the wall clock limit provided by the
users as assumed job duration the average duration observed for past jobs of this user could
function as predicted job duration. User profiles could be created storing the frequency of
job submissions and repeating submission pattern. This would allow to include statistically
predicted future jobs into the input data. The combination of methodical simulation of
the scheduling algorithms along with statistical prediction for future submission and job
duration could lead to significantly increased accuracy of the predicted schedule.



98 CHAPTER 8. CONCLUSION AND OUTLOOK



Bibliography

[1] Jochen Krallmann, Uwe Schwiegelshohn, and Ramin Yahyapour. On the Design
and Evaluation of Job Scheduling Algorithms. http://www.gwdg.de/fileadmin/

inhaltsbilder/Pdf/Yayhapour/cei_ipps99.pdf, 1999.

[2] Jülich Research Centre. JUROPA / HPC-FF System Configuration.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/

Configuration/Configuration_node.html, March 2012.

[3] Jülich Research Centre. Batch Job Processing on JUGENE. http:

//www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/

UserInfo/LoadLeveler.html, March 2012.

[4] Jülich Research Centre. LLVIEW: graphical monitoring of LoadLeveler controlled
cluster. http://www.fz-juelich.de/jsc/llview/, March 2005.

[5] Gregory R. Watson, Wolfgang Frings, Claudia Knobloch, Carsten Karbach, and Al-
bert L. Rossi. Scalable Control and Monitoring of Supercomputer Applications using
an Integrated Tool Framework, September 2011.

[6] Alfred Arnold. Untersuchung von Scheduling-Algorithmen für massiv-parallele Sys-
teme mit virtuell gemeinsamem Speicher. PhD thesis, Jülich Research Centre, ZAM,
1997.

[7] Dror G. Feitelson and Larry Rudolph. Parallel job scheduling: Issues and approaches.
In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, pages 1–8. Springer-Verlag, 1995.

[8] Peter Brucker and Sigrid Knust. Complex Scheduling. Springer Verlag, 2012.

[9] The Eclipse Foundation. Eclipse PTP. http://www.eclipse.org/ptp/, April 2012.

[10] Carsten Karbach. Konzeption und Umsetzung einer Beschreibungssprache für Sta-
tusinformationen von Parallelrechnern als Basis einer Webschnittstelle fur LLview,
August 2010.

[11] David A. Lifka. The ANL IBM SP Scheduling System. In Dror G. Feitelson and
Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 295–
303. Springer-Verlag, 1995.

[12] IBM. Tivoli Workload Scheduler LoadLeveler, Using and Administering. IBM, http:
//www2.fz-juelich.de/jsc/jugene/documentation/, 3.5 edition, January 2009.

http://www.gwdg.de/fileadmin/inhaltsbilder/Pdf/Yayhapour/cei_ipps99.pdf
http://www.gwdg.de/fileadmin/inhaltsbilder/Pdf/Yayhapour/cei_ipps99.pdf
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/UserInfo/LoadLeveler.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/UserInfo/LoadLeveler.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/UserInfo/LoadLeveler.html
http://www.fz-juelich.de/jsc/llview/
http://www.eclipse.org/ptp/
http://www2.fz-juelich.de/jsc/jugene/documentation/
http://www2.fz-juelich.de/jsc/jugene/documentation/


100 BIBLIOGRAPHY

[13] Carlos Sosa and Brant Knudson. IBM System Blue Gene Solution: Blue Gene/P
Application Development. http://www.redbooks.ibm.com/redbooks/SG247287/

wwhelp/wwhimpl/js/html/wwhelp.htm, May 2012.

[14] Gary Lakner. IBM System Blue Gene Solution: Blue Gene/P System Admin-
istration. http://www.redbooks.ibm.com/redbooks/SG247417/wwhelp/wwhimpl/

js/html/wwhelp.htm, May 2012.

[15] Adaptive Computing. Moab Workload Manager, Administrator Guide. http://www.
adaptivecomputing.com/resources/docs/, 7.0 edition, 2012.

[16] Adaptive Computing. Torque, Administrator Guide. http://www.

adaptivecomputing.com/resources/docs/, 4.0 edition, 2012.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[18] Code Synthesis Tools CC. XSD: XML Data Binding for C++. http://www.

codesynthesis.com/products/xsd/, May 2012.

[19] Ed Ort and Bhakti Mehta. Java Architecture for XML Binding (JAXB). http://

java.sun.com/developer/technicalArticles/WebServices/jaxb/, March 2003.

[20] Owen Astrachan. Bubble Sort: An Archaeological Algorithmic Analysis. http:

//www.cs.duke.edu/~ola/papers/bubble.pdf, 2003.

[21] Paul E. Black. θ . In Dictionary of Algorithms and Data Structures. U.S. National
Institute of Standards and Technology, August 2008. http://www.nist.gov/dads/

HTML/theta.html.

[22] Jay Fenlason and Richard Stallman. GNU gprof. http://www.cs.utah.edu/dept/

old/texinfo/as/gprof_toc.html, July 2012.

[23] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a Call Graph
Execution Profiler. http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf,
2012.

[24] Gene Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS Conference Proceedings, pages 483–485, 1967.

[25] The Apache Software Foundation. Xerces-C++ XML Parser. http://xerces.

apache.org/xerces-c/, June 2012.

[26] Philip Hazel. PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/,
March 2012.

[27] Eric Sommerlade, Michael Feathers, Jerome Lacoste, J.E. Hoffmann, Baptiste Lep-
illeur, Bastiaan Bakker, and Steve Robbins. CppUnit Documentation. http:

//cppunit.sourceforge.net/doc/1.8.0/, June 2012.

[28] Yann Ollivier. Mathematical expression parser in C++. http://www.

yann-ollivier.org/mathlib/mathexpr, September 2008.

http://www.redbooks.ibm.com/redbooks/SG247287/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG247287/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG247417/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG247417/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.codesynthesis.com/products/xsd/
http://www.codesynthesis.com/products/xsd/
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://www.cs.duke.edu/~ola/papers/bubble.pdf
http://www.cs.duke.edu/~ola/papers/bubble.pdf
http://www.nist.gov/dads/HTML/theta.html
http://www.nist.gov/dads/HTML/theta.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://www.pcre.org/
http://cppunit.sourceforge.net/doc/1.8.0/
http://cppunit.sourceforge.net/doc/1.8.0/
http://www.yann-ollivier.org/mathlib/mathexpr
http://www.yann-ollivier.org/mathlib/mathexpr


BIBLIOGRAPHY 101

[29] IEEE Standards Board. IEEE Standard for Software Unit Testing: An American
National Standard, ANSI/IEEE Std 1008-1987. Technical report, The Institute of
Electrical and Electronics Engineers, 1986.

[30] Jülich Research Centre. JUQUEEN - Jülich Blue Gene/Q. http://www.fz-juelich.
de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html, July
2012.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html


102 BIBLIOGRAPHY



Appendix A

Detailed profiling results

Nr. System time Duration [s] Jobs waiting jobs running jobs

1 07/10/12-10:11:57 30 1204 965 239
2 07/12/12-13:37:47 16 941 696 245
3 07/13/12-13:10:51 56 1548 1234 314
4 07/16/12-12:24:14 39 1398 1189 209
5 07/16/12-12:47:33 44 1473 1223 250
6 07/16/12-14:44:19 56 1598 1403 195
7 07/17/12-16:32:50 65 1672 1354 318
8 07/18/12-08:42:13 40 1227 968 259
9 07/18/12-09:41:22 49 1385 1118 267
10 07/23/12-16:28:05 33 1047 785 262

Table A.1: overview of the example input files for the profile analysis in section 5.4.1

This table summarises global information of the example files used for profiling JuFo.
The files are sorted by their system dates. The Duration column holds the total time in
seconds required to simulate each input file. The Jobs column lists the total number of
jobs submitted to JUROPA at the particular time, while the last two columns show the
fraction of queued and already dispatched jobs.

In order to profile JuFo ten LML example files gathered from JUROPA are analysed. The
table A.2 lists the core functions of the simulation and the percentage of the total simula-
tion time spent in each of these functions and the child functions called by them. E.g. the
second column contains the percentage of the total time spent in each of the listed func-
tions for the first example file. The last column of the lower table comprises the average of
each row’s values. The simulate function is the template method of the Simulation class
and executes the core simulation, which excludes parsing and marshaling the LML files, for
example. All examples are configured to run backfilling as scheduling algorithm, so that
the functions insertWaitingJobs, updateBackfillWindows and findFirstFittingTimeSlot are
members of BackfillingSimulation. The insertWaitingJobs function simulates the insertion
of queued jobs, which is the most time consuming function called by the simulate func-
tion. The process of generating backfill windows is conducted in updateBackfillWindows,
while findFirstFittingTimeSlot searches for reservations of top dogs. The sort function
prioritises currently waiting jobs and sorts them by the configured priority term. Finally,



104 APPENDIX A. DETAILED PROFILING RESULTS

Function name 1 2 3 4 5 6 7

simulate() 85.8 89.0 87.6 87.4 87.1 89.7 91.2
insertWaitingJobs() 85.6 88.6 87.4 87.3 87.0 89.5 91.0
updateBackfillWindows() 46.7 57.6 48.5 46.9 46.5 45.7 49.1
sort() 14.1 8.9 18.7 21.7 21.4 22.5 17.0
findFirstFittingTimeSlot() 3.0 9.8 5.6 3.7 4.1 3.2 7.9
isInsertable() 12.1 2.7 5.0 4.3 4.5 6.2 6.9

Function name 8 9 10 Ø

simulate() 89.6 90.0 93.0 89.0
insertWaitingJobs() 89.2 89.7 92.7 88.8
updateBackfillWindows() 53.5 51.4 59.8 50.6
sort() 18.2 18.1 10.7 17.1
findFirstFittingTimeSlot() 3.0 7.4 9.8 5.8
isInsertable() 6.0 4.8 4.6 5.7

Table A.2: profiling results listing the percentage of the total simulation time spent in the
most time consuming functions of JuFo

isInsertable is a member of the BackfillWindow class. By calling the corresponding func-
tion of the resource manager implementation it checks, whether a job can be inserted into
a generated backfill window. Note that simulate calls insertWaitingJobs, which again calls
all lower functions. I.e. the time values for the simulate function include the time spent
in insertWaitingJobs.



Appendix B

Detailed test results for JUROPA

In order to provide a more detailed view of the error distributions gained from the test
examples of JUROPA in section 7.3, boxplots of the errors are displayed in figure B.1.

Figure B.1: boxplots for error distributions of example test files in section 7.3

To each boxplot the date of the corresponding test run is attached. The coloured boxes
range from the first to the third quartile. Thus, each box encircles the range of the middle
50% of all errors for the particular test run. The whiskers indicate the maximum and
minimum error values. Since the boxes are concentrated around the zero error value,
the major part of the errors is small. However, the large range of the errors increases
the variance. To conclude, the boxplots demonstrate that most of the jobs are scheduled
nearly correct, while the existing outliers of inaccurately scheduled jobs cause the large
variances of the error samples.



Jül-4354
September 2012
ISSN 0944-2952


	Introduction
	Problem definition
	Outline of the thesis

	Problem analysis
	The scheduling problem
	Current status
	Target
	Limitations

	Job scheduling
	Analysis of job scheduling strategies
	Practical examples

	Simulation's design
	Overview
	Data structures
	Algorithms
	Complexity
	Data format

	Optimisation
	Similar job requests
	Handling simultaneous events
	Backfill windows
	Parallelisation

	Implementation aspects
	Development environment
	Extension points

	Simulation tests
	Module tests
	Tests on real systems
	Test results for JUROPA

	Conclusion and outlook
	Conclusion
	Future work

	Bibliography
	Detailed profiling results
	Detailed test results for JUROPA



