001     128133
005     20210129211113.0
037 _ _ |a FZJ-2012-01028
100 1 _ |a Hammond, Jeff R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a The 6th Conference on Partitioned Global Address Space Programming Models
|w USA
|c Santa Barbara, California
|d 2012-10-10 - 2012-10-12
|g PGAS 12
245 _ _ |a OSPRI: An Optimized One-Sided Communication Runtime for Leadership-Class Machines
260 _ _ |c 2012
300 _ _ |a 10 p.
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1392987033_17915
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Abstract—Partitioned Global Address Space (PGAS) programming models provide a convenient approach to implementing complex scienti?c applications by providing access to a large, globally accessible address space. This paper describes the design, implementation and performance of a new one-sided communication library that attempts to meet the needs of PGAS models, particularly Global Arrays, but hopefully also PGAS languages like UPC and CAF. In this work, we describe a new communication runtime for PGAS models such as GA, termed OSPRI (One-Sided PRImitives). OSPRI presents several changes in architecture from conventional one-sided communication systems that make it better suited for emerging leadersip class machines. We describe the implementation of the the IBM Blue Gene/P target for OSPRI and demonstrate signi?cant improvements in latency, bandwidth, and scalability over tuned ARMCI and GA implementations on this system. The performance and scalablity of this library validate the design choices and should provide useful insight for implementers of related communication middleware.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
536 _ _ |0 G:(DE-Juel1)FMM-20140729
|c FMM-20140729
|x 1
|a FMM - Fast Multipole Method (FMM-20140729)
700 1 _ |a Dinan, James
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Balaji, Pavan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kabadshow, Ivo
|0 P:(DE-Juel1)132152
|b 3
700 1 _ |a Potluri, Sreeram
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tipparaju, Vinod
|0 P:(DE-HGF)0
|b 5
856 4 _ |u http://www.mcs.anl.gov/~balaji/pubs/2012/pgas/pgas12.ospri.pdf
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:128133
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:128133
909 C O |o oai:juser.fz-juelich.de:128133
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132152
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-519H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21