000128134 001__ 128134
000128134 005__ 20210129211113.0
000128134 0247_ $$2doi$$a10.5506/APhysPolBSupp.5.837
000128134 0247_ $$2WOS$$aWOS:000309505700021
000128134 037__ $$aFZJ-2012-01029
000128134 082__ $$a530
000128134 1001_ $$0P:(DE-HGF)0$$aRatti, C.$$b0$$eCorresponding author
000128134 245__ $$aEquation of state, correlations and fluctuations from lattice QCD
000128134 260__ $$aCracow$$bInst. of Physics, Jagellonian Univ.$$c2012
000128134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1378208754_12043
000128134 3367_ $$2DataCite$$aOutput Types/Journal article
000128134 3367_ $$00$$2EndNote$$aJournal Article
000128134 3367_ $$2BibTeX$$aARTICLE
000128134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128134 3367_ $$2DRIVER$$aarticle
000128134 520__ $$aWe conclude our investigation on the QCD equation of state (EoS) with 2+1 staggered flavors and one-link stout improvement. We extend our previous study by choosing even finer lattices. These new results support our earlier findings. Lattices with Nt=6,8 and 10 are used, and the continuum limit is approached by checking the results at Nt=12. A Symanzik improved gauge and a stout-link improved staggered fermion action is taken; the light and strange quark masses are set to their physical values. Various observables are calculated in the temperature (T) interval of 100 to 1000 MeV. We also present our new results on flavor diagonal and non-diagonal quark number susceptibilities, in a temperature regime between 120 and 400 MeV. In this case, lattices with Nt=6, 8, 10, 12 are used. We perform a continuum extrapolation of those observables for which the scaling regime is reached, and discretization errors are under control.
000128134 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000128134 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000128134 7001_ $$0P:(DE-HGF)0$$aBorsanyi, S.$$b1
000128134 7001_ $$0P:(DE-HGF)0$$aEndrődi, G.$$b2
000128134 7001_ $$0P:(DE-Juel1)VDB73603$$aFodor, Z.$$b3
000128134 7001_ $$0P:(DE-HGF)0$$aKatz, S.$$b4
000128134 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b5
000128134 7001_ $$0P:(DE-HGF)0$$aSzabo, K.K.$$b6
000128134 773__ $$0PERI:(DE-600)2478269-5$$a10.5506/APhysPolBSupp.5.837$$p837-846$$tActa physica Polonica / B / Proceedings supplement$$v5$$x1899-2358$$y2012
000128134 909__ $$ooai:juser.fz-juelich.de:128134$$pVDB
000128134 909CO $$ooai:juser.fz-juelich.de:128134$$pVDB
000128134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000128134 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000128134 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000128134 9141_ $$y2012
000128134 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000128134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128134 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000128134 980__ $$ajournal
000128134 980__ $$aVDB
000128134 980__ $$aUNRESTRICTED
000128134 980__ $$aI:(DE-Juel1)JSC-20090406