Home > Publications database > Equation of state, correlations and fluctuations from lattice QCD > print |
001 | 128134 | ||
005 | 20210129211113.0 | ||
024 | 7 | _ | |a 10.5506/APhysPolBSupp.5.837 |2 doi |
024 | 7 | _ | |a WOS:000309505700021 |2 WOS |
037 | _ | _ | |a FZJ-2012-01029 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ratti, C. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Equation of state, correlations and fluctuations from lattice QCD |
260 | _ | _ | |a Cracow |c 2012 |b Inst. of Physics, Jagellonian Univ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1378208754_12043 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a We conclude our investigation on the QCD equation of state (EoS) with 2+1 staggered flavors and one-link stout improvement. We extend our previous study by choosing even finer lattices. These new results support our earlier findings. Lattices with Nt=6,8 and 10 are used, and the continuum limit is approached by checking the results at Nt=12. A Symanzik improved gauge and a stout-link improved staggered fermion action is taken; the light and strange quark masses are set to their physical values. Various observables are calculated in the temperature (T) interval of 100 to 1000 MeV. We also present our new results on flavor diagonal and non-diagonal quark number susceptibilities, in a temperature regime between 120 and 400 MeV. In this case, lattices with Nt=6, 8, 10, 12 are used. We perform a continuum extrapolation of those observables for which the scaling regime is reached, and discretization errors are under control. |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Borsanyi, S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Endrődi, G. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Fodor, Z. |0 P:(DE-Juel1)VDB73603 |b 3 |
700 | 1 | _ | |a Katz, S. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Krieg, Stefan |0 P:(DE-Juel1)132171 |b 5 |
700 | 1 | _ | |a Szabo, K.K. |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.5506/APhysPolBSupp.5.837 |p 837-846 |0 PERI:(DE-600)2478269-5 |t Acta physica Polonica / B / Proceedings supplement |v 5 |y 2012 |x 1899-2358 |
909 | _ | _ | |p VDB |o oai:juser.fz-juelich.de:128134 |
909 | C | O | |o oai:juser.fz-juelich.de:128134 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)132171 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |a Peer Review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|