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Abstract

Over the last few decades, several approaches for modeling of pedestrian traffic have
been proposed and developed. However, the existing empirical data are insufficient and
have large discrepancies, which makes difficult for the quantitative validation of models,
design and safety assessment of facilities.

This thesis mainly analyze the pedestrian fundamental diagram describing the relation
between crowd density, velocity and flow based on series of well-controlled laboratory
experiments. The second chapter reviews the commonly used fundamental diagrams in
handbooks. The differences and influence of them on facility designs are compared. Then
the existing empirical studies on pedestrian fundamental diagrams are discussed especially
for uni- and bidirectional pedestrian streams.

In the third chapter, the experiment setup and the extraction of the pedestrian trajectories
from video recordings are described. Four different measurement methods are taken to
calculate the crowd density, velocity and specific flow. Their influences on the fundamental
diagram are tested with the data obtained from the experiment of unidirectional flow. For
the density ranges achieved in the experiment, minor effects are observed but the Voronoi
method is able to resolve a finer structure of the diagram and to reveal a discontinuity.

The fourth chapter deals with the analysis of experiments of uni-, bi-directional and
merging flow based on the Voronoi method. The first two experiments were carried out in a
straight corridor, whereas the third one were performed in a T-junction. The topographical
information for density, velocity and specific flow, from which the boundary effect are ob-
served, are extracted with Voronoi method. The specific concept is applicable to all types
of flows in the density ranges observed in the experiments. Surprisingly, no difference is
found for the fundamental diagrams of bidirectional flow with different modes of order.
However, there is a sharp distinction between the fundamental diagrams of uni- and bidi-
rectional flow. For the merging flow in a T-junction, the fundamental diagrams measured

in front and behind the merging show also significant differences.
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Zusammenfassung

In den letzten Jahrzehnten wurden verschiedene Ansitze zur Modellierung von Fullgén-
gerverkehr entwickelt und vorgeschlagen. Die bestehende Datenbasis ist jedoch unzure-
ichend und weist grole Abweichungen auf. Das erschwert die quantitative Validierung von
Modellen sowie die Sicherheitsbeurteilung fiir Rettungswege in Gebduden.

Schwerpunkt dieser Dissertation ist die Analyse des Fundamentaldiagramms fiir Fugén-
ger, welches die Beziehung von Personendichte zu Geschwindigkeit und Personenfluss
beschreibt, auf Basis von Experimenten unter Laborbedingungen. Im zweiten Kapitel
werden die tiblich genutzten Fundamentaldiagramme aus Handbiichern zusammengefasst.
Der Einfluss von unterschiedlichen Fundamentaldiagrammen auf die Auslegung von Ret-
tungswegen in Gebduden wird verglichen. Anschlieend werden existierende empirische
Studien, insbesondere bezogen auf das Fundamentaldiagramm fiir uni- und bidirektionale
Personenstrome, diskutiert.

Das dritte Kapitel beschreibt die durchgefiihrten Experimente und die Extraktion von
Trajektorien aus Videoaufnahmen. Vier verschiedene Messmethoden werden genutzt um
Personendichte, Geschwindigkeit und spezifischen Fluss zu berechnen. Deren Einfluss auf
das Fundamentaldiagramm wird anhand der Experimente mit unidirektionalem Personen-
fluss gepriift. Fiir den in den Experimenten auftretenden Dichtebereich sind nur minimale
Unterschiede festzustellen. Die Voronoi Messmethode ermdglicht eine feinere Auflosung
wodurch eine Diskontinuitdt im Fundamentaldiagramm festgestellt werden konnte.

Im vierten Kapitel wird die Analyse der Experimente mit uni-, bidirektionalen und sich
vereinigenden Personenstromen anhand der Voronoi Messmethode vorgestellt. Die ersten
beiden Experimente wurden in einem geraden Korridor und das dritte Experiment in einer
T-Kreuzung durchgefiihrt. Topographische Informationen von Dichte, Geschwindigkeit
und spezifischen Fluss wurden mit der Voronoi Methode ermittelt und veranschaulichen
Randeftekte. Das spezifische Fluss Konzept ist fiir alle Arten von Personenstromen im
Dichtebereich der durchgefiihrten Experimente anwendbar. Uberraschender Weise wur-

den keine Unterschiede fiir bidirektionalen Personenfluss mit unterschiedlichen Ordnungs-

il



graden festgestellt. Deutlich ist jedoch der Unterschied zwischen dem Fundamentaldia-
gramm fiir uni- und bidirektionalen Personenfluss. Die Vereinigung von Personenstromen
an einer T-Kreuzung wurde durch Messungen des Fundamentaldiagramms vor und hinter

der Vereinigung untersucht. Hier konnten signifikante Unterschiede festgestellt werden.

iv
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Chapter 1

Introduction

1.1 Background

In recent years, more and more crowd scenes appear with the increasing population and
economy, especially in modern cities. During the rush-hours, a large number of people
gather in public places including train stations and shopping malls (see Figure 1.1(a)).
Meanwhile, more large events related to sports, entertainment, cultural or religious activi-
ties are held all over the world on a regular basis (see Figure 1.1(b)). In these occasions, the
crowd densities can be extremely high which make movement of pedestrians difficult and
possibly dangerous. In the case of an emergency, it is difficult to quickly escape in such
high densities and this increases the probability of casualties. For example, a stampede at
the 2010 Love Parade electronic dance music festival in Duisburg in Germany caused the
death of 21 people and at least 510 more were injured [4]. In the same year, at least 347
people were killed in a stampede as millions of Cambodians were celebrating the last day
of the annual Water Festival. Those unfortunate events raise serious safety and security
issues not only for the participants but also for the organizers and designers of such events.
How to design optimal escape routes for any case of emergency or critical situation? Fac-
ing incidents, how to guide the participants away from the dangerous areas as quickly as

possible to reduce casualties? Without deep understanding of the crowd dynamics, it is not
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(a) Rush-hour in Beijing subway station [3] (b) Love parade in Duisburg 2010 [4]

Figure 1.1: Crowd scenarios in different occasions.

possible to provide answers to these questions.

Facing such situations, research on pedestrian and traffic flow became popular and at-
tracted a lot of attention during the last decades [7, 8, 31, 57, 56]. A large number of models
have been developed. Most of them are able to qualitatively reproduce some phenomena
observed. Nevertheless, it is important to calibrate them with empirical data before using
in practice. Some empirical data including field and well-controlled experiments studies
on pedestrian dynamics have been collected in these years. These results promote the un-
derstanding of pedestrian traffic and also enrich the laws, standards and regulations related
to the buildings. Unfortunately, compared to modeling, empirical studies are rare currently
and there is a lack of empirical data to calibrate models and to guide the facility design.

The long-accepted beliefs, data and formulas in regulations, standards and handbooks
are foundations of design and affect the safety in existing and proposed facilities. However,
much of the data used in current egress calculations and performance-based predictions
were collected about 40 years ago. Therefore, they should not be assumed to apply gen-
erally to building evacuation everywhere. In the United States for example, prime sources
for data are Fruin’s Dissertation, Designing for Pedestrians: A Level of Service Concept,
(1970) and subsequent books, Pedestrian Planning and Design, (Fruin, 1971, 1987). In
Canada, prime sources for data related particularly to high-rise office buildings and large

public areas are Pauls and his colleagues, beginning especially in 1969 [6]. There are also
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many examples of poor, and even hazardous, human environments resulting from a lack of
understanding of traffic flow relationships and space requirements of pedestrians. A num-
ber of authorities have been using maximum pedestrian capacity as a basis for design. Yet,
analysis of time-lapse photography of pedestrian traffic flow on walkways and stairs has
shown that the capacity is reached when there is a dense crowding of pedestrians, caus-
ing restricted and uncomfortable locomotion. Insufficient consideration of human space
requirements has resulted in inadequate design of many areas where pedestrians may be
obliged to accumulate in large groups [17]. Furthermore the movement of pedestrians is
influenced by many factors including cultural and regional differences [11], the characteris-
tics of the pedestrians (gender, age, size, health, mood, stresse, baggage....), the surrounding
environment (trip purpose/length/steepness/safety, time of the day, period of the year) [62],
the differences between uni- and multidirectional flow [46, 51]. Along with the ongoing
changes of times, the demographics such as body size and mass, and behavioral pattern are
also changing and influencing the characteristics of pedestrian movement.

Besides, a number of available datasets from different handbooks and researchers show
surprisingly large differences [55, 59]. One of these differences is the fundamental diagram
which denotes the relation between pedestrian flow and density and is associated with many
qualitative self organization phenomena such as lane formation and jams. Specifications of
various experimental studies, guidelines, and handbooks display substantial differences in
maximal flow values and the corresponding densities, as well as the density where the flow
vanishes due to overcrowding [55], as shown in Figure 1.2. Facing such discrepancies, it is
not sure whether they arise from the specific properties of pedestrian flow or other external
factors. According to [58], even the measurement methodologies applied on the datasets
have large influence on the fundamental diagram. To overcome the afore mentioned dis-
crepancies, it is crucial to develop not only better data capture methods but also better data

analysis methods.
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T 25 T

Helbing et. al. Helbing et. al.
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8 10

Figure 1.2: Differences of fundamental diagram of corridor from various handbooks.
1.2 Aim and objective

In the view of the above conditions, a thorough investigation of the laws of crowd motion
and the factors that may influence the datasets, e.g., the measurement methodology or the
types of the facilities, is required. In this study, we focus on the pedestrian movement in
straight corridors and T-junction. The characteristics of uni-, bidirectional and merging
pedestrian flow will be studied systematically. This thesis aims at studying basic laws of
pedestrian dynamics, supplying methodologies for analyzing the empirical pedestrian data,
investigating the factors that influence fundamental diagram and providing pedestrian data

for facility design, model calibration and validation. To achieve this aim, we plan:

e To systematically review the current design basis of escape route including regula-
tions and handbooks, the empirical studies on pedestrian dynamics especially for the

movement in straight corridors and T-junction.
e To explore the methodologies for pedestrian data extraction and analysis.

e To study the factors that influence crowd quantities such as density, velocity and flow

and determine the effects of them on the fundamental diagram.

4
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e To compare the characteristics for various types of pedestrian flows including uni-

and bidirectional flows in straight corridor and merging flows in a T-junction.

e To formulate some suggestions for improving current facility design and crowd man-

agement based on our empirical results.

1.3 Methodology

In order to achieve the objectives mentioned earlier, the following methodology is adopted:

Firstly, we conduct a comprehensive literature review to scrutinize the current used
design basis and methods for pedestrian facilities. Aiming at the design requirement, the
empirical research on pedestrian at the present stage will be discussed. Based on this
discussion, we will study the advantages and disadvantages of existing theories, data and
approaches. Thereafter the scientific question and methods approach of the thesis will be
proposed

As one of the important tasks of this thesis, we investigate the characteristics of pedes-
trian movement in straight corridors and T-junctions. A series of well-controlled laboratory
experiments with up to 350 participants is performed. The trajectories of each participant
are automatically extracted from the video recordings of experiments using the software Pe-
Track [9] with high accuracy in space and time. From these trajectories microscopic pedes-
trian characteristics such as personal space and instant velocity and macroscopic quantities
including flow and densities can be obtained.

To analyze the data from the experiment as precise as possible, four different measure-
ment methods are proposed and their effects on the fundamental diagrams are compared.
At the end, the Voronoi method is chosen as the best method for pedestrian flow analysis
for its small scatter and high resolution in space and time. With this analysis method, the
basic parameters for facility design and some spatiotemporal characteristics of pedestrian

dynamics are studied in detail.
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1.4 Thesis outline

The structure of the thesis is arranged as follows:

Chapter 2 of this thesis presents a review of current basis of escape route design, in-
cluding building regulations, handbooks and simulations, and studies concerning the em-
pirically studies on pedestrian dynamics.

In chapter 3, the setups of experiments and the extraction of pedestrian trajectories
from video recordings are described. Then the measurement methodologies for analyzing
the fundamental diagram of pedestrian flow and their effects on the results are investigated.

Chapter 4 demonstrates the main results of the pedestrian flow in straight corridors
and T-junction quantitatively and qualitatively. The fundamental diagram of unidirectional
flow and the factors that influence it are studied in section 4.1. The ordering in bidirectional
flow and its effect on the fundamental diagram is studied in section 4.2. The investigation
of pedestrian flow in a T-junction is shown in section 4.3 and we compare the fundamental
diagram of different kind of pedestrian flows in section 4.4.

Chapter 5 summarizes the main results of the thesis and presents ideas of further studies.



Chapter 2

Literature review on the fundamental

diagram

Studies performed in the area of pedestrian dynamics have provided valuable knowledge
to facility designers, to building safety agencies and well as to crowds managers. The
requirements for a better understanding of factors ruling pedestrian dynamics increase with
the appearance of super high and large buildings such as skyscrapers. In this chapter, the
current studies on pedestrian dynamics are briefly reviewed from the aspects of practical
application and empirical research. In the first section, the commonly used methods and
related data for facility design are compared. Thereafter, the empirical studies especially

on fundamental diagrams are discussed.

2.1 Design of escape routes

Escape routes are important components of buildings and are the main paths for the oc-
cupants exposed to the danger to an area free from danger. Reasonable design of escape
routes is significant for effective evacuation and ensuring the safety of occupants especially
in emergency such as fire or earthquake etc.. Otherwise, narrow, insufficient, hard-to-find

or blocked escape routes would lead to problems in evacuation.
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At present, the fire safety design on building facility can mainly be divided into two
categories: prescriptive method and performance-based method [72]. The former is based
on the prescription codes, regulations and guidelines, while the latter is performed accord-
ing to handbooks and simulation results. Crowd movement in buildings generally consists
of three general motions [41]: i) movement along corridors; ii) movement up and/or down
staircases; ii1) movement through exits. In this thesis, we review these approaches mainly

on pedestrian movement along corridors.

2.1.1 Prescriptive method

Prescriptive approaches exist usually in the form of law, codes, standards and regulations.
The content is mainly based on past experience and consolidated know-how, such as a
consequence of an accident with casualties which requires remedy to avoid a repeat, a
consequence of some hazardous situations, or a consequence of some recognized social
needs [65].

In prescriptive regulations, buildings are classified into different types including resi-
dential buildings, school buildings, high-rise buildings and plant buildings. For each type
of building, some features that must be designed, e.g, the minimal width of exit, the max-
imal length of corridors etc., are prescribed. For example, in Chinese regulations [1], the
minimum clear widths of egress corridors and exits are 1.1 m and 0.9 m for residential
buildings, respectively. For public places, the clear width of the exit should not be smaller
than 1.4 m, the minimum width of outdoor passageways is 3 m. For aisles in theaters, cine-
mas and stadiums, the widths of them should be calculated according to the lanes and flow.
The width of each lane is 0.55 mand the flow rates on the horizontal ground and stairs are
43 and 37 persons per minute separately. Some of these parameters are determined based
on fire resistance rating (from I to I'V) of buildings. For building with fire resistance rating
of I or II, the maximal evacuation time should be within 2 minutes, while for that of III it
should be within 1.5 minnutes. In this way, it is simple to use and can make direct analysis

based on various of requirements. Fire safety engineers with more specific qualifications



Literature review on the fundamental diagram

and/or skills are not required. The architects or designers have to follow them and choose
corresponding parameters to satisfy the requirements of the codes.

However, the structures and functions of various buildings are not the same. The num-
ber and the distribution of combustibles in each building is also different. In this case, the
design based on prescriptive methods would have some disadvantages. It is impossible to
consider the environmental and social factors, as well as other fire protection systems re-
lated to a certain building. Consequently, it is difficult to develop safe design with reduced
costs and overall considerations. Besides, with the development of modern building tech-
nologies, materials and design concept, the constructions, shapes and functions of build-
ings change a lot. The risks and hazards of modern buildings also increase along with these
changes. In this situation, it becomes insufficient to dimension escape routes for more com-
plicated buildings such as indoor arenas, shopping malls, or underground railway stations

with prescriptive methods.

2.1.2 Performance-based method

As a response to architects and designers who want more flexibility, performance-based
codes have been developed in many parts of the world, for example, New Zealand, Aus-
tralia and Japan. The main steps in a performance based building design process include
[65]: 1) identifying and formulating the relevant user requirements. 2) transforming the
user requirements identified into performance requirements and quantitative performance
criteria. 3) using reliable design and evaluation tools to access whether proposed solutions
meet the stated criteria at a satisfactory level.

In the performance-based building approach, it is essential to match the performance
requirement and compare demand with supply. Prediction of the pedestrian movement
is an important aspect of fire safety design in this method. Comparison of required safe
egress time (RSET) with available safe egress time (ASET) has been generally accepted as
the basis of life safety assessment. Here, the ASET, which is always evaluated using fire

models, is defined as the time when fire-induced conditions within an occupied space or
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building become untenable. While the RSET is the sum of the time from fire ignition to
detection, the time from detection to notification of occupants, the time from notification
until occupants decide to take action, the time from decision to take action until evacuation
commences, as well as the occupant movement time (from the start of evacuation until it
is completed) [15]. The escape route design of walking facilities should guarantee RSET
> ASET. In this thesis, we primarily discuss the determination of occupant movement time
in RSET. The main methods used for predicting this time include hydraulic flow calcula-
tions based on handbooks and simulation results based on egress models. Nearly all the
handbook methods are based on fundamental diagrams, the relationship between the den-
sity, velocity and flow rate, which are also basic input for most egress models. However,
the fundamental diagrams in various handbooks have differences not only in quantity but
also in quality. We will discuss some of these methods and their discrepancies on planar

facilities like sidewalks or corridors in the following sections.

2.1.2.1 Handbooks

In this section, we list some researches on fundamental diagrams of pedestrian movement
from common used handbooks.

1) Weidmann [69]

Weidmann described the fundamental diagram of pedestrian flow on flat areas through
the Kladek formula by collecting 25 data sets.

—~1.913-[L

V(p) = Vo - [1 —& "1 e ] @.1)
J=V(p) - p (22)

where V is the velocity of crowd [m/s]
Vp is the free-flow walking speed, 1.34 m/s
p is pedestrian density [M™2], pjam = 5.4 M

Js is the specific flow

10
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Weidmann neglected differences between uni- and multidirectional flows. An exami-
nation of the data which were included in his analysis shows that most measurements with
densities lager than p = 1.8 m2 are performed on multidirectional flows. According to this
fundamental diagram, the maximum pedestrian flow rate Jsmax = 1.22 (M- 5)~!, while the
corresponding walking speed and density are 0.70 m/sand 1.75 M2 separately.

2) Predtechenskii and Milinskii (PM) [50]

Planning for Foot Traffic Flow in Buildings by Predtechenskii and Milinskii is one
of the often referenced books in facility design. In the handbook, pedestrian density
(D [m?/m?]) is expressed by the ratio of the sum of horizontal projections of people to
the floor area occupied by the flow. The density D can be converted into p [M2] according
to the pedestrian dimensions. The mean dimensions of an adult person in different seasons

given in the handbook range from 0.1 ~ 0.125 n?, see Table 2.1 for details.

Age and dress of person Width, m  Thickness, m  Area, N
Adult:

In summer dress 0.46 0.28 0.1

In mid-season street dress 0.48 0.3 0.113

In winter street dress 0.5 0.32 0.125
Youth 0.43-0.38  0.27-0.22  0.09-0.067
Child 0.34-0.3 0.21-0.17  0.056-0.04
Adult:

With child in arms 0.75 0.48 0.285

With baggage in hand 0.9-1.1 0.75 0.35-0.825

With knapsack 0.5 0.8 0.315

With light package 0.75 0.4 0.235

Table 2.1: Mean dimensions of a person for computations [50]

The relationship between density D and velocity vy for horizontal paths are given as

11
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the following empirical expression:
vh(D) = 112D* - 380D% + 434D? — 217D + 57 [m/min] (2.3)

Note that the equation is valid for the interval of densities D € [0, 0.92]. Taking it as the
fundamental function, the fundamental diagram for other forms of paths (stairs, doorways
for example) is given by introducing empirical coefficients (see Figure 2.1(a)). The velocity

Vo for movement passing through doorways or openings is:
Vo(D) = (1.17 + 0.13 sin(6.03D — 0.12)) - v4(D) [m/min] 24

Besides, the influence of the state of pedestrians on the velocity is also considered and
is determined with the help of the so-called coefficients (ue, 1 and u¢) of movement con-
ditions (emergency, normal and comfortable), as seen in Figure 2.1(b). Correspondingly,

for horizontal paths and doorways with density varying from 0 to 0.92, the coefficients are

given as:
te = 1.49 - 0.36D (2.5)
w=1 (2.6)
te = 0.63 +0.25D 2.7

In this handbook, the capacity, the maximum specific flow Jsp, , of horizontal paths is
somewhat lower than equivalent doorways, which are made narrower than the correspond-
ing horizontal path. It is explained that this is mainly due to the coordination of movement,
which forces pedestrians to adjust their psychological states in order to pass through a
narrower segment of the path quickly.

As for jamming or congestions in front of the boundary of adjacent sectors, it is thought

that they happen when the inflow is larger than the outflow. When jamming occurs, the

12
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conditions [50]
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Figure 2.2: Relationship between pedestrian flow and density on walkways [17].

calculated specific flow based on conservation law could be larger than Js for the corre-
sponding form of the path. In this case, it is assumed that the flow rate at the following
sector should be taken equal to that for Dyax = 0.92. Consequently, this value is not the
capacity Jsm of facility.

3) Fruin [17]

Pedestrian Planning and Design by Fruin is a further comprehensive reference hand-
book on crowd movement. In this book, human characteristics related pedestrian design
and the movement properties on different facilities such as walkways, stairs, escalators etc.
are described. The concept of Pedestrian Area Module (M [square feet area per pedestrian]),
the reciprocal of density p, is used to represent the pedestrian density.

Figure 2.2 shows the empirical flow-density relationships for three categories of pedes-

trian flows on walkways. These relationships, representing the average conditions of three

14
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Average pedestrian area Average Flow  rate

Level of Service occupancy (Square feet (Pedestrians per foot
per person) per minute)

A 35 or more 7 or less

B 25-35 7-10

C 15-25 10-15

D 10-15 15-20

E 5-10 20-25

F 5 or less up to 25

Table 2.2: The Level of Service standards for walkways [17]

distinctive types of pedestrian traffic, show a relative small range of variation. It is thought
that reverse and cross-flow traffic conflicts do not drastically reduce either pedestrian ve-
locity or flow rate. A minor traffic flow ratio of 10 percent of the total flow results in only
a 14.5 percent reduction in potential sidewalk capacity. As the minor traffic flow ratio in-
creases, its detrimental effect on the capacity is actually reduced. With a 50/50 traffic-flow
mix, the two-way traffic capacity of sidewalks is about equal to its one-way capacity.

The capacity of walkways in Figure 2.2 are 26.2. 24.7 and 23.3 persons per foot of
walkway width per minute (PF M), corresponding to 1.43, 1.35 and 1.27 (m- s)~!, for uni-,
bi- and multi-directional flow respectively. They are the design values in use by a num-
ber of authorities. However, Fruin states that using the maximum flow rate as a basis for
design produces a limited walkway section that restricts normal movement. Consequently,
the concept of Level-of-Service (A-F) and the Level-of-Service design standards for dif-
ferent building facilities are recommended in this handbook. For example, the standard for
walkways is as shown in Table 2.2. The facilities in different environments are asked to be

designed based on different standards according to the requirements.

15
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Figure 2.3: Relationship between pedestrian flow, velocity and density [15].

4) SFPE Handbook [15]

Figure 2.3 shows the fundamental diagram of pedestrian flows in the SFPE handbook.
When the pedestrian density is less than about 0.54 M2, people are able to move along
walkways at about 1.25 m/s, an average unrestricted walking speed. If the density exceeds
about 3.8 m™2, no movement will take place. The speed decreases linearly with increasing

density from 0.54 to 3.8 m™. The equation is

v(p) = k- akp 2.8)

where k = 1.4 and a = 0.266 for density in m™2 and velocity in m/s for corridors, aisles,
ramps and doorways.
The specific flow Js is

J=p-V (2.9)

Compared with the values given by Predtechenskii and Milinskii, there are some differ-
ent relationships and assumptions in the SFPE handbook. First, the fundamental diagrams

for corridors, ramps, aisles and doorways are not distinguished and unified into one equa-
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tion. Second, when congestions occur in front of transitions, any points in the exit system
where the character or dimension of a route changes or where routes merge, it is assumed
that the flow after the transition will be the capacity of facility. Further, it is believed in the
book that people should not be expected to react faster or move more efficiently in a fire

emergency than they do normally.

Weidmann PM Fruin SFPE
Maximum density p [M72] 5.4 8.14 5.4 3.8
Free velocity v [m/s] 1.34 ~ 095 =~ 127 1.19

1.22 1.49 1.43 1.30

Jsm [(M-5)7!] and the corresponding
P,V

1.75m?2 6.64m2 216 m? 1.88m?
0.7m/s 02m/s 07m/s 0.7m/s
Distinguish corridor and doorway ~ NO YES NO NO
Distinguish ~ uni- and multi-
o NO YES NO
directional flow

Outflow during jamming - Js(Dmax) - Jsm

Table 2.3: Main design parameters in Handbooks

From the above discussion, nearly all the handbooks need fundamental diagrams for
design of facilities. But the fundamental diagrams and corresponding assumptions given
in various handbooks are different, for details of the differences see Table 2.3. Next, three

simple scenarios will be discussed to show problems appearing in applications.

Test case 1  As shown in Figure 2.4, the movement time of pedestrians in a corridor will
be determined. The width and length of the corridor are 2 m and 20 m separately. And

there are N = 150 pedestrians with density p = 1.6 M2 in front of the corridor.

17
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A

2m

Figure 2.4: Testcase 1, pedestrian movement in a straight corridor.

Solution Under the given condition, the density, p = 1.6 M2, is smaller than the critical
densities where the maximum flow is reached for all of the above handbooks. Thus, the
movement time only depends on the speed of the crowd. Table 2.4 shows the results ob-
tained from different handbooks. Note that, the average dimension 0.113 n? per person is
used for transforming density D to p. In such a simple scenario, the movement time ranges
from 73.5 sto 142.9 s. The most conservative time, which is nearly twice of the others, is

from handbook of PM.

Handbooks density [m™] velocity [m/s] time [S]

Weidmann 1.6 0.762 87.8
PM 1.6 0.498 134.3
Fruin 1.6 0.930 71.9
SFPE 1.6 0.804 83.2

Table 2.4: Calculated movement time for Testcasel

Test case 2 As shown in Figure 2.5, the minimum width of bottleneck will be determined

when the width of the wider is 4 mand the density is 3.5 m.

18
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Figure 2.5: Testcase 2, pedestrian movement through a bottleneck.

Solution In this case, the supposed density exceeds the critical densities in all the above
handbooks except PM. According to these handbooks, it is important to adjust whether
the inflow through the bottleneck is larger than its capacity. It is believed that jamming
and clogging typically occur for high densities at locations where the inflow exceeds the
capacity [55]. Besides in front of the bottleneck [22, 60, 59], it is also possible to observe
the jamming effect in counterflow [16, 10, 25], merging stream [63, 45] where two groups
of pedestrians meet each other where the outflow is limited. For this effect, there is different
assumptions in these handbooks. In the SFPE handbook, the outflow in this case is the
capacity of the bottleneck, while it is the flow rate corresponding to the maximum density
D = 0.92 but not the capacity in PM. Further, the fundamental diagrams of the flow through
corridors, doorways and ramps are discriminated in PM, however, they are regarded as the
same in other handbooks.

The results from different handbooks are shown in Table 2.5. Compared to others, the
minimum width of the bottleneck obtained from SFPE is less than half of them. The hand-

book of PM is still the most conservative one. Besides, the assumption for the occurrence
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Handbook p [m2] v[m/s] Jg(in)[(m-9)7'] Jg(out) [(M-9)'] byin [M]

Weidmann 35 0.23 0.81 1.22 2.57
PM 3.5 0.30 1.05 1.34 3.13
Fruin 3.5 0.27 0.93 1.43 2.60
SFPE 35 0.10 0.35 1.30 1.08

Table 2.5: Calculated results for Testcase2

of jamming that inflow is larger than the capacity of facility should be noticed. Nearly
in all the fundamental diagrams, the density-flow relationships can be divided into two
parts from a density J. where the specific flow reaches the maximum. When the density
is smaller than J, the density-flow relation is a monotonic increasing function. However,
it becomes a monotonic decreasing function in the second part when the density exceeds
Jc. In the second situation, for the same bottleneck the jamming may be detected in lower
densities but not in higher densities according to the assumption. However, this seems

unreasonable.

Testcase 3 For the geometry shown in Figure 2.6, we regulate the width of the two open-
ings A and B to change the location of congestions. As discussed above, the definition for
the occurrence of jamming seems to have some problems especially at high densities. To
make it simple, we suppose that the inflows through A and B are both 1 (m- s)~! at low

density. The widths of all corridors are 3 m.

Solution From the last two cases, we found the influence of fundamental diagrams in
different handbooks on calculation of movement time and facility widths. The most and the
least conservative results are obtained from handbooks of PM and SFPE. For the solution

of this case, we are only with these two handbooks. In the handbook of PM, the capacities
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Figure 2.6: Testcase 3, pedestrian movement through bottlenecks.
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Figure 2.7: The calculated opening widths from the handbook of SFPE and PM.

for the horizontal paths and the opening are 10.13 and 10.59 m/min, corresponding to 1.49
and 1.56 (m- s)~! if the area of a pedestrian is chosen as 0.113 m?. Whereas both of them
are 1.30 (m- s)~! in SFPE handbook.

Figure 2.7 shows the width of the openings and the corresponding distribution of jams.
If a congestion is wantedin front of the two openings, the width b should be smaller than 1.5
m according to SFPE and 1.67 m according to the handbook PM. On contrary, the widths
should be larger than 2.31 mand 1.92 maccording to them if the jam occurs in front of the

bottleneck C but not the opening. Between the two widths, the jams will take place in all
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of the three transitions.

From these three examples, it is shown that large discrepancies are obtained using dif-
ferent handbooks. Not only the values of the capacities, but also the other characteristic
of fundamental diagrams and the assumptions on jamming or congestion have large influ-
ences on the facility design. In some extent, it is not possible to use only one handbook to
make designs. In this case, two approaches are adopted to develop the facility design. In
one hand, researchers go on investigating the reasonable and reliable fundamental diagram
empirically. On the other hand, the engineers try to develop some simulation tools to assist

the facility design.

2.1.2.2 Simulations

Although it is possible to design facilities and assess their safety using the macroscopic
models in handbooks, it is not sufficient and has difficulties especially for the safety design
of complex buildings. In these models the crowd is regarded as an homogeneous ensem-
ble while their individual characteristics are unable to be considered. By comparison, the
inhomogeneity of crowd could be considered by setting the parameters of each individu-
als in microscopic models. The influences of the environment on pedestrian behavior and
decision-making can be reflected. Further, they are able to model the dynamic processes of
pedestrian traffic and pedestrian flows in complicated areas and different scenarios, which
was not possible with conventional macroscopic models. In this case, in addition with the
development of computer technology and building techniques, a number of microscopic
models have been developed to calculate pedestrian movement times. These models in-
clude force-based models, such as the social force model [20], the centrifugal-force model

[12], the magnetic force model [47], rule-based models (CA models [55, 30, 64, 44] for
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Figure 2.8: Simulation results from 4 different commercial softwares [53].

example) and so on.

Based on these basic models, some commercial and open-source software tools, e.g.,
buildingEXODUS, Simulex, STEPS, pathfinder, FDS + Evac, Aseri, PedGo etc., have
been developed and are usd for pedestrian movement simulations in practical engineering
applications. However, there still have discrepancies among the simulation results from
different tools even for very simple scenario like narrow corridor. Rogsch et al. tested some
software tools based on simple scenarios and the results are presented in [53]. As shown
in Figure 2.8, (a) is the simulation results of a 50 m long narrow floor without possibility
to overtake, while (b) is that of a 2 mwide and 50 mlong floor with possibility to overtake
using 4 commercial softwares: Aseri, BuildingExodus, PedGo and Simulex. It is obvious
that the differences of the evacuation time from various softwares become larger and larger
with the increase of initial densities. In scenario 1, for example, the longest evacuation time
is nearly four times of the shortest time when the density is 2 persons per meter. Besides,
Thomas studied the pedestrian streams merging and passing through an exit in a stadium by
simulation and experiments in [66]. Figure 2.9 shows the relationship between the number

of pedestrians passing the exit over time. The differences of results from these tools are
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Figure 2.9: Comparison of the results from egress softwares and experiment [66].

obvious. Facing such disagreements, it is not easy to say which result is more realistic or
reliable. It’s difficult to make decisions for facility design and crowd management based
on models without calibration.

Validation of computer models is not a ”once and forget” task. It usually involves com-
ponent testing, functional validation, qualitative and quantitative validations. While the first
three components of the validation protocol are not so difficult, the task of quantitative val-
idation poses a number of challenges because of the shortage of suitable experimental data.
The simulation tools mentioned above are calibrated more or less in different ways. The
fundamental diagram, as one of common-used principles concerning pedestrian dynamics,
is closely associated with these tools. In some models, it is used as input parameters to

adjust the travel speed of pedestrians. For example in Simulex, the walking velocity for
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a person is dependant on the forward linear distance (proximity) to people ahead. While
the algorithms for the movement of individuals are based on real-life data collected by us-
ing computer-based techniques for the analysis of human movement, observed in real-life
videos [5]. Whereas, Davidich et al. presented methods to automatically calibrate pedes-
trian simulations to the socio-cultural parameters captured through measured fundamental
diagrams [14]. Most of behavior-based tools like FDS+Evac, PedGo and buildingEXO-
DUS reproduce the fundamental diagrams and compare it with empirical data to set param-
eters or make calibration. Even if they have been calibrated well to some extent, however,
the results from different tools vary largely, which causes a lot of troubles and uncertainties
in practical applications as well as in safety analysis.

No matter the fundamental diagrams are used as input parameters or criterion of models,
their uncertainties and diversities are significant. If the presented diversities are ignored,
the simple comparison of fundamental diagrams between simulation and experiments is

meaningless.

2.2 Empirical studies

From the above review, the fundamental diagram plays an important role in fire safety de-
sign but has uncertainties not only in handbooks but also in simulation softwares. In this
situation, empirical studies become significant to obtain some latest, reliable and more de-
tailed data in both qualitative and quantitative. The characteristics of pedestrian dynamics
and the reasons for the uncertainties of fundamental diagrams can be investigated. In this
section, we review the main outcomes from both well-controlled pedestrian experiments

[24, 34, 35, 43, 40] and field studies [26, 27, 71] in the past years.
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As discussed before, nearly all the fundamental diagrams in use come from empiri-
cal studies. But there is still no consensus among them except that pedestrian velocity
decreases with increasing density. Pedestrian movement requires sufficient area for un-
restricted pacing, and for sensory recognition and reaction to potential obstacles [17]. As
the density increases, the available clear area for locomotion reduces for single pedestrians,
and then the ability to bypass slower-moving pedestrians and to select their desired walking
speed is also restricted. In this way, it is always true that the crowd velocity will decrease.
However, this consensus is not enough and the specific equations are expected in facility
design and safety assessments. However, pedestrian dynamics is quite complex due to the
large number of pedestrians and their interactions, as well as some other external factors
like the environment. The factors that could affect the fundamental diagrams may refer to
physiological, psychological and social aspects. In [32], it is concluded that age, gender,
and site environment have significant impact on pedestrian walking speed and start-up time
at crosswalks. Psychological factors, reactions to environment, traffic composition, and
trip purpose could all contribute to each pedestrian’s selection of his unimpeded free-flow
speed. Correspondingly, the dimensions of pedestrians, which influence the calculation of
densities, are also various in different countries, times and so on.

Several researchers, in particular Fruin and Pauls [17], Predtechenskii and Milinskii
[50], Weidmann [69], Helbing [21] have collected information about the relation between
density and velocity. Different empirical equations are also given by different researchers
as listed in section 2.1.2.1. For various facilities like corridors, stairs and ramps the shapes
of the diagrams differ, but the equations are also different for the same type of facilities or
movement.

Figure 2.10 shows the fundamental diagrams of unidirectional pedestrian flow in liter-
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Figure 2.10: Comparison of fundamental diagrams of unidirectional pedestrian flow.

atures. The data of Mori et al. was for the flows of commuters in sidewalk sections, which
ranged from 2.2 mto 4.5 min width and 20 min length in the central business district of
Osaka in Japan [42]. Helbing et al. extracted the data from video recording of a crowd
disaster, the Muslim pilgrimage in Mina/Makkah, in a 27.7 mx 22.5 mlarge area [21]. The
maximum density in this study reaches about 10 M2 and stop-and-go waves are observed.
The data of Virkler were collected over 12 mlength of walkway after a football game in the
USA. It’s worth noticing that the width of the walkway changes from 14 mto 8.5 malong
the movement direction of the pedestrian stream. While Daamen et al. collected the data
from well-controlled laboratory experiments. Although all of these data are for unidirec-
tional flow, the discrepancies can still be observed not only for the maximum densities but
also the capacities. Since they are collected in different geometries in different countries,
different situations and also different methods, it is not easy to distinguish the dominating
reasons for these differences.

In this situation, it is a good way to make single factor analysis by carrying out some
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Figure 2.11: Comparison of fundamental diagrams of bidirectional pedestrian flow. Note
that the fundamental diagram given by Weidmann [69] is obtained from the collection of

25 data sets.

well-controlled laboratory experiments. In [58], the single file movement experiments was
performed in a closed narrow corridor. It is found that the measurement methods used to
extract dataset lead to different fundamental diagrams. The same experiments were also
conducted in India [11], China [40] and Japan, the culture difference is thought as a source
of these discrepancies. However, it was a one dimensional stream and stop-and-go waves
occurred in this experiment. We are not sure whether the same results can be found in two
dimensional streams without stop-and-go wave. The influences of the corridor width, the
geometries of corridor, the location of the measurement area on the fundamental diagrams
are still unclear.

Figure 2.11 assembles the fundamental diagrams of bidirectional flow from some em-
pirical studies. From the density-velocity relationship in Figure 2.11(a) it can be seen that

they follow nearly the same trend. We also compare the relationship between density and
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Figure 2.12: Methods for recognition and representation of lanes.

specific flow Jg, as shown in Figure 2.11(b), using the hydrodynamic relation Js = p - V. In
this graph, differences can be observed especially for densities p > 2.0 m2. The density
values where the specific flows reach the maximum range from about 1.3 m2 to 2.3 m2.
Also the maximum specific flows from different studies range from about 1.0 (m- s)~! to
2.0(m-s)!.

Referring to bidirectional pedestrian stream, it is necessary to discuss the "Lane For-
mation” effect [10, 34]. Although it also occurs in unidirectional flow [59], its effect on
pedestrian movement is different. In unidirectional streams, the formation of lanes could
reduce the lateral conflicts and usually occurs in relative lower densities. While in bidi-
rectional flows, lane formation occurs when pedestrians follow closely behind some other
person who moves in the same direction to minimize head-on conflicts with persons mov-
ing in the opposite direction. The recognition and representation of the lanes has been
investigated in different ways. As shown in Figure 2.12, for example, the cluster analysis

method has been developed by Hoogendoorn et al. [23], while Yamori [70] et al. use a bond
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Figure 2.13: The fundamental diagram of uni- and bidirectional pedestrian flow from dif-

ferent previous studies.

index to express lanes from time-lapse photographic records. Ma et al. [25] and Christiani
[13] plot density profiles to display lanes. In [52] an order parameter ¢ = ﬁ < Z'j\‘:l ¢j > 1is
defined to detect lanes in colloidal systems driven by external fields. Lanes that emerge in
this way could be either stable or unstable. That means that the number and distribution of
lanes could be static or dynamic over time. However, it is still not known which pattern is
more efficient for pedestrian movement and what is their effects on fundamental diagrams.
Besides, the ratio of the opposing pedestrian stream is another factor that need to be con-
sidered in bidirectional flows. If the counterflow is unbalanced, the dominated stream may
restrain the movement of the weak stream. It is necessary to investigate its influence on
fundamental diagram.

Furthermore, there is up to now no consensus whether or not the fundamental diagrams
for uni- and bidirectional flows differ from each other. Predtechenskii and Milinksii [50]

and Weidmann [69] neglected the differences in accordance with Fruin, who stated that
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the fundamental diagrams of multi- and uni-directional flow differ only slightly [17]. This
disagrees with results of Navin and Wheeler [46] who found a reduction of the flow in de-
pendence of directional imbalances. Pushkarev et al. [51] and Lam et al. [37, 38] assume
that bidirectional flows are not substantially different from unidirectional flow as long as
the densities of the opposite streams are not too different. However, Older et al. stated that
different ratios of flows in bidirectional stream do not show any consistent effect on the
walking speed [48]. Besides, Helbing et al. [19] concluded that counterflows are signifi-
cantly more efficient than unidirectional flows. However, they compare average flow values
without considering the influence of the density. Kretz et al. [34] have reported similar find-
ings, but the influence of density and variations in time on the flow are not considered in
this study. Figure 2.13 shows the fundamental diagrams of unidirectional [18, 21, 42, 67]
and bidirectional flow. It seems that the fundamental diagrams of unidirectional flow lie
above those of bidirectional flow, especially for p > 1.0 m™2. The actual characteristics and
differences between them are not clear and need further analysis. In addition, as one of the

most common types of pedestrian flow, there is only little studies on merging flows.
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Chapter 3

Experiments and methodology

Better understanding of the pedestrian characteristics is particularly important for the plan-
ning of walking facilities. Researchers have conducted both well-controlled laboratory
experiments and field observations to study pedestrian dynamics in detail. Meanwhile, dif-
ferent measurement methods are proposed to obtain quantitative data from these empirical
researches. According to the discussion in the last chapter, however, discrepancies still
exist among previous studies and there is no consensus on their origins. To resolve these
discrepancies series of experiments under laboratory conditions were carried out in this
study. In this chapter, we mainly introduce the setup of uni- and bidirectional pedestrian
experiments in straight corridors and merging flow experiments in a T-junction. Then high-
precision extraction of pedestrian trajectories from video recordings are described. Lastly,
we present four different measurement methods for calculating pedestrian density, velocity

and flow and compare their effect on the fundamental diagrams of different kind of flows.



Experiments and methodol ogy

3.1 Experiment setup

As outlined in the previous chapters, there are plenty of potential factors that may influence
the characteristics of crowd movement. To minimize uncontrollable factors, we perform
the experiments under well-controlled laboratory conditions with the same group of test
persons. Data obtained from very specific conditions may be unsuitable for design of es-
cape routes. However, such types of experiments make it possible to study the influence of
single parameters and basic characteristics of pedestrian dynamics.

The experiments were performed in hall 2 of the fairground Diisseldorf (Germany) in
May 2009. They were part of the Hermes project [2], in which the data resulted from the
experiments were used to calibrate and test pedestrian movement models. The experiments
were conducted with up to 400 participants. They were composed mostly of students and
each of them was paid 50 € per day. The mean age and height of the participants were
25 + 5.7 years old and 1.76 + 0.09 m, respectively. The free velocity vy = 1.55 + 0.18 m/s
was obtained by measuring 42 participants’ free movement.

All runs of the experiments were recorded by two synchronized stereo cameras of type
Bumblebee XB3 (manufactured by Point Grey). They were mounted on the rack of the
ceiling 784 cm above the floor with the viewing direction perpendicular to the floor. The
cameras have a resolution of 1280 x 960 pixels and a frame rate of 16 f ps (corresponding
to 0.0625 second per frame). To increase the region of observation, the left and the right
part of the scenario were recorded by the two cameras separately. The overlapping field
of view of the sterco system is @ = 64° at the average head distance of about 6 m from
the cameras. With the above-mentioned height range, all pedestrians can be seen without

occlusion at any time. The geometrical variations of the boundaries and moving directions
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(a) Schematic illustration

(b) Snapshots from experiment U-180-180-070
Figure 3.1: Schematic illustration and snapshots of the unidirectional pedestrian experi-

ment in corridor

of pedestrians in each experiment will be introduced in the following sections.

3.1.1 Unidirectional flow in corridor

Figure 3.1 shows the sketch of the setup and two snapshots of the unidirectional experi-
ments. Three straight corridors with the widths of 1.8 m, 2.4 m and 3.0 m were chosen and
28 runs of unidirectional pedestrian experiments were carried out. To regulate the pedes-

trian density in corridor, the widths of the entrance beypance and the exit be; were changed
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Runs Name Bentrance [M] Dexic [M] N
1 U-050-180-180 0.50 1.80 61
2 U-060-180-180 0.60 1.80 66
3 U-070-180-180 0.70 1.80 111
4 U-100-180-180 1.00 1.80 121
Deor = 1.80m 5 U-145-180-180 1.45 1.80 175
6 U-180-180-180 1.80 1.80 220
7 U-180-180-120 1.80 1.20 170
8 U-180-180-095 1.80 0.95 159
9 U-180-180-070 1.80 0.70 148
10 U-065-240-240 0.65 2.40 70
11 U-080-240-240 0.80 2.40 118
12 U-095-240-240 0.95 2.40 108
13 U-145-240-240 1.45 2.40 155
Deor =2.40m 14 U-190-240-240 1.90 2.40 218
15 U-240-240-240 2.40 2.40 246
16  U-240-240-160 2.40 1.60 276
17 U-240-240-130 2.40 1.30 247
18  U-240-240-100 2.40 1.00 254
19 U-080-300-300 0.80 3.00 119
20 U-100-300-300 1.00 3.00 100
21 U-120-300-300 1.20 3.00 163
22 U-180-300-300 1.80 3.00 208
PDeor =3.00m 23 U-240-300-300 2.40 3.00 296
24 U-300-300-300 3.00 3.00 349
25 U-300-300-200 3.00 2.00 351
26  U-300-300-160 3.00 1.60 349
27  U-300-300-120 3.00 1.20 348
28  U-300-300-080 3.00 0.80 270

Table 3.1: Parameters for the unidirectional flow experiments in straight corridor
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in each run. For overview of all these variables, see Figure 3.1 and Table 4.1. At the begin-
ning of each run, the participants were held within a waiting area. Equal initial densities
for different runs were arranged by partitioning the waiting area and counting the number
of people in the partitions. Standing at the waiting area, they passed through a 4 m passage
into the corridor. The passage was used as a buffer to minimize the effect of the entrance. In
this way, the pedestrian flow in the corridor was nearly homogeneous over its entire width.
When a pedestrian leaves through the exit, he or she returned to the waiting area for the

next run.

3.1.2 Bidirectional flow in corridor

Figure 3.2 shows the sketch of the experiment setup. 22 runs of bidirectional pedestrian
streams (see Table 3.2 ~ 3.4) were performed in straight corridors with widths of 3.0 m
and 3.6 m respectively. To regulate the density in the corridor and the ratio of the opposing
streams, the width of the left entrance b; and the right entrance b, were changed in each
run. At the beginning, the participants were arranged within the waiting areas at the left
and right side of the corridor. When the experiment starts, the pedestrians enter the corridor
passing through a 4 m passage. The passage was used as a buffer to minimize the effect of
the entrance. In this way, the flow in the corridor was nearly homogeneous over the entire
width of the corridor. When a pedestrian arrived at the other side of the corridor, he or she
left the corridor from the passage and returned to the waiting area for the next run.

To vary the degree of disorder, the participants get different instructions and the width
of entrances is changed each run. Three different types of setting were adopted among

these experiments:
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Figure 3.2: Schematic illustration and snapshots of the bidirectional pedestrian experiment
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beor [M]  Index Name bj=b;[m] N N
1 BFR — SSL-360-050-050 0.50 57 6l
2 BFR - SSL-360-075-075 0.75 56 80
3.60 3 BFR — SSL-360-090-090 0.90 109 105
4 BFR - SSL-360-120-120 1.20 143 164
5 BFR — SSL-360-160-160 1.60 143 166
Table 3.2: The related parameters in BFR-SSL experiments
beor [M]  Index Name bj=b;[m] N N
1 BFR — DML-300-050-050 0.50 54 71
2 BFR — DML-300-065-065 0.65 64 83
3.00 3 BFR — DML-300-075-075 0.75 61 86
4 BFR — DML-300-085-085 0.85 119 97
5 BFR — DML-300-100-100 1.00 125 105
6 BFR — DML-360-050-050 0.50 56 74
7 BFR — DML-360-075-075 0.75 62 65
8 BFR — DML-360-090-090 0.90 110 102
3.60 9 BFR — DML-360-120-120 1.20 115 106
10 BFR-DML-360-160-160 1.60 140 166
11 BFR - DML-360-200-200 2.00 143 166
12 BFR - DML-360-250-250 2.50 141 163
Table 3.3: The related parameters in BFR-DML experiments

beor [M]  Index Name by[m] b.[m] N N,
1 UFR - DML-300-050-070 0.50 0.70 72 63
2 UFR - DML-300-050-085 0.50 0.85 61 64
3.00 3 UFR - DML-300-055-095 0.55 095 58 70
4 UFR - DML-300-065-105 0.65 1.05 117 112
5 UFR - DML-300-080-120 0.80  1.20 116 103

Table 3.4: The related parameters in UFR-DML experiments
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Figure 3.3: Sketch and snapshots of the pedestrian experiment in T-junction

b, = by, without instruction: In this type of experiment, the widths of entrance b; and
b, were the same. The test persons were not given any instruction about the choice of
exit and so were free to choose whatever exit they wanted. Five runs of experiments were
carried out with this conditions in a corridor with width of 3.6 m. The related parameters
are presented in Table 3.2.

b, = by, with instruction: Again the same width by and b, were chosen in the exper-
iments. But the instruction to the test persons at the beginning of the experiments were

changed. The participants were asked to choose an exit at the end of the corridor according
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to a number given to them in advance. The persons with odd numbers should choose the
left exit in the end, while the ones with even numbers were asked to choose the exit in the
right side. All 12 runs of experiments were performed with this setting in corridor with
widths of 3.0 and 3.6 m separately, as given in Table 3.3.

b, # by, with instruction: In this case the widths of entrances b, and b, are different and
the participants are instructed to choose an exit at the end of the corridor according to a
number as the last experiment. Also 5 runs of experiments are performed in a corridor with

width of 3.0 m, see Table 3.4.

3.1.3 Merging flows in T-junction

12 runs of merging flow experiments were carried out in a T-junction with corridor widths
of 2.4 m and 3.0 m respectively. Figure 3.3 shows the sketch of the experiment setup and
snapshots from one run of the experiments. Two pedestrian streams from the opposite
sides of a T-shaped corridor join together into the junction and form a single stream. In
these experiments, all these three parts of the corridor had the same width b,,,. To regulate
the pedestrian density in the corridor, the width of the entrance was changed in each run.
The left and right entrances always had the same width Deyganee. In this way, we guarantee
the symmetry of the two branch streams. The number of pedestrians, N = N; + Ny, in the
left and right branch of the T-junction was approximately equal. The number was set to
a value so that the overall duration of all experiments was similar and was long enough
to assure a stationary state. The detailed settings for each run of experiment are listed in
Table 3.5.

At the beginning, the participants were held within the waiting areas. When the ex-
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Experiment index Name Beor [M] Bengrance [M] Ny + Ny
1 T-240-050  2.40 0.50 67 + 67
2 T-240-060  2.40 0.60 66 + 66
3 T-240-080  2.40 0.80 114+ 114
4 T-240-100  2.40 1.00 104 + 104
5 T-240-120  2.40 1.20 152 + 153
6 T-240-150  2.40 1.50 153 + 152
7 T-240-240  2.40 2.40 151 + 152
8 T-300-050  3.00 0.50 73 + 73
9 T-300-080  3.00 0.80 103 + 103
11 T-300-120  3.00 1.20 153 + 153
12 T-300-150  3.00 1.50 153 + 154

Table 3.5: Parameters for the T-junction experiments

periment started, they passed through a 4 m passage into the corridor simultaneously and
merged into single stream at the T-junction. The passage was used as a buffer to minimize
the effect of the entrance. In this way, the pedestrian flow in the corridor was nearly homo-
geneous over its entire width. When a pedestrian left the main corridor, he or she returned

to the waiting area for the next run.

3.2 Extraction of pedestrian trajectories

3.2.1 Extraction method

Manual procedures for collecting empirical data are very time-consuming and usually do
not supply sufficient accuracy in space and time. In this study, accurate pedestrian tra-
jectories are extracted from video recordings using the software PeTrack [9]. Figure 3.4

shows a snapshot of PeTrack with the main tabs corresponding to the steps of the process-
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Figure 3.4: Snapshot of PeTrack [9].

ing pipeline: calibration, recognition, tracking and height detection. In this software, Lens
distortion and perspective views are taken into account. The coordinates of each pedes-
trian in real space can be calculated and outputted directly from video recording. More
information for PeTrack can be found in [9].

In the experiments, all pedestrians wear a white bandana with a centered black dot
of 4 cm diameter which is used to mark their position. The coordinates of each tested
person is extracted by detecting the marker from the video recordings. The precision of the
trajectories is so high that combination of trajectory sets is allowed with overlapping camera
views. At the end, the trajectories from different cameras are combined automatically using

a algorithm which searches for the time where the trajectory sets fit best.
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3.2.2 Trajectories

Pedestrian characteristics including flow, density, velocity and individual distances at any
time and position can be determined from trajectories. All the results in the following
chapters are obtained by analyzing pedestrian trajectories from video recordings of the
experiments.

Figure 3.5 shows pedestrian trajectories from three runs of experiment in a straight
corridor with a width of 1.8 m. In the experiment, the crowd density in corridor is changed
mainly by regulating the values of Dengrance and beyit. Widening the entrance or narrowing the
exit could both increase the crowd density in the corridor. In Figure 3.5, the crowd densities
increase from (a) to (c). The occupied width of the corridor in low density condition is a
little bit smaller than that in higher density. In the corridor, the distribution of trajectories is
nearly uniform along the movement direction when beyjt = beor. Whereas it is not the same
if Deyit < Deor due to the congestions near the exit.

Figure 3.6 shows the pedestrian trajectories from bidirectional flow experiments. In the
figure, the solid lines represent the paths of left moving pedestrians, while the dash lines
represent the paths of right moving pedestrians. Lane formation is a typical characteristics
of bidirectional flow. The formation of lanes, which depends on time as well as space, can
be stable or unstable. To categorize these types, we classify the bidirectional streams into
Stable Separated Lanes (SSL) and Dynamical Multi-Lanes (DML) flow. Besides, the oppos-
ing flows in bidirectional streams can be balanced or unbalanced. According to the typical
densities in the opposing streams we introduce the types Balanced Flow Ratio (BFR) and
Unbalanced Flow Ratio (UFR). In the experiments, the different type of lanes are observed

in the runs with and without instructions. While the different flow ratios are realized by reg-
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Figure 3.5: Pedestrian trajectories from unidirectional flow experiments
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Figure 3.6: Pedestrian Trajectories from bidirectional flow experiments.

ulating the entrance width by and b, of opposite sides. These variations result in different
types of bidirectional flow:

BFR-SSL flow, see Figure 3.6(a): These trajectories are from the runs for by = b, but
without instructions. The opposing flows segregate and occupy proportional shares of the
corridor. Stable lanes and interface formed autonomously. The gap between the opposing
streams is larger for the situation with low crowd density in the corridor.

BFR-DML flow, see Figure 3.6(b): They are obtained from runs of experiment for
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Figure 3.7: Pedestrian Trajectories from merging flow experiments.

b) = by with instruction. With this initial condition again lane formation is observable, but
the lanes are unstable and vary in time and space. This type of flow is comparable with two
streams crossing at a small angle. In this type of flow, the location of different lanes seems
more stable at high density conditions.

UFR-DML flow, see Figure 3.6(c): These trajectories are obtained from runs of experi-
ment for by # b, with instructions. Again lanes are unstable and vary in time and space. The
cumulated trajectories indicate that the flow ratio of the opposing streams is unbalanced.

Figure 3.7 shows pedestrian trajectories from merging flow experiments in the T-junction.
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The crowd densities increase and the unoccupied space of the junction decreases from (a)
to (d). Pedestrians prefer to shortest path since the trajectories tend to the inner side of the
junction in (a) and (b). At high density conditions, the congestion in front of the corner
can be also observed from the trajectories. The trajectories in (a) and (b) are quite smooth,

while in (c) and (d) lateral sways are obvious especially in front of the corner.

3.3 Measurement methodology

For vehicular traffic it is well known that different measurement methods lead to differ-
ent fundamental diagrams [29, 39]. The results obtained from pedestrian trajectories of
single file movement in [58] have also shown how large variations induced by different
measurement methods could be. In previous studies of pedestrian streams, different mea-
surement methods were used limiting the comparability of the data. E.G. Helbing et al.
proposed a Gaussian, distance-dependent weight function [21] to measure the local density
and local velocity. Predtechenskii and Milinskii [50] used a dimensionless definition to
consider different body sizes and Fruin introduced the “Pedestrian Area Module” [17]. All
of these definitions have their advantages and disadvantages. To enable a detailed analysis,
we study the influence of several measurement methods on the fundamental diagram and
analyze which methods lead to the smallest fluctuations.

In this study four measurement methods were used to calculate the basic quantities:

flow, density and velocity. The terminology refers to [58] and [61].
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Figure 3.8: Illustration of different measurement methods. Method A is a kind of local mea-
surement at cross-section with position X averaged over a time interval At, while Methods
B— D measure at a certain time and average the results over space AX. Note that for Method
D, the Voronoi diagrams are generated according to the spatial distributions of pedestrians

at a certain time.
3.3.1 Method A

For MethodA, a reference location X in the corridor is taken and studied over a fixed period
of time At (as shown in Figure 3.8). Mean values of flow and velocity are calculated over
time. We refer to this average by (). Using this method we obtain the time tj and the
velocity vj of each pedestrian passing X directly. Thus, the flow over time (J),; and the time

mean velocity (V)¢ can be calculated as

N 1
Da= —2— and <v>m=N—m;vi(t) 3.1)

Iy — L
where Ny is the number of persons passing the location X during the time interval At. t;,,
and ty,, are the times when the first and last pedestrians pass the location in At. They could
be different from At. The time mean velocity (V),¢ is defined as the mean value of the

instantaneous velocities Vj(t) of the N persons according to equation (4.2). We calculate
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vj(t) by using the displacement of pedestrian i in a small time interval At around t:

[IXi(t + At'/2) — Xi(t — At'/2)]|

vi(t) = AU

(3.2)

3.3.2 Method B

The second method measures the mean value of velocity and density over space and time.
The spatial mean velocity and density are calculated by taking a segment with length Ax
in the corridor as the measurement area. The velocity (v); of each person is defined as the
length Ax of the measurement area divided by the time he or she needs to cross the area
(see equation (3.3)),

(= X (3:3)

ti,out - ti,in
where tj;, and tj o, are the times a person i enters and exits the measurement area, respec-

tively. The density p; for each person is calculated with equation (3.4):

1 fi,out N’(t)
<p>| B ti,out - ti,in ' f AX- Aydt (34)

ti,in

Ay is the width of the measurement area while N’(t) is the number of person in this area at

a time t.

3.3.3 Method C

We call the third measurement method classical method. The density (p)ax is defined as

the number of pedestrians divided by the area of the measurement section:

N
AX - Ay

(P)ax = (3.5)
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Figure 3.9: Distribution of density and velocity over space obtained from Voronoi method

for experiment U-300-300-300.

The spatial mean velocity is the average of the instantaneous velocities Vv;(t) for all pedes-

trians in the measurement area at time t:

N
W = 10 2O 6
i=1
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3.3.4 Method D

This method is based on Voronoi diagrams [68] which are a special kind of decomposition
of a metric space determined by distances to a specified discrete set of objects in the space.
At any time the positions of the pedestrians can be represented as a set of points, from
which the Voronoi diagrams (see Figure 3.8) are generated. The Voronoi cell area, A;, for
each person i can be obtained. Then, the density and velocity distribution of the space py,

and Vyy (see Figure 3.9) are defined as

Py =1/Ai and v, =vi(t) if (X,y) € A (3.7

where Vj(1) is the instantaneous velocity of each person, see equation (4.2). The Voronoi

density and velocity for the measurement area is then defined as [61]

pxydxdy

(o) = AT oy Axf A (3.8)
V,,dxd

(V) = —ﬂA Xxy_ Ayy 3.9)

3.3.5 Effect of measurement methods

To analyze the effects of measurement methods, we calculate the fundamental diagram
from unidirectional experiments with corridor width be,, = 1.8 m. For Method A we
choose the time interval At = 10 s, At" = 0.625 s (corresponding to 10 frames) and the
measurement position at X = 0 (see Figure 3.5(a)~(c)). For the other three methods a
rectangle with a length of 2 m from X = =2 m to X = 0 and a width of the corridor is
chosen as the measurement area. We calculate the densities and velocities every frame

with a frame rate of 16 fps. All data presented below are obtained from the same sets
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Figure 3.10: Time series of density and velocity using Method C and D. The two vertical

lines indicate the beginning and the end of the stationary state.

of trajectories. To determine the fundamental diagram only data at the stationary state,
which were selected manually by analyzing the time series of density and velocity (see
Figure 3.10), were considered. For Method D we use one frame per second to decrease the
number of data points and to represent the data more clearly.

Figure 3.11 shows the relationship between density and velocity obtained from different
methods. Using Method A the flow and mean velocity can be obtained directly. To get the
relationship between density and flow, the equation p = (I)at/({V)at - Deor) Was adopted to
calculate the density. For the Method B, C and D the mean density and velocity can be
obtained directly since they are mean values over space. There exists a similar trend of the
fundamental diagram obtained using the different methods. However, their influence on
the scatter of the results is obvious. Table 3.6 shows the standard deviation of velocities

in certain density intervals for different measurement methods. Compared to the other

52



Experiments and methodology

beor=1-8m, Xg=0, At=10s

2.5 T T T
U-050-180-180  +
U-060-180-180
ol U-070-180-180 ¥ |
U-100-180-180  ©
U-145-180-180
- - U-180-180-180  ©
£ 15 F o U-180-180-120  ®
E 1 N U-180-180-005 &
= T " U-180-180-070  *
A Bou
§ ot $é.. f
0'5 B - ‘A a a 1
2% s at
0 L L L L L L L
0 05 1 15 2 25 3 35 4
2
p=<J>,/(<v>5.bgor) [1/m7]
(a) Method A
AX=[-2, 0]m, byo,=1.8m
25
2 L .
@ 15t o :
£ i 5 '
3 £d7
St i ’ .
o .
.
0.5 ' H g
biae
0 L L L L L L L

0 05 1 15 2 25 3 35 4
<p>,, [1/m?]

(c) Method C

<v;> [m/s]

<v>, [m/s]

25

1.5

2.5

Ax=[-2, 0Jm, bgy,=1.8m

1 15 2 25 3 35 4
<pi> [1/m?]

(b) Method B

Ax=[-2, 0]m, by, =1.8m

0.5

1 15 2 25 3 35 4
<p>, [1/m]

(d) Method D

Figure 3.11: The relationships between density and velocity measured on the same set of

trajectories but with different methods. Except for the density in (a), which is calculated

using p = J/(b - AX), all data are determined directly from the trajectories. The legends in

(b), (c) and (d) are the same as in (a).
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approaches, the fluctuations in Method B and C are larger.

Density interval [m™2] A[m/s] B[m/s] C[m/s] D [m/s]

p €[0.8,1.2] 0.119 0.169 0.175 0.120

p €[1.6,2.0] 0.086 0.144 0.175 0.111

Table 3.6: Standard deviation of velocities in certain density interval for different methods

Another criterion for the quality of the methods is the resolution in time and space.
Even if Method A provides a smaller standard deviation than Method D, the low resolution
in time smears the transition at p = 2m~2 clearly visible in Figure 3.11(d). The density in
Method C has a strong dependence on the size of the measurement area Ay, = by, - AX.
The interval between two density values is 1/An, which indicates that the measurement
area should not be too small using this method. But large areas limit the spatial resolution.
Method D can reduce the density and velocity scatter [61]. The reduced fluctuations of
Method D are combined with a good resolution in time and space, which reveal a phe-
nomenon that is not observable with Method A and C. In Figure 3.11(d) it seems that there
is a discontinuity of the fundamental diagram when the density is about 2 m=2. This will be
analyzed in detail in the next chapter.

Figure 3.12 shows the relationship between the density and the flow obtained from
different methods. The pedestrian flow shows small fluctuations at low densities and high
fluctuations at high densities. The fluctuations for Method A and Method D are smaller
than that for other methods. However, there is a major difference between the results.
While the fundamental diagrams obtained using Method A and Method C are smooth,

fundamental diagrams obtained with Method B and Method D show a clear discontinuity
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Figure 3.12: The relationships between density and flow measured at the same set of
trajectories but with different methods. The density in (a) is calculated indirectly using
p = J/(b - AX), while the flows in (b), (c) and (d) are obtained by adopting the equation
J = pvb. The legends in (b), (c) and (d) are the same as in (a).
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at a density of about 2 m=2. The average over a time interval of Method A and the large
scatter of Method C blur this discontinuity. In disagreement with the results in [58], no
marked differences occur among the fundamental diagrams produced by different methods.
Possibly the differences of different methods will be larger in the cases where stop waves

occur or when the characteristic of the pedestrian flow is not laminar.
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Chapter 4

Fundamental diagram analysis

In this chapter, experiments of uni- and bidirectional flows in straight corridors and merging
flows in T-junctions are analyzed mainly using the Voronoi method for its high resolution
and small fluctuation. Space-resolved measurements for the density, velocity and specific
flow profiles are also presented. The fundamental diagrams of these three kinds of pedes-
trian flow obtained from the experiments are compared after investigating the influence of

the size and location of the measurement area on them.

4.1 Unidirectional flow

4.1.1 Spatiotemporal profile

To analyze the spatial dependence of density, velocity and specific flow precisely, we use
the Voronoi method to determine these quantities in areas smaller than the size of pedes-
trians. We calculate the Voronoi density, velocity and specific flow over small regions

(10 cm x 10 cm) each frame. Then the spatiotemporal profiles of density (o(X, y)), velocity
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(V(x,y)) and specific flow (Js(X,y)) can be obtained over the stationary state separately for

each run as follows:

t
_ Ji oxx . bt
p(x,y) = B 4.
2 — U
t2
_ i u(xy, bt
V(%,y) = ——/———, (4.2)
L-t
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(c) Specific flow profile

Figure 4.1: Spatiotemporal profiles of unidirectional flow for different density interval

These profiles provide new insights into the spatial properties of the motion and the
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Figure 4.2: Spatiotemporal profiles of unidirectional flow for different exit widths

sensitivity of the quantities to other factors. Figure 4.1 shows the density, velocity and
specific flow profiles of unidirectional flow at low and high densities for b, = 3.0 m. The
mean densities for experiment U-100-300-300 and U-240-300-300 are around 0.5 m=2 and
2.0 m~2 respectively.

From the density profile, it can be seen that the walls have strong influence on the
density distribution not only for low density but also for high density situation. There are

low density zones with width of 0.5 m approximately near the both walls. The higher the
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density in the corridor is, the clearer the effect is. We call it boundary effect since the
calculated variable values are influenced by the distribution of measurement points to the
boundary of geometries. Somewhat differently, this effect seems to have no influence on the
distribution of the velocity which is homogeneous in the corridor along transverse direction
in the profiles.

Besides, we study the effects of exit forms on the distribution of density, velocity and
specific flow. We compare the profiles from experiment U-300-300-300 and U-300-300-
080, as shown in Figure 4.2. For the former, the width of exit is the same with corridor.
While for the latter it is smaller than the corridor, which becomes a bottleneck. Besides the
boundary effect, the exit effect also displays from this comparison. When the exit is smaller,
the density increases gradually along the movement direction to the exit. The distribution
of density along this direction is not uniform any more and the high density propagates
backward from exit. The details of these phenomena will be studied in Section 4.1.2.

Figure 4.3 compares the profiles obtained from experiments in corridors with different
widths (beor = 1.8 m, 2.4 m and 3.0 m). The boundary effect exists for all widths. However,
its influence seems to depend on the width. The density and velocity distributions along
movement direction are not uniform in narrow corridor. In the area near the entrance the
densities are higher and the velocities are lower. On the contrary, the specific flow stays

uniform along movement direction and exhibits the boundary effect for all widths.
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Figure 4.4: Effect of the size of the measurement area on the fundamental diagram.

From the above analysis, the profiles show that the measurements of density and ve-

locity are sensitive to the size and location of the measurement area. In particular, the
boundary effect influences the determination of the density obviously. This raises the ques-
tion whether the size and location influence the relationship between density, velocity and

specific flow. If so, it becomes incomparable for different results if the size and position of

the measurement area and the geometry are not clearly specified.

4.1.2 Size and position of the measurement area

The analysis in Section 4.1.1 indicates that the size and location of measurement area could
influence the quantities of pedestrian dynamics including density, velocity etc.. In this

section, we investigate their effect on the fundamental diagram of unidirectional pedestrian

flow quantitatively.

As shown in Figure 4.4, we study the influence of the size of the measurement on the
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fundamental diagram. Three areas, 1 m?, 3 m? and 6 m?, located at X € [-2, 0] but with
different ranges of width y, are chosen for the experiments in 3.0 m corridor. It is shown that
the fundamental diagrams differ especially at high density condition but have no noticeable
discrepancies for p < 2.0 m=2. For p > 2.0 m~2, the spreading of the densities increases
with decreasing size of measurement area. The size of measurement area mainly influences
the fluctuation of density but not the shape of fundamental diagram. This result can be
attributed to the boundary effect which influences not only the mean value and standard

deviation but also the shape of the fundamental diagram.

Measurement area <p>y [M2] <v>y[m/s]

X € [-4,-2],y €[0.0,3.0] 3.23+0.33  0.18+0.03
x€[-3,-1],y€[0.0,3.0] 326030 0.18=0.03
X €[-2,0,y €[0.0,3.0] 3.31+030 0.18 +0.02
xe[-1,1,y€[0.0,3.0] 3.37+025 0.18 +0.02
x€1[0,2],y €[0.0,3.0] 331+0.19 0.18 +0.03
xe[1,3],y€[0.0,3.0] 3.12+022 0.19+0.03
X €[2,4],y€[0.0,3.0] 252+0.19 0.22+0.05

Table 4.1: Measured density and velocity from different measurement areas along x-
direction (U-300-300-080)

Since the boundary effect is larger for higher density, we use experiment U-300-300-
080 to study the effect the size and position of measurement area respectively. The ranges of
the variation obtained from measurements area with the same size but in different positions
are listed in Table 4.1 and 4.2. Along the x-direction, an area of 2 mx3 m = 6 m? is chosen,
while an area of 2 m x 0.5 m = 1 m? is selected along y-direction. For all the variations of
the measurement area along the x and y direction, the velocities show no large change. But

the calculated densities differ obvious especially when the location of the measurement
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Measurement area <p> [M2] <v>y[m/s]

Xe€[-2,0],y€[2.53.0] 2.82+031 0.18+0.05
xe[-2,0],ye€[2.0,2.5] 3.49+032 0.18+0.04
Xe€[-2,0],ye[1.5,2.0] 3.77+033 0.18 +0.03
Xe[-2,0],ye[1.0,1.5] 3.66+049 0.18 +0.03
Xe€[-2,0],y€[0.5,1.0] 3.32+0.66 0.18 +0.03
xe[-2,0],y €[0.0,0.5] 2.79+0.50 0.18 £0.04

Table 4.2: Measured density and velocity from different measurement areas along y-
direction (U-300-300-080)
area changes along y-direction. To understand this point in detail, we study the density
and velocity distribution along transverse direction in the runs U-180-180-095, U-240-
240-130 and U-300-300-160, because the mean densities (2.47 +0.44 m=2,2.50 +0.47 m~2,
2.54+0.44 m~2) and velocities (0.22+0.05 m/s, 0.27+0.05 m/s, 0.33+£0.05 m/s) of them in
stationary state are nearly the same for the measurement area X € [-2,0] and y € [0, beor].
However, the results in Figure 4.5 show some other properties if the small measurement
area 0.1 m x 2 mis chosen. The velocity of the crowd seems to be constant in any place of
corridor. While the ranges of densities increase with the increase of corridor width and the
density shows a bell-shaped distribution along transverse direction. Further, there exist a
constant region where the densities is nearly constant. The range of the region is positively
correlated with the corridor width. Even the mean value of densities for a whole corridor
is the same, the maximum density is larger and the minimum density for wide corridors is
smaller than that of narrow corridors.

Thus, it can be said that the size and position of measurement surely affect the funda-
mental diagram of pedestrian flow. This influence is obvious especially on crowd density

and mainly arises from the boundary effect. To make comparison, we will choose the mea-
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Figure 4.5: Density and velocity distribution along transverse direction in corridor.

surement area by considering the boundary effect in the next studies. That is, the rectangle
in corridor with a length of 2 m and the width of the corridor will be selected as measure-

ment area in different runs of experiments.

4.1.3 Specific flow concept

In general it is assumed that for a given facility (e.g. corridors, stairs, doors) the specific
flow Js is independent on width b. This implies that the fundamental diagrams J(p) for
different b merge into one universal diagram for the specific flow Js. We call this the
specific flow concept. From the above analysis, however, the boundary effect surely affects
the crowd density and specific flow in corridor. Thus, it is necessary to check whether the
specific flow concept is applicable or not.

Figure 4.6 shows the relationship between density, velocity and specific flow obtained
from the Voronoi method. The fundamental diagrams of unidirectional pedestrian flow in

the same type of corridor but with three different widths are compared. It can be seen that
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Figure 4.6: Comparison of the fundamental diagram for different corridor widths.

they agree well with each other. The specific flow in the corridors is independent on the
corridor width. At about p = 2.0 m~2, the specific flow reaches the maximum value which
is named the capacity of a facility. This result is in conformance with Hankin’s findings
[18]. He found that above a certain minimum of about 4 ft (about 1.22 m) the maximum
flow in subways is directly proportional to the width of the corridor. Our results seem to
support the specific flow concept in the range of densities reached in the experiment.
According to the assumptions in most handbooks, a congestion occurs in corridor when
the flow in the corridor exceeds the capacity of exit. Under this situation, the flow rate
though exit is either its capacity or Js(Dpax). We calculate the mean flow rate of pedestrians
passing the line X = 0 M (Jeor) and X = 4.0 M (Jgyit) in the corridor over 10 s using Method A
for the runs of the experiment with Deyj < Deor. Jeor > Jexic S€€mSs always correct as shown

in Table 4.3 and Figure 4.7.
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Figure 4.7: Comparison of flow rate through the corridor and the exit under congestion

situations.

bcor [m] Name bexit [m] ‘]cor [I/S] ‘]exit [I/S]

U-180-180-070  0.70 1.881 1.626
1.8 U-180-180-095  0.95 2.432 1.766
U-180-180-120 1.20 2.738 2314
U-180-180-180 1.80 2.733 2.683
U-240-240-100 1.00 2.425 2.200
2.4 U-240-240-130 1.30 2.981 2.722
U-240-240-160 1.60 3.241 3.158
U-240-240-240  2.40 3.975 3.791
U-300-300-080  0.80 2.061 1.762
U-300-300-120 1.20 3.048 2.807
3.0 U-300-300-160 1.60 3.616 3.342
U-300-300-200  2.00 4.031 3.885
U-300-300-300  3.00 4.820 5.035

Table 4.3: Comparison of flow rate for congestion conditions at X = 0 mand X =4 m
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Figure 4.8: Relationship between flow rate Je; and width be. The open points are ob-
tained from the runs for by, > bey;. While the solid points are the maximum flow rate in

corridor observed in the experiments.

We further study the relationship between the flow rate Je; and the opening width Dey;.
From Figure 4.8, it shows nearly linear relationships J = 2.1 - b for openingand J = 1.6 -b
for the corridor exist. Note that the solid points in the figure are the maximum flow rates in
the corridor that have been observed in the experiments. The open points are obtained from
the runs for be,, > beji. From the result it seems that the specific flow through the opening
is 2.1 (m - s)~! when congestions occur in front of the opening. The same relationship
J =1.9-b s also obtained for the bottleneck in [59]. If all the maximum values of flow we
obtained from our experiments are the capacity C of the facilities, we could conclude that
it should be Copening > Chottieneck > Ceorridor- This does not agree with most handbooks like
S FPE which do not distinguish between the fundamental diagrams of these three types of

facilities. However, with the current setup of the experiments we cannot decide whether it
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is the capacity of the opening or Js(Dmax). Besides, we even could not check whether the
capacity of the opening is larger than that of the corridor or not. That is because we do not

know whether higher specific flow can be observed in the condition of by = Deyit-

4.1.4 Interpretation in terms of boundary-induced phase transitions

From Figure 3.12(b) and 3.12(d), we can see that a discontinuity of the fundamental dia-
gram occurs at p = 2 m~2, separating the function Js(p) in a region p < 2 m~2 with negative
curvature and a region p > 2 m~2 with positive curvature. Moreover, for Method D a
gap occurs around v = 0.7 m/s. This transition is also found in the experiments with
Peor = 2.4 m and b, = 3.0 m. The fundamental diagram changes qualitatively when the
width of the exit b is modified. The modification of the exit width was necessary to
achieve high densities. However, it seems that this change in the setup of the experiment
causes a significant change in the flow-density relation. This point becomes obvious in the
velocity-density relation, especially in Figure 3.11(d) which is obtained from Method D.
Although the measurement area in the corridor is 4 m away from the exit, the influence of
the variation of the exit on the fundamental diagram is observable. The decrease of Dey;
will increase the density in the corridor and limit the outflow of pedestrians. However, it
also leads to a discontinuity in the fundamental diagram.

This can be interpreted in terms of the well-established theory of boundary-induced
phase transitions [36, 54]. In nonequilibrium systems phase transitions (in the bulk) can
be induced by changing the boundary conditions, generically input and output rates in case
of transport systems. A mesoscopic theory has been developed which allows to derive the

phase diagram of an open system (allowing input and output of particles at the boundaries,
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Figure 4.9: Open system with particle input at the left boundary with rate @ and particle

output at the right boundary with rate 3.

see Figure 4.9) from the fundamental diagram of the periodic system [33]. This theory even
makes quantitative predictions on the basis of an extremal principle [49].

The phase diagram as function of the boundary rates a and  has a generic structure.
The number of phases observed depends only on the number of local maxima in the fun-
damental diagram. For generic traffic systems it has only one maximum and the @-3-phase
diagram consists of three phases, the high-density phase (HD), the low-density phase (LD)
and the maximum current phase (MC), see Figure 4.10. When the supply rate @ of the
particles is larger than the removal rate 5 and 8 < B, the particle extraction is the limiting
process resulting in a high density phase where the current is independent of @. When
the particles are supplied not too fast, @ < @, and S > «, a low density phase is formed
which is limited by the particle supply. Here the current is independent of @. There is a
discontinuous phase transition along the line @ = 8 < @.. When particles are supplied
and removed sufficiently rapidly, @ > @, and 8 > S, a continuous phase transition into
a maximum-current phase for which transport is bulk dominated [36] occurs where the

current is independent of both & and S.
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Figure 4.10: Generic form of the phase diagram for an open system with input rate o and
output rate 5. In the LD phase the current has the form J = J(a; p) and in the HD phase
J = J(B; p). In the MC phase, the current is independent of & and 8 and corresponds to the

maximum of the fundamental diagram: J = J;,,.x(P).

The experiments in the corridor geometry can effectively be described by such a sce-
nario. The input rate « into the corridor is controlled by the width bepyance 0f the entrance
whereas the output rate B is controlled by the width by, of the exit. Therefore the a-3-
phase diagram corresponds in our case to a Deprance-Pexic-diagram. The width b, of the
corridor, on the other hand, controls the maximal possible bulk flow in the system, given
by the maximal flow J,, in the fundamental diagram.

For the experiments with b.,; = b, the flow through the system is not limited by the
exit (see Figure 3.12), corresponding to the case 8 > SB.. The system is then in the low-
density phase. Here the flow is controlled by the inflow into the system, i.e. effectively by
Dentrance- At Dengrance & 1.45 m a transition into the maximum current phase can be observed
(see especially Figure 3.12(a)). For Depyance = Deor and Deyiy < Deor the system is in the

high-density phase.
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Figure 4.11: Spatiotemporal profiles of bidirectional flow
4.2 Bidirectional flow

In this section, the characteristics of bidirectional pedestrian flows are analyzed using the
Voronoi method. As in the last section, we choose a rectangle with length of 2 m from

X = —1 mto X = 1 m and the width of the corridor as the measurement area. The methods

for the selection of the data points are the same with last section.
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4.2.1 Spatiotemporal profile

Figure 4.11 shows the density, speed and specific flow profile of Stable Separated Lanes
(SSL) and Dynamical Multi-Lanes (DML) flow in our experiment. The space is divided into
10 cm x 10 cm small cells to measure the Voronoi density and speed. These quantities are
calculated in each cell frame by frame. Note that we calculate the speed (absolute value
of velocity) but not the velocity. For these profiles the average over the stationary state is
calculated.

For flow with stable separated lanes, the density, speed and specific flow profiles are
obviously not homogeneous. Boundary effect occurs also at the interface of the opposing
streams. The densities and specific flow at the interface are smaller than that in other place.
While for flow with dynamical multi-lanes, we don’t observe this effect. The density and
specific flow at the middle of the corridor seems larger than that near the boundary. The
self-organized dynamical lanes in space and time seems to weaken the effect of the interface
on pedestrian movement. The profiles of this kind of flow are not homogenous anymore

either. The influence of dynamical lanes on the profile can be seen clearly.

4.2.2 Lane formation

Lane formation, as one of the most important phenomena in bidirectional flows, occurs be-
cause pedestrians follow other persons moving in the same direction to minimize conflicts
with persons moving in the opposite direction. Lanes that emerge in this way could be
stable (SS L) and unstable (DML) in time.

The recognition and representation of the lanes has been investigated in different ways,

e.g. the cluster analysis method introduced by Hoogendoorn [23], the bond index method

73



Fundamental diagram analysis

3.5 2.0

16

3.0 12
25 08 =
— 0.4 &
E20) 00 2
> 1.5 ~0.48
1.0 -08%

-12

03] ~16

00g -3 -2 -1 0 1 2 3 4 20

X[m]

(b) t =822 frame = 51.375 sec
Figure 4.12: Representation of lane formation using profile. These four profiles are from

experiment BFR-DML-360-160-160 at different frames (times).

of Yamori [70] et al. as well as the laning order parameter used to detect lanes in driven
colloidal systems [52]. Using the Voronoi method, we are able to calculate the integrated
velocity over small measurement regions (10 cm x 10 cm). In this way, the velocity distri-
bution over the whole space can be obtained. Figure 4.12 shows the velocity and density
profiles of BFR-DML-360-160-160 for two different times. We use different colors to indi-
cate the value of the velocity and density and thus to determine the number of lanes in the
corridor from the velocity profiles. The velocity profiles seem to be a good way to display
the lane formation in bidirectional streams. In comparison, density profiles don’t have such
ability to show the lanes clearly. However, it is possible for density profiles to show some

other information such as crowded and dangerous spots.
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Figure 4.13: Comparison of fundamental diagram of DML flow at different width of corri-

dors
4.2.3 Specific flow concept

The formation of lanes decreases the number of conflicts among the opposing moving
pedestrians. The dynamical lanes however are likely to increase the boundary effect, which
is larger in bidirectional flow than that in unidirectional flow. It is not sure whether the
specific flow concept is applicable to bidirectional pedestrian flow. For this reason, we
study the influence of the corridor width on the fundamental diagram. The BFR-DML flow
experiments were carried out for two widths b.,, = 3.0 m and b, = 3.6 m respectively. By
comparing the fundamental diagram from these experiments in Figure 4.13, it is found that
they are in good agreement in the observed range of density. From Figure 4.13(b), it can be
seen that the specific flow reaches its maximum of 1.5 (m - s)~! at a density of p = 2.0 m~2
and then is nearly constant until p = 3.5 m™2.

The results show that the specific flow concept is also applicable to bidirectional flow
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at least for p < 2.0 m~2, due to the limitation of the time resources during the experiments

only densities p < 2.0 m~2 are realized for b, = 3.0 m.

4.2.4 Comparison of SSL and DML flow

In bidirectional pedestrian flow, especially for DML type, head-on conflicts and cross-
directional conflicts occur from time to time. These conflicts could be less in SSL flow
than in DML flow. It would be interesting to know whether they have positive, negative or
no influence on the flow rate in bidirectional flow. To investigate this effect we compare the
fundamental diagram of SSL and DML flow for b.,, = 3.6 m. As shown in Figure 4.14,
it can be seen that the fundamental diagrams of these two types of bidirectional flow are
consistent at least for densities p < 2.0 m~2. The lower degree of ordering in dynamical
multi-lanes (DML) has no effect on the fundamental diagram which agrees with the findings
of Older [48]. This might be taken as an indication that head-on conflicts in multi-lanes
have the same influence as the conflicts at the borders in stable separated lane flow on the
fundamental diagram. On the other hand, the self-organized lanes increase the order and
make pedestrian movement smoother. Whether the degree of ordering has an influence on

the fundamental diagram at higher densities can not be decided from our data.

4.2.5 Comparison of BFR and UFR flow

The flow ratio of the opposing pedestrian streams is another factor that is worth studying.
Under unbalanced conditions (UFR), pedestrians from the direction with high flow ratio
may dominate and restrain the movement of pedestrians from the opposing direction. To

study the influence of this interaction, we compare the fundamental diagrams of BFR— and
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Figure 4.14: Comparison of the fundamental diagram of SSL and DML flow.

UFR — DML flow in the corridor with width b.,, = 3.0 m. Due to the limitation of the
number of runs, only data for p < 2.0 m~2 have been obtained. As shown in Figure 4.15,
the asymmetry of bidirectional flow does not affect the fundamental diagrams, at least for
DML flows and densities p < 2.0 m~2. Although it can not be excluded that a higher flow
ratio will dominate the whole movement, for the flow ratios in our experiments it does not

affect the total flow rate in the corridor.

4.3 Merging flow

T-junction is a common but complex geometry in building. In this kind of structure, bot-
tleneck flow, merging flow or split flow could take place. In this section, we will analyze
merging of pedestrian stream at a T-junction experimentally. As in the other sections, we
use the Voronoi method and apply the same approach for the selection of the measurement

area and data points.
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Figure 4.15: Comparison of the fundamental diagram of BFR and UFR flow.
4.3.1 Spatiotemporal profile

Figure 4.16 shows the profiles for two runs of the experiments under the situations of low
density (T-240-060) and high density (T-240-240), respectively. These profiles provide
new insights into the spatiotemporal dynamics of the motion and the sensitivity of the
quantities to other potential factors. The density distribution in a T-junction is not homoge-
neous both for low and high density situations. For the former, the higher density region is
located in the main stream after merging. For the latter, the higher density region appears
near the junction and the lowest density region locates at a small triangle area, where the
left and right branches begin to merge. For both of the two situations, the densities in the
branches are not uniform and are higher over the inner side, especially near the corners. In
other words, pedestrians prefer to move along the shorter and smoother path. Moreover the
density profile shows obvious boundary effects at high density situations. The spatiotem-

poral variation of the velocity is different. At low density situations, the velocity profile is
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Figure 4.16: Spatiotemporal profiles of T-junction flow
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nearly homogeneous all over the T-junction except close to the corners. Pedestrians move
at free velocity and slow down round the corners. For high densities condition, the velocity
distribution is no longer uniform. The velocity of main stream is obviously higher than that
in the branches. Boundary effects do not occur and the velocities after merging increase
along the movement direction persistently. By comparison of the specific flow profiles in
the two different situations, the highest flow regions in both cases are observed at the center
of the main stream after the merging. The region extends further into the area where the
two branches start to merge. This indicates that the merging process in front of the exit
corridor leads to a flow restriction. Causes for the restriction of the flow must be located
outside the region of highest flow.

These profiles demonstrate that density and velocity measurements are sensitive to the
size and location of the measurement area. For the comparison of measurements (e.g. for
model validation or calibration) it is necessary to specify precisely the size and position of

the measurement area.

4.3.2 Branch and main stream

In Figure 4.17, we compare the fundamental diagrams of pedestrian merging flow in T-
junction with corridor width by, = 2.4 m. The data assigned with *T-left” and *T-right’ are
measured in the areas where the streams prepare to merge, while the data assigned with
*T-front’ are measured in the region where the streams have already merged. The locations
of these measurement areas are documented in Table 4.4. For easing of comparison, we
choose these measurement areas with the same size (4.8 m=2). One finds that the funda-

mental diagrams of the left and right branches match well. It means that the right or left
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Figure 4.17: Comparison of the fundamental diagram of merging flow in different parts of

T-junction

turning of the stream dose not have influence on the fundamental diagram. However, for
densities p > 0.5 m~2 the velocities in the ’right’ and ’left’ part of the T-junction (T-left
and T-right) are significantly lower than the velocities measured after the merging of the
streams (T-front). This discrepancy becomes more distinct in the relation between density
and specific flow. In the main stream (T-front), the specific flow increases with the density
o up to 2.5 m~2. While in the branches, the specific flow nearly remains constant for density
o between 1.5 m~2 and 3.5 m~2. Thus, there seems to be no unique fundamental diagram
which describes the relation between velocity and density for the complete system.

For this difference we can only offer speculate about the causes. One is based on be-
havior of pedestrians. Congestions occur at the end of the branches where the region of
maximum density appears. Pedestrians stand in a jam in front of the merging and can not
perceive where the congestion disperse or whether the jam lasts after the merging. In such a

situation it is questionable whether an urge or a push will lead to a benefit. Thus an optimal
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Measurement area Range

T-240-Left X € [-4.5,-2.5], y € [-2.4,0]

T-240-Right x €1.0,3.0], y € [-2.4,0]
T-240-Front X € [-2.4,0], y € [1.0,3.0]
T-300-Right X € [0.5,2.5], y € [-3.0,0]
T-300-Front X € [-3.0,0], y € [1.0,3.0]

Table 4.4: The location of measurement area in T-junction.

usage of the available space becomes unimportant. Otherwise, the situation totally changes
if the location of dissolution becomes apparent. Then a certain urge or an optimal usage of
the available space makes sense and could lead to a benefit. In this situation, pedestrians
would prefer to move in a relatively active way and pick up their pace. This might be the
reason why the velocities after merging are higher than that in front of merging at the same
density. Whether this explanation is plausible could be answered by a comparison of these

data with experimental data at a corner without the merging.

4.3.3 Specific flow concept

In this section, we will check whether the specific flow concept holds also for merging flows
in T-junctions. The fundamental diagrams of merging flows in different corridor widths
with beor = 2.4 m and by = 3.0 m are calculated. We compare the results before and
after merging separately. Because of the symmetry of the geometry, only the fundamental
diagram of the right branch is considered for the runs with be,r = 3.0 m.

Figure 4.18 shows the results from the experiments. In the branches, the obtained
maximum densities are about 3.5 m~2 for ber = 2.4 M and 2.2 m~2 for bgyr = 3.0 m. While

behind merging, the maximum densities are 3.3 m™ for by = 2.4 m and 2.2 m™2 for
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Beor = 3.0 m. Thus, only the results for p < 2.2 m™~2 can be compared. From the plots it can
be seen that not only in front of merging but also behind merging the specific flow concept
works well in the observed ranges of density. The specific flow in T-junction is directly
proportional to the width of the corridor in corresponding places, although the maximum

specific flows before and after the merging are different.

4.4 Comparison of different types of flows

In previous sections, we have analyzed three different types of pedestrian flow in straight
corridors and T-junctions. Some characteristics of uni-, bidirectional and merging pedes-
trian flow have been obtained. With these data it is possible to determine the difference

between them.

4.4.1 Uni- and bidirectional flows

In Figure 4.19, we compare the fundamental diagram of uni- and bidirectional flows. Since
the corridor width and the forms of bidirectional flow have little influence on the funda-
mental diagram, we are free to choose the experiments with a larger range of density (ex-
periment U-300 and BFR-DML-360), to compare the characteristics of them. One of the
remarkable things is that the data of the unidirectional flow for p > 2.0 m~2 are obtained by
slight change of the experiment setup. To reach densities o > 2.0 m~2 in an unidirectional
experiment, a bottleneck at the end of the corridor is formed. We discussed in section 4.1.4
that the decrease of the outflow is induced by changing the boundary conditions. This may
limit the comparability of fundamental diagrams for p > 2.0 m~2.

Figure 4.19(a) shows the relationship between density and velocity for these two kinds
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Figure 4.19: Comparison of the fundamental diagrams of unidirectional flow and bidirec-

tional flow

of flow. At densities of p < 1.0 m~2, no significant difference exists. For p > 1.0 m~2,
however, the velocities for unidirectional flows are larger than that of bidirectional flows.
The difference between the two cases becomes more apparent in the flow-density diagram
(Figure 4.19(b)) where a qualitative difference can be observed. In the bidirectional case a
plateau is formed starting at a density p ~ 1.0 m~ and the flow becomes almost indepen-
dent of the density. Such plateaus are typical for systems which contain ’defects” which
limit the flow and have been observed e.g. on bidirectional ant trails [28] where they are a
consequence of the interaction of the ants. In our experiments the defects are conflicts of
persons moving in the opposite direction. These conflicts only happen between two persons
but the reduction of the velocity influences those following.

This difference in the fundamental diagrams implies that a SSL flow should not be

interpreted as two unidirectional flows. Although the self-organized lanes can decrease the
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Figure 4.20: Comparison of the fundamental diagram between unidirectional and merging

flow.

head-on conflicts, interactions between the opposing streams are still relevant.

4.4.2 Unidirectional and merging flows

In this section, we compare the fundamental diagrams for unidirectional flow in straight
corridor and merging flow in a T-junction. Due to the availability of the specific flow
concept, we choose the data (T-240 and U-300) with a large range of the density to compare.

Figure 4.20 shows the results obtained from the experiments using the Voronoi method.
The data of T-front and U-300 seem comparable, while they are obviously different from
that of T-left. In section 4.3.2 the difference between branch and main stream has been
discussed. Thus we mainly analyze the similarities and differences between T-front and U-
300. No matter in the relation of density-velocity or density-specific flow, the data points
of T-front are a little bit lower than that of U-300 for the density of p < 2.0 m=2. This

difference becomes clearer with the increase of density. Actually, pedestrian flow after the
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merging in the T-junction can be considered as unidirectional flow in an open corridor.
Specifically pedestrian movement in T-junction includes right or left turn action around
the corner in T-junction. As shown in Figure 4.16, the velocities at the corner is obviously
slower than in other area. The turning action could restrict the moving speed of pedestrians.
Behind the corner, pedestrian starts to accelerate and the speed increases along the move-
ment direction. Due to the setup of the experiments, the measurement areas are located in
the acceleration area but not in stability area. While the acceleration is density-dependent
which is also reflected in Figure 4.16. Thus, the difference becomes easy to understand.
Besides, another point is also worth mentioning. The velocities in T-front are higher
than that obtained from U-300 obviously for 2.0 m=2 < p < 3.0 m~2. Without considering
the data of U-300, the specific flow of T-front seems increasing consistently with the density
until 2.5 m~2 or 3.0 m~2 in the observed range of density. If so, it indicates that the density
where the specific flow reaches maximum could be larger than 2.0 m~2 obtained in U-300.
On the other hand, these data points could also be considered to agree with the jamming
phase of the fundamental diagram of U-300. To know which statement is correct, the data

at higher density are necessary for straight corridors without exit narrowing.
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Chapter 5

Conclusion and outlook

This study is aimed to investigate the factors that influence the fundamental diagram of
pedestrian flows and to supply a more reliable database for facility design and model cali-
bration. To achieve this goal, uni- and bidirectional flow in straight corridors and merging
flow in T-junctions are analyzed from well-controlled laboratory experiments. The main
results and limitations as well as possible directions for future research are provided in this

chapter.

5.1 Conclusion

As a first step of the analysis, the influences of different measurement methods on the
fundamental diagram are studied. With the highly precise pedestrian trajectories obtained
from video recordings of the experiments, detailed analysis on pedestrian characteristics
are possible. Four different measurement methods are used in the thesis to calculate crowd
density, velocity and flow and thereby to obtain the fundamental diagram. The empirical

data from unidirectional flow in a corridor are used to test their effects on the fundamental
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diagram. Surprisingly, only minor differences between these four methods are found in the
range of the density observed in our experiments. However, the Voronoi method is able to
resolve a finer structure of the fundamental diagram compared with the other three ones. It
can reduce the scatter of density and velocity and has the advantage of small fluctuation and
high resolution in time and space. This enhanced measurement method permits observing
the occurrence of a boundary-induced transition and are mainly used in this study.

Boundary effects are observed in the spatiotemporal profiles of uni-, bidirectional and
merging flows. The specific flow concept works well for all these three types of flows at the
observed density ranges in the experiments respectively. At the same density, the specific
flows for different width of corridors agree fairly well with each other. The value of flow is
proportional to the facility width. Especially for the bidirectional flow, different movement
patterns (BFR-SSL, BFR-DML and UFR-DML flows) are observed from the experiments.
No marked differences are observed from their fundamental diagram at least for density
0 < 2.0m™2, It seems that the coordination ability of pedestrians decreases the effect of the
potential head-on conflicts in multi-lanes condition. Although the fundamental diagrams
are not the same in main stream and branches for merging flow in T-junction, they obey the
specific flow concept well respectively.

The fundamental diagram of uni-, bidirectional and merging flow are compared with
each other. It is found that the velocities in unidirectional streams are larger than that of
bidirectional streams for p > 1.0 m™2. Correspondingly, the maximum specific flow of
unidirectional streams is larger than that of bidirectional streams, where a plateau in funda-
mental diagram is formed starting at a density of p ~ 1.0 m~2 and the flow becomes almost
independent on the density. It indicates that the pedestrian stream with stable separated

lanes cannot be treated as two unidirectional flows. The self-organized lanes can decrease
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head-on conflicts but cannot wipe off its influence on the total flow. For p < 2.0 m™2 the
fundamental diagram of the merging flow in the main stream is comparable with that of
unidirectional flow. Whereas when p > 2.0 m=2, differences appear and it’s not easy to
draw conclusion with the existing data in these experiments.

A discontinuous trend of the fundamental diagram is observed in case of jams in uni-
directional flow in corridor. It has been interpreted in terms of the well-established theory
of boundary-induced phase transitions. However, for the difference of the fundamental di-
agram of merging flow in main stream and branches, only speculations are offered based

on the perception behavior of pedestrians.

5.2 Outlook

This thesis focus on the fundamental diagrams of different types of pedestrian flows and
also the influence of measurement methodologies on them. In view of the time constraint
and also experiment limitations for the study, it is hard to solve all the problems concerning
the fundamental diagram. At least the following issues should be considered in future
works:

As for the measurement methodologies, no marked influences were found for them on
the pedestrian fundamental diagram. This disagrees with the result in [58] for 1D move-
ment, in which stop-and-go waves are observed. Thus it is necessary to check whether
discrepancies also occur in the case that stop-and-go waves appear in 2D movement.

For the analysis, only the data points belonging to stationary states, which were solely
selected manually, were adopted. By observing the time series of density and velocity, the

stationary states could be different and could not be fixed for different observer. Different
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Figure 5.1: The probable fundamental diagram of unidirectional flow in corridor.

selections would influence the stability of the fundamental diagram. Whereas large scatters
could hide or blur some important information such as phase transition. Thus, it is neces-
sary to give a reasonable definition for the stationary state and an uniform method to detect
the time interval of it precisely.

For all of the experiments used in this study, the specific flow concept worked well.
However, the maximum density in this study is only about 4.0 m~2, which is smaller than
the maximum densities given in literature. It keeps an open question if Js is dependent on
b for higher densities.

In unidirectional flow, a discontinuity of the fundamental diagram was observed. How-
ever, it was not sure whether this phenomenon arised from the change of the experiment
setup. When the density is larger than 2.0 m~2, the specific flow in the corridor start to
decrease in the fundamental diagram of unidirectional flow. The maximum flow rate ob-
tained from the experiment is J = 1.6 - b in a corridor, while the flow rate passing through

the exit is J = 2.1 - b when congestion occurs in front of the exit. If 1.6 (m - s)! is the
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capacity of the corridor, it does not agree with handbooks. The flow rate passing through a
transition is never larger than the capacity of corridor almost in all the handbooks. On the
other side, the specific flow in main corridor of T-junction seems increasing persistently
for p > 2.0 m™2. As a result, it is not clear whether higher specific flow can be obtained
in straight corridor at high density. If the second doubt is true and 1.6 (m - s)~! is not the
capacity of straight corridor, then it could be assumed that the fundamental diagram of uni-
directional flow should look like the diagram shown in Figure 5.1. For pedestrian flow in a
corridor two different phases could exist in certain density intervals. However, this is only
an assumption that needs to be confirmed further in the future.

For different types of bidirectional flow in straight corridor, no any difference were
found in the fundamental diagram at the density ranges observed in the experiments. How-
ever, they are different types of movement after all. The interaction mode among pedes-
trians are clearly different. How do these interactions affect the pedestrian flow? In which
way or state, the effect of these differences could be found. These problems also need to be
investigated deeply.

For merging flow in T-junctions, it is found that the fundamental diagrams of the main
stream and branches are totally different. The velocities of pedestrians in branches are
smaller than that in the main stream nearly at all densities. It seems that the merging
behavior of pedestrian streams has something to do with it. And the perception ability of
pedestrian is assumed as a reason for this discrepancy. However, it is not sure whether the
turning behavior around the corner is another factor for this difference. All of these doubts

and assumptions need to be answered and addressed in further studies.
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