000128376 001__ 128376
000128376 005__ 20210301121154.0
000128376 0247_ $$2Handle$$a2128/4912
000128376 0247_ $$2ISSN$$a1866-1807
000128376 020__ $$a978-3-89336-836-5
000128376 037__ $$aFZJ-2013-00115
000128376 041__ $$aEnglish
000128376 1001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul Ferdinand$$b0$$eCorresponding author$$gmale$$ufzj
000128376 245__ $$aReal-Space Finite-Difference PAW Method for Large-Scale Applications on Massively Parallel Computers
000128376 260__ $$aJülich$$bFoschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2012
000128376 300__ $$aVI, 212 S.
000128376 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$bbook$$mbook$$s128376
000128376 3367_ $$2DRIVER$$abook
000128376 3367_ $$01$$2EndNote$$aBook
000128376 3367_ $$2DataCite$$aOutput Types/Book
000128376 3367_ $$2ORCID$$aBOOK
000128376 3367_ $$2BibTeX$$aBOOK
000128376 4900_ $$0PERI:(DE-600)2445293-2$$aSchriften des Forschungszentrums Jülich. Schlüsseltechnologien / Key Technologies$$v53
000128376 502__ $$aRWTH Aachen, Diss., 2012$$bDr. (Univ.)$$cRWTH Aachen$$d2012
000128376 500__ $$3POF3_Assignment on 2016-02-29
000128376 500__ $$aSchriftenreihen des Forschungszentrum Jülich
000128376 520__ $$aSimulations of materials from first principles have improved drastically over the last few decades, benefitting from newly developed methods and access to increasingly large computing resources. Nevertheless, a quantum mechanical description of a solid without approximations is not feasible. In the wide field of methods for $\textit{ab initio}$ calculations of electronic structure, it has become apparent that density functional theory and, in particular, the local density approximation can also make simulations of large systems accessible. Density functional calculations provide insight into the processes taking place in a vast range of materials by their access to an understandable electronic structure in the framework of the Kohn-Sham single particle wave functions. A number of functionalities in the fields of electronic devices, catalytic surfaces, molecular synthesis and magnetic materials can be explained by analyzing the resulting total energies, ground state structures and Kohn-Sham spectra. However, challenging physical problems are often accompanied by calculations including a huge number of atoms in the simulation volume, mostly due to very low symmetry. The total workload of wave-function-based DFT scales at best quadraticallywith the number of atoms. This means that supercomputersmust be used. In the present work, an implementation of DFT on real-space grids has been developed, suitable for making use of the massively parallel computing resources of modern supercomputers. Massively parallel machines are based on distributed memory and huge numbers of compute nodes, easily exceeding 100,000 parallel processes. An efficient parallelization of density functional calculations is only possible when the data can be stored process-local and the amount of inter-node communication is kept low. Our real-space grid approach with three-dimensional domain decomposition provides an intrinsic data locality and solves both the Poisson equation for the electrostatic problemand the Kohn-Sham eigenvalue problem on a uniform real-space grid. The derivative operators are approximated by finite differences leading to localized operators which only require communication with the nearest neighbor processes. This leads to excellent parallel performance at large system sizes. Treating only valence electrons, we apply the projector-augmented wave method for accurate modeling of energy contributions and scattering properties of the atomic cores. In addition to real-space grid parallelization, we apply a distribution of the workload of different Kohn-Sham states onto parallel processes. This second parallelization level avoids the memory bottleneck for large system sizes and introduces even more parallel speedup. Calculations of systems with up to 3584 atoms of Ge, Sb and Te were performed on (up to) all 294,912 cores of JUGENE, the massively parallel supercomputer installed at Forschungszentrum Jülich.
000128376 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000128376 8564_ $$uhttps://juser.fz-juelich.de/record/128376/files/FZJ-2013-00115.pdf$$yOpenAccess
000128376 8564_ $$uhttps://juser.fz-juelich.de/record/128376/files/FZJ-2013-00115.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000128376 8564_ $$uhttps://juser.fz-juelich.de/record/128376/files/FZJ-2013-00115.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000128376 8564_ $$uhttps://juser.fz-juelich.de/record/128376/files/FZJ-2013-00115.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000128376 909__ $$ooai:juser.fz-juelich.de:128376$$pVDB
000128376 909CO $$ooai:juser.fz-juelich.de:128376$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000128376 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000128376 9141_ $$y2012
000128376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000128376 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000128376 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000128376 920__ $$lyes
000128376 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000128376 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000128376 980__ $$abook
000128376 980__ $$aUNRESTRICTED
000128376 980__ $$aJUWEL
000128376 980__ $$aFullTexts
000128376 980__ $$aI:(DE-Juel1)PGI-1-20110106
000128376 980__ $$aI:(DE-Juel1)IAS-1-20090406
000128376 980__ $$aVDB
000128376 9801_ $$aFullTexts
000128376 981__ $$aI:(DE-Juel1)IAS-1-20090406