000012842 001__ 12842
000012842 005__ 20240619091638.0
000012842 0247_ $$2DOI$$a10.1088/0022-3727/43/47/474002
000012842 0247_ $$2WOS$$aWOS:000284099700003
000012842 037__ $$aPreJuSER-12842
000012842 041__ $$aeng
000012842 082__ $$a530
000012842 084__ $$2WoS$$aPhysics, Applied
000012842 1001_ $$0P:(DE-Juel1)VDB38936$$aBedanta, S.$$b0$$uFZJ
000012842 245__ $$aSingle-particle blocking and collective magnetic states in discontinuous CoFe/Al2O3 multilayers
000012842 260__ $$aBristol$$bIOP Publ.$$c2010
000012842 300__ $$a474002
000012842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012842 3367_ $$2DataCite$$aOutput Types/Journal article
000012842 3367_ $$00$$2EndNote$$aJournal Article
000012842 3367_ $$2BibTeX$$aARTICLE
000012842 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012842 3367_ $$2DRIVER$$aarticle
000012842 440_0 $$03700$$aJournal of Physics D - Applied Physics$$v43$$x0022-3727$$y47
000012842 500__ $$aThe authors like to thank Ch Binek, Th Eimuller, A Paul, Th Kleinefeld and F Stromberg for discussions. Financial supports by the DFG (Graduate School 'Structure and Dynamics of Heterogeneous Systems' and KL306/38) and by the Konrad-Krieger Stiftung are highly appreciated.
000012842 520__ $$aDiscontinuous metal-insulator multilayers (DMIMs) of [CoFe(t(n))/Al2O3](m) containing soft ferromagnetic (FM) Co80Fe20 nanoparticles embedded discontinuously in a diamagnetic insulating Al2O3 matrix are ideal systems to study interparticle interaction effects. Here the CoFe nanoparticles are treated as superspins with random size, position and anisotropy. At low particle density, namely nominal layer thickness t(n) = 0.5 nm, single-particle blocking phenomena are observed due to the absence of large enough interparticle interactions. However at 0.5 nm < t(n) < 1.1 nm, the particles encounter strong interactions which give rise to a superspin glass (SSG) phase. The SSG phase has been characterized by memory effect, ageing, dynamic scaling, etc. With further increase in particle concentration (1.1 nm < t(n) < 1.4 nm) and, hence, smaller interparticle distances, strong interactions lead to a FM-like state which is called superferromagnetic (SFM). The SFM state has been characterized by several techniques, e. g. dynamic hysteresis, Cole-Cole plots extracted from ac susceptibility, polarized neutron reflectometry, etc. Moreover, the SFM domains could be imaged by x-ray photoemission electron microscopy and magneto-optic Kerr effect microscopy. At t(n) > 1.4 nm physical percolation occurs between the particles and the samples are no longer discontinuous and then termed as metal insulating multilayers. Competition between long-and short-ranged dipolar interactions leads to an oscillating magnetization depth profile from CoFe layer to CoFe layer with an incommensurate periodicity.
000012842 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x0
000012842 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000012842 588__ $$aDataset connected to Web of Science
000012842 650_7 $$2WoSType$$aJ
000012842 7001_ $$0P:(DE-HGF)0$$aPetracic, O.$$b1
000012842 7001_ $$0P:(DE-HGF)0$$aChen, X.$$b2
000012842 7001_ $$0P:(DE-HGF)0$$aRhensius, J.$$b3
000012842 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, E.$$b4$$uFZJ
000012842 7001_ $$0P:(DE-Juel1)VDB1360$$aRücker, U.$$b5$$uFZJ
000012842 7001_ $$0P:(DE-Juel1)130572$$aBrückel, T.$$b6$$uFZJ
000012842 7001_ $$0P:(DE-HGF)0$$aDoran, A.$$b7
000012842 7001_ $$0P:(DE-HGF)0$$aScholl, A.$$b8
000012842 7001_ $$0P:(DE-HGF)0$$aCardoso, S.$$b9
000012842 7001_ $$0P:(DE-HGF)0$$aFreitas, S. S.$$b10
000012842 7001_ $$0P:(DE-HGF)0$$aKleemann, W.$$b11
000012842 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/43/47/474002$$gVol. 43, p. 474002$$p474002$$q43<474002$$tJournal of physics / D$$v43$$x0022-3727$$y2010
000012842 8567_ $$uhttp://dx.doi.org/10.1088/0022-3727/43/47/474002
000012842 909CO $$ooai:juser.fz-juelich.de:12842$$pVDB
000012842 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012842 9141_ $$y2010
000012842 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x0
000012842 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000012842 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000012842 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000012842 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000012842 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000012842 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x3
000012842 970__ $$aVDB:(DE-Juel1)124587
000012842 980__ $$aVDB
000012842 980__ $$aConvertedRecord
000012842 980__ $$ajournal
000012842 980__ $$aI:(DE-Juel1)PGI-4-20110106
000012842 980__ $$aI:(DE-Juel1)ICS-1-20110106
000012842 980__ $$aI:(DE-82)080009_20140620
000012842 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000012842 980__ $$aUNRESTRICTED
000012842 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000012842 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000012842 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000012842 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000012842 981__ $$aI:(DE-Juel1)IBI-8-20200312
000012842 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000012842 981__ $$aI:(DE-Juel1)PGI-4-20110106
000012842 981__ $$aI:(DE-Juel1)ICS-1-20110106
000012842 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000012842 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000012842 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000012842 981__ $$aI:(DE-Juel1)VDB881