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1 Introduction

Scattering methods have to be seen in context to direct mgagethods (such as microscopy).
The wavelength of the probe gives a good guess for the abbessiuctural sizes to be resolved
— in either case it is connected to a lower boundary. Esgeda@l the probes neutrons and x-
rays, small angle scattering opens a window on the nanorferigth scales. These length
scales are highly interesting as mesoscales where the stitomioperties are overcome and
many body effects come into play. A lot of macroscopic prépsrcan only be explained on
the basis of mesoscopic length scale effects. Theoretiwdénstanding, modeling and small
angle scattering are tightly linked.

Historically, lens systems for neutrons and x-rays wereagoessible and, thus, the only way
to the nanometer length scales were scattering experirfler#tk While direct images are intu-
itively understandable, scattering experiments have tanoerstood on the basis of the Fourier
transformation. While for well ordered crystals the undamding remains a simple task (note
Bragg's law) for many mesoscopic effects the scatteringepagtdemand for more complicated
modeling. Nonetheless, scattering models have been amtteeéoped for the focus of the ac-
tual research, and apart from that, plausible argumenteanel for many practical applications
such that the experienced small angle scatterer sees adetaifs at first hand before tedious
modeling is applied.

Nowadays, electron microscopy has become a strong toobtmegghe nano-world. It has to be
mentioned, that often surfaces (of fractures) are chaiaete Single images are only excerpts
of the whole story — sometimes one even has to worry whetlgecanditions of preparation
represent the desired condition. Apart from that, averaggntudes — such as particle sizes
— have to be counted from many measurements. The scatteqegments are in most of the
cases in situ experiments. The sample can be kept at a cenagerature, pressure, magnetic
and electric field — even shear and flow fields can be appliethdst of the cases, rather large
volumes are irradiated, and so an average impression isnelddtdlom macroscopic volumes.
So, for instance, the obtained patrticle sizes base on gatidtats.

A good example for small angle scattering are polymer systéapolymer is a linear molecule
of identical monomeric units — so polystyrene is made of tiieeae monomer. The monomer
properties are to be understood (more or less) as atomifict® and mainly the connectiv-
ity of the monomers is responsible for the mesoscopic utalgilég which finally ends in a
coil-shaped linear molecule. The small angle scatterimperment especially focuses on the
connectivity and is able to resolve the overall dimensiothefsingle molecule. If chemically
different polymers form a compound material, often nan@ndbmains form — so the poly-
mers tend to phase separation. These domains can be tdiptbd thermal history, but also
by chemical additives (such as diblock copolymers) whigbpsut the miscibility by keeping
the domains small at a desired size. Still, these lengtles@ak of several tens to hundreds of
nanometers and are ideally observed by small angle scagtefhe mixing of polymers leads
to mixed macroscopic properties — so often mechanic priggeare tailored from originally
individual favorable properties such as softness, rublastieity, and mechanical strength. A
microscopic understanding of these effects is invaluable.

Complex fluids consist of at least two components. In the cseaoemulsions oil and water
are mixed macroscopically homogenously — but microscdpistill domains of oil and water
form on the nano-scale. The added surfactant makes the emeilsion thermodynamically
stable and controls the domain size. Additives like amphgpolymers tailor the overall
properties of the amphiphile. Often, the surfactant filmdmees stiffer, and larger domains can
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Fig. 1. Scheme of a small angle neutron scattering instrument. €a&rans pass from the left
to the right. The incident beam is monochromated and cotihaefore it hits the sample. Non-
scattered neutrons are absorbed by the beam stop in theroafntiee detector. The scattered
neutron intensity is detected as a function of the scatteaimgle26.

form. All these effects were monitored by small angle nauscattering experiments.

2 Small Angle Neutron Scattering

The first small angle neutron scattering instruments haga developed for continuous sources
realized by research reactors. The neutrons are modenatdt [zold source to ca. 20-30K.
Typical wavelengths are found between 4 arkd &nd reasonable intensities are obtained up
to 20A. A typical scheme of a small angle neutron scattering (SANStrument is depicted in
Figure 1. The cold neutrons can easily be guided by mirrotecbeavities to the instrument.
The first important element is the neutron velocity selefay. 2). It consists of tilted lamellae
on a rotating cylinder which selects the desired neutroacigl mechanically. The wavelength
uncertainty results from the gap width and length betweenldimellae and typically takes
values oft5 to +10%. Then the collimation is formed by an entrance apertndetlae sample
aperture with a certain distandg> on which the neutrons propagate freely. For varying the
collimation distance, the neutrons are guided with movalfeneutron guides to the desired
distance relatively to the fixed sample position. Very oftde maximum length is 20 meters,
but other examples exist with 6 over 10 to 40m. The sampleisgal directly behind the sample
diaphragm (see sample position on Fig. 3). Most of the nastfbetween 50 and 90%) pass the
sample unscattered. In front of the detector a beam stoplabttese high intensities because
the highly sensitive detector does not serve this high dynasnge. The scattered neutrons are
detected on a position sensitive area detector. In this thayscattering intensity is monitored
as a function of the scattering ang@e Typical sizes of the beam stop are4icnt, and for the
sensitive area between $60 to 100<100cn¥. For varying the covered angle, the detector is
placed at different distancds, (symmetrically to the collimation distande-) inside a large
vacuum tube.
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Fig. 22 The neutron velocity se- Fig. 3: View on the sample position of the small
lector of the small angle scatter- angle scattering instrument KWS-1 at the research
ing instrument KWS-3 at the re- reactor Garching FRM-2. The neutrons come from
search reactor Garching FRM-2. the left through the collimation and sample aperture

This selector was especially man- (latter indicated). A sample changer allows for run-

ufactured for larger wavelengths ning 27 samples (partially colored solutions) in one

(above ?\3). batch file. The silicon window to the detector tube is
seen behind.

2.1 Thescattering vector Q

In this section, the scattering vectQy is described with its experimental uncertainty. The
scattering process is schematically shown in Fig. 4, ingpate and momentum space. In real
space the beam hits the sample with a distribution of veésc{inagnitude and direction). The
neutron speed is connected to the wavelength, whose distiibis depending on the velocity
selector. The directional distribution is defined by thdiowtion. After the scattering process,
the direction of the neutron is changed, but the principatauracy remains the same. The
scattering angled is the azimuth angle. The remaining polar angle is not dssdigurther
here. For samples with no preferred direction the scatgdsrisotropic and, thus, does not
depend on the polar angle. In reciprocal space the neutmendedined by the wave vector
k. The main direction of the incident beam is defined as theaecton, and the modulus is
determined by the wavelength, H8g| = 27/\. Again, k is distributed due to the selector and
the collimation inaccuracies. The wave vector of the (qualsistic scattering process has the
same modulus, but differs in direction, namely by the argleThe difference between both
wave vectors is given by the following value:

Q= 47” sin 0 (1)

For isotropic scattering samples, the measured intensjpgnids only on the absolute value of
the scattering vectof) = |Q|. For small angles, the common approximation of small angle
(neutron) scattering is valid:

Q="T 2 @

The typicalQ-range of a small angle scattering instrument thus followsifthe geometry. The
detector distanceb, vary in the range from 1m to 20m. The area detector is actiteden
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Fig. 4: Top: the neutron speed and its distribution in real space, bedo after the scattering
processBottom: The same image expressed by wave vectors (reciprocal sgdee¥cattering
vector is the difference between the outgoing and incoming waetor.

@p = 2cm and35cm from the center. The ang®® is approximated by the ratig, /L, and
the wavelength\ is 7A. For the two SANS instruments KWS-1 and KWS-2 at the research
reactor Garching FRM-2, a typicél-range from k103 to 0.38 ! is obtained.

The @Q-vector describes which length scaleare observed, following the rule= 27/Q. If

a Bragg peak is observed, the lattice parameters can be taketlydfrom the position of the
peak. If the scattering shows a sudden change at a cétaalue, we obtain the length scale
of the structural differences. There are characterisattedng behaviors that can be described
by so called scattering laws that are simple power l@#%svith different exponenta..

2.2 TheFourier transformation in the Born approximation

This section deals with the physical explanation for theespance of the Fourier transforma-
tion in the Born approximation. In simple words, in a scattgrexperiment one observes the
intensity as the quadrature of the Fourier amplitudes ofdmple structure. This is consider-
ably different from microscopy where a direct image of thegke structure is obtained. So the
central question is: Where does the Fourier transformatiomecfrom?

The classical SANS instruments are also called pin-holeungents. Historically, pin-hole
cameras were discovered as the first cameras. They allowsdttwe real sceneries on blank
screens —maybe at different size, but the image resemlseatitiinal picture. The components
of this imaging process are depicted in Fig. 5. Let’'s assumefdllowing takes place with
only one wavelength of light. The original image is then a m@womatic picture of the three
numbers 1, 2 and 3. The corresponding rays meet in the pa-haol divide afterwards. On
the screen, the picture is obtained as a real-space imagjeappearing upside down. From
experience we know, that the screen may be placed at diffdrgtiances resulting in different
sizes of the image. The restriction of the three beams tlirdlug pin-hole holds for the right
space behind the pin-hole. In front of the pin-hole the ligitpagates also in other directions
—itis just absorbed by the wall with the pin-hole.

So far, we would think that nothing special has happeneddutiis process of reproduction.
But what did happen to the light in the tiny pin-hole? We shaddume that the size of the pin-
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Fig. 5: The principle of a pin-hole camera transferred to the pineh8ANS instrumentlop:
The pin-hole camera depicts the original image (here caimgjof three numbers). For sim-
plicity, the three points are represented by three rays winnget in the pin-hole, and divide
afterwards. On the screen, a real space image is obtainedde®wn).Bottom: The pin-hole
SANS instrument consists of an entrance aperture which is@ejpon the detector through the
pin-hole (same principle as above). The sample leads tdesaag. The scattered beams are
shown in green.

hole is considerably larger than the wavelength. Here, iifiereint rays of the original image
interfere and inside the pin-hole a wave field is formed. Tler@antum along the optical z-axis
indicates the propagation direction and is not very intarggbecause is nearly constant for
all considered rays). The momenta in the x-y-plane are moailer and indicate a direction.
They originate from the original picture and remain consthuring the whole process. Before
and after the pin-hole the rays are separated and the dimsctire connected to a real-space
image. In the pin-hole itself the waves interfere and theemi®ld looks more complicated.
The information about the original scenery is conserveough all the stages. That means that
also the wave field inside the pin-hole is directly connedttetthe original picture.

From quantum mechanics (and optics) we know that the vedtaramnentum is connected
to a wave vector. This relation describes how the waves enté pin-hole are connected
to a spectrum of momenta. In classical quantum mechanican@otrons) a simple Fourier
transformation describes how a wave field in real spacel{pla-state) is connected with a wave
field in momentum space (separated beams). In principlentbgpretation is reversible. For
electromagnetic fields (for x-rays) the concept has to hesfeared to particles without mass.
Overall, this experiment describes how the different stafgpear and how they are related.
The free propagation of a wave field inside a small volume-fle) leads to a separation of
different rays accordingly to their momentum.

Now we exchange the original image by a single source (séawspot in lower part of Fig.
5). This source is still depicted on the image plate (or detgc If we insert a sample at the
position of the pin-hole the wave field starts to interactwiiie sample. In a simplified way
we can say that a small fraction of the wave field takes theggate structure of the sample
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Fig. 6: How a Fourier transformation is obtained with refractive §=%. The real space struc-
ture in the focus of the lens is transferred to differentlsedied beams. The focusing lens is
concave since for neutrons the refractive index is smaliantl.

while the major fraction passes the sample without intesacfThis small fraction of the wave
field resulting from the interaction propagates freely tagathe image plate and generates
a scattering pattern. As we have learned, the momenta prigséme small fraction of the
wave field give rise to the separation of single rays. So théspace image of the sample
leads to a Fourier transformed image on the detector. Thisigxplanation how the Fourier
transformation appears in a scattering experiment — saghassimplified motivation for the
Born approximation. A similar result was found by Fraunhdterthe diffraction of light at
small apertures. Here, the aperture forms the wave fielch@pin-hole) and the far field is
connected to the Fourier transformation of the aperturpesha

Later we will see that the size of wave field packages at thénpla is given by the coherence
volume. The scattering appears independently from sucli sofavolumes and is a simple
superposition.

2.3 Remarkson focusing SASinstruments

Small angle scattering instruments with focusing optitsaafor larger samples. If the entrance
aperture remains at the old size the resolution of the exysari is kept, but the intensity is in-
creased tremendously. If the entrance aperture is closedrsyderable factors the resolution is
increased strongly, and much lower scattering vectorgdlastructures) are resolved. Usually,
the entrance aperture must have a minimum size for a minimtesity. For a symmetric set-up
(collimation and detector distance equal, iig. = Lp) the focusing optic is in the middle at
the sample position. The focysis half the collimation distance, i.¢. = %LC = %LD. Now
the places where exact Fourier transforms are obtaineah ffie entrance aperture and from the
sample structure) do not agree anymore. The sample is@tiflidered as a small volume and
from there the waves propagate freely to the detector, amdltkady known relation between
sample structure and scattering image holds.

For focusing elements, the places of Fourier transformatdiffer (see Fig. 6). The original
structure is placed in the focus, and the resulting distiagtiys are obtained at the other side
of the lens in the far field. So for focusing SAS instrumenitg, places of appearing Fourier
transformations for the entrance aperture and the sampigste differ.

The historical development of cameras can be seen in parBiie first cameras were pin-hole
cameras, but when lenses could be manufactured lens careplased the old ones. The direct
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advantage was the better light yield being proportionaiédéns size. Another effect appeared:
The new camera had a depth of focus — so only certain objectsdepicted sharply, which was

welcomed in the art of photography. The focusing SAS insamnidepicts only the entrance

aperture, and the focusing is not a difficult task. The hightemsity or the better resolution are

the welcomed properties of the focusing SAS instrument.

2.4 Theresolution of a SANS instrument

The simple derivatives of equation 2 support a very simpésvwon the resolution of a small
angle neutron scattering experiment. We obtain:

AQ\®  [AXN®  [2A0\° 3

(Z) -(5)-(F) ©)
The uncertainty about th@-vector is a sum about the uncertainty of the wavelength had t
angular distribution. Both uncertainties result from therfepreparation, namely from the
monochromatization and the collimation. The neutron vigfagelector selects a wavelength
band of either-5% or+10%. The collimation consists of an entrance aperture witlameter
dc and a sample aperture of a diameter The distance between themiig.
One property of eq. 3 is the changing importance of the twartmrtions at small and larg@.
At small ) the wavelength spread is nearly negligible and the smatig€) andd dominate
the resolution. This also means that the width of the printesgm is exactly the width of the
resolution function. More exactly, the primary beam profiescribes the resolution function
at small@. Usually, the experimentalist is able to change the remwiwdt smallQ). At large
@ the resolution function is dominated by the wavelength waggy. So the experimentalist
wants to reduce it — if possible — for certain applicationsisTcontribution is also an important
issue for time-of-flight SANS instruments at spallatione®@s. The wavelength uncertainty is
determined by the pulse length of the source and cannot needdvithout intensity loss.
A more practical view on the resolution function includes geometrical contributions explic-
itly [3]. One obtains:

() aka (2 () () 2 (e ) ()]

Now the wavelength spread is describeddy being the full width at the half maximum. The
geometrical terms have contributions from the aperturessiz andds and the spatial detector
resolutiondp. The collimation lengthl. and detector distanck, are usually identical such

that all geometric resolution contributions are evenlgéa¢l- = 2ds then). This ideal setup

maximizes the intensity with respect to a desired resatutio

The resolution function profile is another topic of the coti@n calculations. A simple approach
assumes Gaussian profiles for all contributions, and fil#yoverall relations read:

o0

d%(Q)

s

_ /dQR(Q—Q)-w

0

RQ-Q) = \/%UQ exp (—%@_—2@)2) (6)

~—

(5)

meas
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Fig. 7: The coherence volume is usually much smaller than the savoplene (left). So the
overall scattering appears as an incoherent superpositibthe scattering from many coher-
ence volumes (right).

The theoretical macroscopic cross section is often desgdly a model function which is fit-
ted to the experimental data. In this case the computer anogmly does a convolution of
the model function with the resolution functidR(AQ). Alternatively, there are methods to
deconvolute the experimental data without modeling théesgag at first hand.

The here described resolution function is given as a Gausslas is true for relatively narrow
distributions. The reason for using a Gaussian functidmoalgh the original distributions of
andé@ are often triangular is: The central limit theorem can beliaggo this problem because
we have seen from eq. 4 that there are four contributionseadkolution function, and the
radial averaging itself also smears the exact resolutioetion further out. Thus, the initial
more detailed properties of the individual distributiomsrobt matter anymore. Equations 5 and
6 are a good approximation for many practical cases.

We now want to describe the connection between the resolédiaction and the coherence of
the neutron beam at the sample position. From optics we kiawtdhe transverse coherence
length:

AL¢ AL¢
gco ransv — &g is similar to A -1_ ¢ 7
Byt 2dc Qe 7Tdc ( )
It can be compared well with the geometric resolution cotion that arises from the entrance
aperture only. Small differences in the prefactors we cé@lysaeglect. For the longitudinal
coherence length we obtain:

1 /AN 1 /AN
Ceohlong = Z)\ (T) is similar to Akt = %)\ (T) (8)

This coherence length can be well compared to the wavevecitertainty of the incoming
beam. If we look back on Figure 4 we see that the coherencenekxactly describes the un-
certainty of the incoming wave vector. The two contribus@me perpendicular which supports
the vectorial (independent) addition of the contributiom&qg. 4 for instance. The coherence
volume describes the size of the independent wave packageh allow for wave-like prop-
erties such as the scattering process. So the coherengresdiescribes the maximum size of
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structure that is observable by SANS. If larger structueexito be detected the resolution must
be increased.

The understanding how the small coherence volume coverghtble sample volume is given in
the following (see also Fig. 7). Usually the coherence va@usrather small and is many times
smaller than the irradiated sample volume. So many indeggegrabherence volumes cover the
whole sample. Then, the overall scattering intensity cc@s an independent sum from the
scattering intensities of all coherence volumes. Thisliedancoherent superposition.

2.5 Thetheory of the macroscopic cross section (the Born approximation)

We have seen that the SANS instrument aims at the macrosomsis section which is a func-
tion of the scattering vecto®. In many examples of isotropic samples and orientationally
averaged samples (powder samples) the macroscopic cragsnsdepends on the modulus
|Q| = @ only. This measured function has to be connected to impostanctural parameters
of the sample. For this purpose model functions are devdlopke shape of the model func-
tion in comparison with the measurement already allowsdtrdjuish the validity of the model.
After extracting a few parameters with this method, deepeoties — like thermodynamics —
allow to get deeper insight about the behavior of the sampially, other parameters — like
concentration, temperature, electric and magnetic fields are varied experimentally to verify
the underlying concepts at hand. The purpose of this andtlusving sections is to give some
ideas about model functions.

We have obtained a clear picture of the Born approximatioreatien 2.2. More formally, the
Born approximation arises from quantum mechanics, and afamts and assumptions came
along: The scattering amplitudes of the outgoing waves arwetl as perturbations of the in-
coming plane wave. The matrix elements of the interactidemq@l with these two wave fields
as vectors describe the desired amplitudes. The intergptitential can be simplified for neu-
trons and the nuclei of the sample by the Fermi pseudo pateiitiis expresses the smallness
of the nuclei (¢-1fm) in comparison to the neutron waveleng’eha(). For the macroscopic cross
section we immediately obtain a sum over all nuclei:

2

dx

1
E(Q) =7 (9)

Z bjexp(iQ - r;)
J

This expression is normalized to the sample volumigecause the second factor usually is pro-
portional to the sample size. This simply means: The moretawe put in the beam the more
intensity we obtain. The second factor is the square of thaiaude because we measure inten-
sities. While for electromagnetic fields at low frequencias ean distinguish amplitudes and
phases (without relying on the intensity) the neutrons amtum mechanical particles where
experimentally such details are hardly accessible. Fdit lignd neutrons) for instance holo-
graphic methods still remain. The single amplitude is a suerm each nucleugwith its typical
scattering lengtlb;, and a phase described by the exponential. The square of dltersoy
Iengthb? describes a probability of a scattering event taking placeh isolated nucleus. The
phase arises between different elementary scatteringsegéthe nuclei for the large distances
of the detector. In principle, the scattering length can égative (for hydrogen for instance)
which indicates an attractive interaction with a phaseComplex scattering lengths indicate
absorption. The quadrature of the amplitude can be reargdni
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Fig. 8 The concept of the scattering length density. On the leftatbenic structure of a

polyethylene oxide polymer (PEO) is depicted. For smalllamsgattering the wavelength is
much larger than the atomic distance. So for SANS the polymeeas like a worm with a

constant scattering length density inside.

dx 1 :
Q=5 Z bibw exp (1Q(r; — 1)) (10)

Here we find then self-terms with identical indiceand k without any phase and cross terms
with phases arising from distances between different mudkere it becomes obvious that only
relative positions of the nuclei matter which is a resultteff uadrature. The overall phase of
the sample does not matter because of the modulus in eq. 9.ilWes&vthis expression for the
polymer scattering.

Apart from this detailed expression a simplified view is &bl for small angle scattering ex-
periments. Firstly, we know that the wavelength is typ'y:e?u& which is much larger than
the atom-atom distance of ca. é.5SecondIy, the SANS experiment aims at structures at the
nano-scale. So the scattering vector aims at much largeEmndiss compared to the atomistic
distances (i.e2rQ~! > 1A). This allows for exchanging sums by integrals as follows:

> b — /d3rp(r)--- (11)

\%
Such methods are already known for classical mechanicgebppear all over physics. The
meaning is explained by the sketch of Figure 8. The polymbgploylene oxide (PEO) contains
many different nuclei of different species (hydrogen, carland oxide). However, the SANS
method does not distinguish the exact places of the nucles. pblymer appears rather like a
homogenous worm. Inside, the worm has a constant scattength density which reads:

1

b (12)

Pmol =
m

ol .

j€{mol}
So, for each molecule we consider all nuclei and normalizéhkyoverall molecule volume.
Of course different materials have different scatteringgte densities. The initial equation 9

reads then:

0@ = | [ pressian (13)
1 i 2 1 2
) ) (14)
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The single amplitude is now interpreted as a Fourier transdtion of the scattering length
densityp(r) which we simply indicate by(Q). The amplitude is defined by:

@) = [ ' ) explic) (15)
|4
Again, equation 13 loses the phase information due to thaulned

2.6 Spherical colloidal particles

In this section we will derive the scattering of diluted spba& particles in a solvent. These
particles are often called colloids, and can be of inorgamiterial while the solvent is either
water or organic solvent. Later in the manuscript intecadiwill be taken into account.

One important property of Fourier transformations is thatstant contributions will lead to
sharp delta peaks & = 0. This contribution is not observable in the practical sraty
experiment. The theoretically sharp delta peak might hafmeit®@ width which is connected
to the overall sample size, but centimeter dimensions ahrhigher compared to the largest
sizes observed by the scattering experimentin). So formally we can elevate the scattering
density level by any numberp,;:

pr) — p(r) — s leadsto  p(Q) — p(Q) — 2mprerd(Q) (16)

The resulting delta peaks can simply be neglected. For aisphparticle we then arrive at the
simple scattering length density profile:

() = Ap for|r| <R
Peinglet) =0 for lr| > R
Inside the sphere the value is constant because we assunogéous particles. The reference

scattering length density is given by the solvent. This fiomcwill then be Fourier transformed
accordingly:

(17)

27 T R
pinge(Q) = [ do [ a9 sin9 [ drr? Ap exp (i1Q] - x| cos()) (18)
[ofom]
R
1 X=+1
= A drr? | —exp (i 9
2w po/ rr LQTe p(lQrX)}X__l (19)
R .
= 4m Ap /dr r? Slnééir) (20)
0
B A7 sin(QR) — QR cos(QR)
= Ap ?R:” (3 QR ) (21)

In the first line 18 we introduce spherical coordinates wite vectorQ determining thez-
axis for the real space. The vector prodapt then leads to the cosine term. In line 19 the
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Fig. 9: The form factor of a homogenous Fig. 10: Experimental scattering curve of
sphere in a double logarithmic plot. spherical SiQ colloids in the deuterated

solvent DMF [4]. The resolution function
(eq. 5) is included in the fit (red line).

azimuthal integral is simplgw, and the variableX = cos is introduced. Finally, in line 20
the kernel integral for spherically symmetric scatteriegdth density distributions is obtained.
For homogenous spheres we obtain the final result of eq. Zfingthis result together for the
macroscopic cross section (eq. 14) we obtain:

2

dX N
= (Ap)2 ¢spheres ‘/sphere F(Q) (22)

L@ = o

psingle ( Q)

sin(QR) — QRcos(QR)\*
a0 @9

We consideredV independent spheres in our voluie and thus obtained the concentration
of spherespneres- Furthermore, we defined the form factd()), which describes thé)-
dependent term for independent spheres (or the consideapes in general). The function is
shown in Figure 9. The first zero of the form factor is foundjat= 4.493/R. This relation
again makes clear why the reciprocal spagespace) is called reciprocal. We know the limit
for small scattering angles B(Q —0) = 1 — %QQRQ. So the form factor is normalized tiQ
and the initial dependence @)t indicates the size of the sphere. For large scattering arigge
form factor is oscillating. Usually the instrument cannesalve the quickest oscillations and
an average intensity is observed. The asymptotic behawialdveadF(Q — co) = 3(QR) .
The obtained power la)—* is called Porod law and holds for any kind of bodies with sharp
interfaces. So, sharp interfaces are interpreted as Isawith ¢ = 2 dimensions, and the
corresponding exponentés— d. The general appearance of the Porod formula reads then:

F@) = (3

dx 4
o@=PQ (24)
The amplitude of the Porod scatteriigytells about the surface per volume and reéatds=
2m(Ap)%Sior/Vier- Apart from the contrast, it measures the total surfdge per total vol-
ume V.. For our shperes, the Porod constant becofies 2w (Ap)?4nR? /(41 R3/(3¢)) =
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6m¢1(Ap)?/R. The surface to volume ratio is smaller the larger the irhliai radiusr is.
The remaining scaling with the concentration and the contrastAp)? arises still from the
prefactor which we discussed in context with eq. 22.

When comparing the theoretical description of the sphefocal factor with measurements one
finds a good agreement (Fig. 10). Many fringes are seen, terttae third or fourth peak the
function does not indicate any oscillation any more. Furtigge, the sharp minima are washed
out. All of this is a consequence of the resolution functieg.(5) which has been taken into
account for the fitted curve. For many other examples onerededs to take the polydispersity
into account. The synthesis of colloids usually producefalevdistribution of different radii.

In our example the polydispersity is very low which is theicex case. Polydispersity acts in
a similar way compared to the resolution function. The simmpma are washed out. While
the resolution appears as a distribution of differ@avalues measured at a certain point the
polydispersity integrates over several radii.

Another general scattering law for isolated (dilute) ciolfois found for small scattering angles.
The general appearance of the Guinier scattering law is:

%(Q%O) = %(0) - exp (—%Qsz) (25)

When comparing the scattering law of a sphere and the Guimienfla we obtainz, = \/gR.

The radius of gyratior?, can be interpreted as a momentum of inertia normalized ttotiaé
mass and specifies the typical size of the colloid of any sh&ipe Guinier formula can be seen
as an expansion at small scattering angles of the logarithtimeomacroscopic cross section
truncated after th§? term. Further details are discussed in Appendix A.

Another general appearance for independent colloids Seatliscussed now using equation
22. The macroscopic cross section is determined by sevemriant factors: The contrast
between the colloid and the solvent givenAdy?, the concentration of the colloids, the volume
of a single colloid, and the form factor. Especially for shi@lthe latter factor turns td, and
the first three factors dominate. When knowing two factorsfcdhnemical considerations, the
third factor can be determined experimentally using snradl@neutron scattering.

2.7 Scattering of a polymer

In this section we derive the scattering of a single (isalpolymer coil. This model is the
basis for many more complicated models of polymers in smiugpolymeric micelles, polymer
melts, diblock and multiblock copolymers and so on. So thdeustanding of these concepts is
rather important for scattering experiments on any kindalymer systems.

This example starts apart from many other calculations fpoint-like monomers (see eq. 10).
These monomers are found along a random walk with an avetagensdth of /. We try
to argue for non-ideal chain segments, but finally will agrat an expression for rather ideal
polymers. For the scattering function we obtain (definitdry (Q) in eq. 37-39):
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N
SQ x5 Y (e Q- (R, ~Ry))) (26)
7,k=0
x v Y e (-3(Q- (R, Ry (27)
Ji:k=
1 NO
x % Z exp <—% 2 (R — Rk)2> (28)
§,k=0

At this stage we use statistical arguments (i.e. statigplegsics). The first rearrangement of
terms (line 27) moves the ensemble average of the monoméiopss(and distanceaR ;)
from the outside of the exponential to the inside. This is Ementary step which is true
for polymers. The underlying idea is, that the distadB ;; arises from a sum ofj — k|
bond vectors which all have the same statistics. So eaclelsaib-with the indicegk is only
distinguished by its number of bond vectors inside. Thelsibgnd vectob, has a statistical
average ofb;) = 0 because there is no preferred orientation. The next higloenent is the
second momentb?) = (3. This describes that each bond vector does a finite step with a
average length of. For the sub-chain we then find an average $ixR?,) = [j — k|(%.. The
reason is that in the quadrature of the sub-chain only thgodial terms contribute because two
distinct bond vectors show no (or weak) correlations.

Back to the ensemble average: The original exponential casebre as a Taylor expansion
with all powers of the argumenQAR;,. The odd powers do not contribute with similar
arguments than for the single bond vedfoy) = 0. Thus, the quadratic term is the leading term.
The reason why the higher order terms can be arranged thatfitiadly fit to the exponential
expression given in line 27 is the weak correlations of twatidct bond vectors. The next line
28 basically expresses the orientational average of thelsain vectorAR;;, with respect to
the Q-vector in three dimensions.

This derivation can be even simpler understood on the b&sisgaussian chain. Then every
bond vector follows a Gaussian distribution (with a centezero bond length). Then the
ensemble average has the concrete meaning = [ ---exp (—2ARZ, /(|j —k|(%)) P ARjy..
This distribution immediately explains the rearrangenadiiine 27. The principal argument is
the central limit theorem: When embracing several segmerda affective segment any kind of
distribution converges to yield a Gaussian distributiohisidea came from Kuhn who formed
the term Kuhn segment. While elementary bonds still may hawelations at the stage of the
Kuhn segment all correlations are lost, and the chain rdxdlyaves ideal. This is the reason
why the Kuhn segment lengtty was already used in the above equations.

In the following we now use the average length of sub-chaesi{ Kuhn segments or not),
and replace the sums by integrals which is a good approam&dir long chains with a large
number of segmenty’.

N

N
S(Q) %/dj/d/{:exp (—éQ2.|j—k].€§(> (29)
0

0

= N fo(Q°R2) (30)
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Fig. 11: The theoretical Debye function Fig. 12: Scattering of a h/d-PDMS poly-

describes the polymer scattering of in- mer blend. The linear scale shows dif-
dependent polymers without interaction. ferent compositions of hydrogenous poly-
The two plots show the function on a lin- mer (from bottom to top: 0.05, 0.94, 0.27,
ear and double logarithmic scale. 0.65) while the double logarithmic plot

shows the 0.65 sample only [5].

fo(x) = % (exp(—z) — 1+ x) with = = Q2R§ (31)

In this integral one has to consider the symmetry of the mexlulThe result is basically the
Debye function which describes the polymer scattering Weth length scales of the overall
coil down to length scales where the polymer becomes locigiig (see Fig. 11). The covalent
bonds of a carbon chain effectively contribute to a certigility which will not be treated here.
The radius of gyration describes the overall dimensionettain and if?, = /N/6 (. The
limits of the polymer scattering are found to be:

S5(Q) x N(1-3Q°R)) for smallQ (32)
x N-2/(Q*R) for largeQ (33)

The line 32 describes the conventional Guinier scatterfrthe overall polymer (compare eq.
25). The second line 33 describes a power law. At these |lesogtlles the sub-chains of different
lengths are self-similar and so they reveal a fractal bemaVihe prefactor is connected to the
magnitudeRg/N which is the effective segment size. From this magnitudeaamecalculate
back to the local rigidity which is responsible for the effee segments.

When we want to compare experiments with this theory the beshples are obtained from
polymer blends (Fig. 12). One could come to the conclusiahdhuted polymer solutions must
provide the ideal conditions for such an experiment buttpralty the interactions of the solvent
molecules with the monomers lead to a deviating behavioe Jaod solvent conditions lead
to energetic violations of monomer-monomer contacts antis@olymer swells and displays
a different fractal behavior. The high power law in good solvents comes closejo!”. The
Flory theory was the first attempt to describe this behaviliteumany refinements find small
corrections. The theoretically most precise Flory expomen = 0.588 which is the reciprocal
value of the given exponerit7 above.
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Fig. 13. Typical scattering of a homopoly- Fig. 14: Typical scattering of a diblock
mer blend with interactions. The sample is  copolymer blend with interactions [7]. The
a polybutadiene(1,4) / polystyrene blend at  poly-ethylene-propylene—poly-dymethyl-
104 C and 500bar [6]. siloxane is heated to 17Q (1bar).

So polymer blends are often better examples for weaklyastarg chains. This finding is sup-
ported by the low entropy of mixing which enforces small ratgions. The discussed example
of Fig. 12 [5] considers the isotopic mixture of hydrogenand deuterated polydimethylsilox-
ane (PDMS). This practically leads to one of the lowest fmdssnteractions even though they
are not completely zero. The theoretical concept of theaanghase approximation is able
to deal with interactions and describes phase diagramshensicattering in this way. At high
temperatures the polymers usually mix well, and the seageomes closer to the weakly inter-
acting case. Closer to the demixing temperature at lower ¢eatyres the scattering intensity
increases dramatically. This indicates strong compasitiactuations. The system loses the
tendency to form a homogenous mixture and so local enrictsredrspecies A or B are pos-
sible. While the random phase approximation is a mean fieldeqanwhich describes weak
fluctuations there are other concepts for strong fluctuat@ose to the phase boundary: The
3-dimensional Ising model — known for ferromagnets — déssrithe strong fluctuations of the
two component polymer system.

The example of an interacting homopolymer blend is showndnE. The general aspects are
kept from non-interacting polymers (compare Fig. 12). Té¢egtering curve has a maximum at
Q = 0, and is decaying to larg@ where a power law of)~2 for ideal chains is observed. The
maximal intensity is connected to the reciprocal suscéilvhich describes the tendency of
spontaneous thermal fluctuations to decay. High intessitiean low susceptibilies and strong
fluctuations — the vice versa arguments are valid. The wiélthis curve is connected to the
correlation lengtrg. At low interactions it is tightly connected to the singldlcoze, i.e. R,
With strong fluctuations close to the phase boundary theeladion length tends to diverge,
which measures the typical sizes of the thermally fluctgaginrichments.

A diblock copolymer is a linear chain with two different maner species. The first part is
pure A and the latter pure B. The typical scattering of a dibloopolymer blend is shown
in Fig. 14. At smallQ the ideal scattering increases wif# accordingly to the ‘correlation
holet. The chemistry of the molecule does not allow for émments of A or B on large length
scales. A continuously growing volume would only allow foriehments on the surface — this
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explains finally the exponent in the scattering law. The expental finite intensities relate to
imperfections of the molecules. The chain length rdtiis distributed, and finally allows for
enrichments on large length scales.

The dominating fluctuations are found at a finig¢. This expresses that the coil allows for
separations of A and B predominantly on the length scale efayerall coil. Close to the
phase boundary and especially below (where the polymergads a micro phase separation)
the coils are stretched. The peak at fir(le also expresses that the fluctuations tend to form
alternating enrichments. From a center it would look likeeaaiing order of A-B-A-B-... The
width of the peak is again connected to the correlation eagt AQ ! which describes the
length of this decaying order. At high, again aQ—2 law is observed describing the sub-chains
being ideal chains. On these length scales homopolymed$l@nd diblock copolymers do not
differ.

The whole understanding of phase boundaries and fluctgatsomportant for applications.
Many daily life plastic products consist of polymer blendsce the final product should have
combined properties of two different polymers. Therefgrelymer granulates are mixed at
high temperatures under shear in an extruder. The final Shagpeen by a metal form where
the polymer also cools down. This process involves a cettaperature history which covers
the one-phase and two-phase regions. Therefore, the fiodliprr consists of many domains
with almost pure polymers. The domain size and shape ardmwgagrtant for the final product.
So the process has to be tailored in the right way to yield peeified domain structure. This
tailoring is supported by a detailed knowledge of the phamentiaries and fluctuation behav-
ior. Advanced polymer products also combine homopolymadsdiblock copolymers for an
even more precise and reproducible domain size/shapeingilf8, 9]. The diblock copoly-
mer is mainly placed at the domain interfaces, and, thezefofluences the domain properties
precisely.

2.8 Contrast variation

For neutron scattering the method contrast variation opevigle field of possible experiments.
For soft matter research the most important labeling agprésathe exchange of hydrogéH

by deuterium?H = D. Since in a single experiment the phase information is dostpletely
the contrast variation experiment retrieves this infororapartially. Relative positions of two
components are obtained by this method.

The scattering length density of the overall sample is nodeustood to originate from each
component individually. So the specifig(r) takes the value of the scattering length density of
componentj when the location points to componenand is zero otherwise. We would then
obtain the following:

p(Q) = / d*r <Z pj(l")) exp(iQr) (34)

v

n specifies the number of components. The assumption of inessipility means that on
every place there is one component present, and so all chail/functionsp;(r) fill the full
space. Furthermore, we would like to define compondming the reference component, i.e.
pret = p1 (S€€ eq. 16). This means that on each place we have @) function similar to eq.
17. Then, we arrive at:



Small Angle Scattering D1.19

p(Q) =2 2rn(Q) (35)

The macroscopic cross section is a quadrature of the Soattength density(Q), and so we
arrive at:

dX 1
0Q = V.M:QAP;I(Q)'A'%KQ) (36)
= (ApjiApr) - Sjr(Q) (37)
k=2
= D (Dpp)*-S5(Q) + 2 D (ApilApr) - R Si(Q) (38)
j=2 2<j<k<n

In line 37 the scattering functiofi;,(Q) is defined. By this the contrasts are separated from the
(-dependent scattering functions. Finally, in line 38 thagdinal and off-diagonal terms are
collected. There are — 1 diagonal terms, anél(n — 1)(n — 2) off-diagonal terms. Formally,
theseln(n — 1) considerably different terms are rearranged (the comibingf j, k} are now
simply numbered by), and a number of different measurements with different contrasts are
considered.

dx

15(Q)| =D (80 Ap)y; - 5(Q) (39)

s J

In order to reduce the noise of the result, the number of nteasentss exceeds the number
of independent scattering functions considerably. Théesygshen becomes over-determined
when solving for the scattering functions. Formally, one nanetheless write:

5(Q =Y (a0 05 (@) (40)

s S

The formal inverse matrikAp- Ap);jl is obtained by the singular value decomposition method.
It describes the closest solution of the experiments inecdrmif the finally determined scattering
functions.

An example case is discussed for a bicontinuous microeowuigith an amphiphilic polymer
[10]. The microemulsion consists of oil and water domaingcWwinave a sponge structure. So
the water domains host the oil and vice versa. The surfattkantovers the surface between the
oil and water domains. The symmetric amphiphilic polymesipon and function was not clear
beforehand. From phase diagram measurements it was ot$bat¢he polymer increases the
efficiency of the surfactant dramatically. Much less sudatis needed to solubilize equal
amounts of oil and water. Fig. 15 discusses the meaning ofribes terms of the scattering
functions. Especially the film-polymer scattering is higimteresting to reveal the polymer
role inside the microemulsion (see Fig. 16). By the modelingas clearly observed that the
amphiphilic polymer is anchored in the membrane and the tlwokis describe a mushroom
inside the oil and water domains. So basically, the polymearmacro-surfactant. The coils of
the polymer exert a certain pressure on the membrane andtkegpThe membrane with less
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Fig. 15. Scheme of scattering functions
for the cross terms within the microemul-
sion. There are the film-polymer scatter-
ing Sgp, the oil-film scatteringSor, and
the oil-polymer scatteringop. The real
space correlation function means a con-
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Fig. 16: A measurement of the film-
polymer scattering for a bicontinuous
microemulsion with a symmetric am-
phiphilic polymer. The solid line is de-
scribed by a polymer anchored in the
film. The two blocks are mushroom-like

volution of two structures. in the domains. At low) the overall do-
main structure (or size) limits the ideal-

ized model picture.

fluctuations allows for the formation of larger domains wétlbetter surface to volume ratio.
This is finally the explanation how the polymer acts as aniefiity booster.

3 Small Angle X-ray Scattering

While a detailed comparison between SANS and SAXS is giveawpehe most important
properties of the small angle x-ray scattering techniqual ¢¥e discussed here. The x-ray
sources can be x-ray tubes (invented nRyen, keyword Bremsstrahlung) and modern syn-
chrotrons. The latter ones guide fast electrons on undslathich act as laser-like sources for
x-rays with fixed wavelength, high brilliance and low divenge. This simply means, that the
collimation of the beam often yields narrow beams, and ttagliated sample areas are consid-
erably smaller (often smaller than cax Amnt). A view on the sample position is given in Fig.
17 (compare Fig. 3). One directly has the impression thatialiows are tiny and adjustments
must be made more carefully.

The conceptual understanding of the scattering theoyhstitls for SAXS. For the simplest
understanding of the contrast conditions in a SAXS expeartmi¢ is sufficient to count the
electron numbers for each atom. The resulting scatteringthedensity reads then (compare
eqg. 12):



Small Angle Scattering

Fig. 17: The sample position of the SAXS
instrument ID2 at the ESRF, Grenoble,
France. The photons propagate from the
right to the left. The collimation guides on
the left and the detector tank window on top
of the cone on the left give an impression
about the small beam size (being typically
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Fig. 18: The complex dispersion curve for
gold (Au) at the k. edge [11]. The overall
effective electron numbegr= f, + f'+if”
replaces the conventional electron number
Z = fo in equation 41. On the x-axis the
energies of the x-rays is shown, with indica-
tions for the experimentally selected three

1x1mnt). energies (black, red, blue). In this way,

equal steps for the contrast variation are

achieved.
Te
Pmol = v Z Zj (41)
mol j€{mol}

The classical electron radiusis = e?/(4regm.c?) = 2.82fm. The electron number of each
atomj is Z;. This means that chemically different substances have &astnbut for similar
substances (often for organic materials) it can be rathetkweHeavier atoms against light
materials are much easier to detect. Finally, the densigimilar materials is also important.
Especially for organic materials (soft matter researdh, high intensity of the source still
allows for collecting scattering data. Many experimentseban these simple modifications
with respect to SANS, and so the fundamental understandiSgAXS experiments does not
need any further explanation.

For completeness, we briefly discuss the scattering lergytkity for light scattering. Here the
polarizability plays an important role. Without going irdetails, the final contrast is expressed
by the refractive index incremerit/dc:

_ 27mn dn
Pmol = 22 deol

(42)

The refractive index incremenln/dc finally has to be determined separately experimentally
when the absolute intensity is of interest. The concewtnati,,, iS given in units volume per
volume (for the specific substance in the solvent). The vesngth of the used light is.
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3.1 Contrast variation using anomalous small angle x-ray scattering

While for contrast variation SANS experiments the simplehexge of hydrogehH by deu-
terium?H = D allowed for changing the contrast without modifying thegtical behavior, in
contrast variation SAXS experiments the applied trick isssderably different: The chemistry
is mainly dominated by the electron or proton numbeand isotope exchange would not make
any difference. The electron shells on the other hand haaneances with considerable disper-
sion curves. An example is shown in Fig. 18 with the real gafcalled dispersion) and the
imaginary partf” (called absorption). The overall effective electron numpe- f, + f' +if”
replaces the conventional electron numbet f, in equation 41. Below the resonance energy
the considered 4 shell appears only softer and effectively less electropeapfor f. Above
the resonance energy single electrons can be scatteredoauthie host atom (Compton ef-
fect). This is directly seen in the sudden change of the ghisor Furthermore, the actual
dependence of the dispersion is influenced by backscajtefithe free electrons to the host
atom (not shown in Fig. 41). This effect finally is the readuat the complex dispersion curve
can only theoretically be well approximated below the resme (or really far above). For this
approximation it is sufficient to consider isolated hosnhato

For best experimental results tifevalues have to be equally distributed. Thus, the energies
are selected narrower close to the resonance (see Fig. Ag)infestigated sample consisted
of core-shell gold-silver nanopatrticles in soda-limecsite glass (details in reference [11]). By
the contrast variation measurement one wanted to see thie wadicles in the glass matrix,
but also the core-shell structure of the individual pagscl Especially, the latter one would
be obtained from such an experiment. First results of thieement are shown in Fig. 19.
The most important result from this experiment is that thiginal scattering curves at first
hand do not differ considerably. The core-shell structesults from tiny differences of the
measurements. For contrast variation SANS experimentsahieasts can be selected close to
zero contrast for most of the components which means thastiamounts of additives can be
highlighted and the intensities between different comsragay vary by factors of 100 to 1000.
So for contrast variation SAXS measurements the statiséies to be considerably better which
in turn comes with the higher intensities.

Another example was evaluated to a deeper stage [12]. Her@dlyelectrolyte polyacrylate
(PA) with SP* counterions was dissolved in water. The idea behind wasthieapolymer is
dissolved well in the solvent. The charges of the polymerthedons lead to a certain swelling
of the coil (exact fractal dimensiomsnot discussed here). The counterions form a certain cloud
around the chain — the structure of which is the final aim ofitlvestigation. The principles of
contrast variation measurements leads to the followingeg (compare eq. 39):

dx

10 = (ApSr—H2O>2'SSr—Sr + (APPA—H2O)2'SPA—PA + Apsr—n20Appa-120 - Ssr—pa (43)

The overall scattering is compared with two contributianBig. 20. The scattering functions of
the cross ternds,_pa and the pure ion scatterirty, s, have been compared on the same scale,
and so the contrasts are included in Fig. 20. Basically, afletiunctions describe a polymer
coil in solvent — the different contrasts do not show fundatakdifferences. Nonetheless, a
particular feature of the ion scattering was highlightedhiy experiment: A) ~ 0.11nm!

is a small maximum which is connected to the interpretatibaff@ctive charge beads along
the chains. The charge clouds obviously can be divided eparated beads. The emphasis of
the observed maximum correlates with the number of beadssrall numbers it is invisible,
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Fig. 19: Absolute calibrated scatter-

ing curves of different core-shell Ag/Au

nanoparticles in soda-lime silicate glass

[11]. The implantation sequence has been
changed for the three samples. Note that
the three scattering curves for the selected
energies (colors correspond to Fig. 18) do

only slightly differ due to the small changes
of the contrast.
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Fig. 20: Further evaluated scattering func-
tions of a different system [12]: A poly-
electrolyte with St* counterions in aque-
ous solution. The top curve (black) indi-
cates the overall scattering. The middle
curve (blue) displays the polymer-ion cross
terms being sensitive for relative positions.
The bottom curve (red) depicts the pure ion
scattering.

and becomes more pronounced with higher numbers. The auihally find that the number
of 5 beads is suitable for the description of the scatterumges: An upper limit is also given
by the high() scattering where the 5 chain segments appear as indepesudenbils. This
example beautifully displays, that the method of contrasiation can be transferred to SAXS
experiments. Difficulties of small contrast changes hawnlm/ercome by the good statistics

due to much higher intensities.

4 Comparison of SANS and SAXS

We have seen that many parallels exist between the two exeetal methods SANS and
SAXS. The theoretical concepts are the same. Even the sbrtaaation method as a highly
difficult and tedious task could be applied for both probesthe following, we will highlight
differences that have been discussed so far and othergéhatsamentioned now.

The high flux reactors are at the technical limit of highesitren fluxes. For SANS instruments
maximal fluxes of ca. 210° neutrons/s/crhhave been reached at the sample position. Typical
sample sizes are ofdlcn?. For coherent scattering fractions of ca. 10% this resulitsaximal
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count rates of 1Hz, while practically most of the count rates stay beloWHf For long
collimations, the experimentalists deal often with 10 t&130 The resolution for these count
rates has been relaxed. Wavelength spreads of eith&s or +10% are widely accepted, and
the collimation contributes equally, such that a typicalotation of AQ/Q of 7 to 14% is
reached. For many soft matter applications this is more #umguate. If one thinks of liquid
crystalline order, much higher resolution would be desimbith one would like to overcome
by choppers in combination with time-of-flight analysis. ésolution of ca. 1% would be a
reasonable expectation. The continuous sources are Htgille which is desired for a reliable
absolute calibration.

The spallation sources deliver either continuous beantseombst advanced ones aim at pulsed
beams. Repetition rates range from ca. 14 to 60Hz. The ityetst is usable for SANS
instruments could reach up to 20 times higher yields (asyadror the ESS in Lund), i.e. up to
4x10° neutrons/s/ci Surely, detectors for count rates of 10 to 100 MHz have togveldped.
The new SANS instruments will make use of the time-of-fligithnique for resolving the
different wavelengths to a high degree. Of course otherlpnedwith such a broad wavelength
band have to be overcome — but this topic would lead too far.

The synchrotron sources reach much higher photon yieldshadften makes the experiments
technically comfortable but for the scientist at work higktressful. The undulators provide
laser-like qualities of the radiation which explains maaydrable properties. Some num-
bers for the SAXS beam line ID2 at the ESRF shall be reportea udable flux of %10
photons/s/mrh(note the smaller area) is provided which results for a gf@ample area of ca.
1x0.02mn? in 10" photons/s. In some respect the smallness of the beam urggskabout
the representativeness of a single shot experiment. At sgnahrotron sources the beam is not
highly stable which makes absolute calibration and baakgiicsubtraction difficult. The same
problem also occurs for the pulsed neutron sources whets phthe calibration procedure
become highly difficult.

For classical SANS experiments one can make some statemiémsabsolute calibration is
practically done for all experiments and does not take méfohte- it is technically simple. Be-
tween different instruments in the world the discrepanofedifferent calibrations results often
in errors of 10% and less. Part of the differences are diifiecalibration standards, but also
different concepts for transmission measurements and ohetayls of the technical realization.
The nuclear scattering is a result of the fm small nuclei &sdlts in easily interpretable scat-
tering data for even large angles — for point-like scatgerar corrections have to be made. In
this way all soft matter and biological researchers avoificdit corrections. Magnetic struc-
tures can be explored by neutrons due to its magnetic monMagnetic scattering is about
to be implemented to a few SANS instruments. Ideally, fowartctels are experimentally mea-
sured (., I, ,I_.,andl__) by varying the polarization of the incident beam (up/doangl

of the analyzer. Nowadays, tiele technique allows for covering relatively large exit sl
at high polarization efficiencies. But also early magneticl&s have been possible with sim-
pler setups and reduced information. The unsystematicndigmee of the scattering length
often opens good conditions for a reasonable contrast foyregperiments. If the natural iso-
topes do not provide enough contrast pure isotopes mightone the problem. The contrast
variation experiments have been presented for the SANSiiaod. By a simple exchange of
hydrogen by deuterium, soft matter samples can be preparediplicated contrast variation
experiments. One advantage is the accessibility of thecmrtyast for most of the components
which allows for highlighting smallest amounts of addisvelhe high demand for deuterated
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chemicals makes them cheap caused by the huge number of NisiRists. The low absorp-
tion of neutrons for many materials allows for studying mesbly thick samples (1 to 5mm
and beyond). Especially, for contrast variation experitaeariten larger optical path lengths
are preferred. The choice for window materials and sampiageers is simple in many cases.
Neutron scattering is a non-destructive method. Espgibalogical samples can be recovered.

Contrarily we observe for the SAXS technique: The demandliephlute calibration in SAXS
experiments is growing. Initial technical problems arerogene and suitable calibration stan-
dards have been found. The interpretation of scattering aftarger angles might be more
complicated due to the structure of the electron shells.shall angle scattering the possible
corrections are often negligible. Magnetic structuresargervable by the circular magnetic
dichroism [13] but do not count to the standard problems eskird by SAXS. The high con-
trast of heavy atoms often makes light atoms invisible. Bfirraatter samples the balanced use
of light atoms results in low contrast but, technically, tréliant sources overcome any inten-
sity problem. The ASAXS technique is done close to resormn€single electron shells and
opens the opportunity for contrast variation measuremertie achieved small differences in
the contrast still allow for tedious measurements becdesstatistics are often extremely good
— only stable experimental conditions have to be providda: dbsorption of x-rays makes the
choice of sample containers and windows more complicatéeé. absorbed radiation destroys
the sample in principle. Short experimental times are tausrable.

To summarize, the method of small angle neutron scattesngpod-natured and allows to
tackle many difficult tasks. The small angle x-ray scattgtiechnique is more often applied
due to the availability. Many problems have been solved (tirbg solved) and will turn to
standard techniques. So, in many cases the competitiorebetthe methods is kept high for
the future. Today, practically, the methods are compleargrand support each other for the
complete structural analysis.
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Appendices
A Guinier Scattering

The crucial calculation of the Guinier scattering is donebiaylor expansion of the logarithm
of the macroscopic cross section for small scattering ve@oDue to symmetry considerations
there are no linear terms, and the dominating term ofkdependence is calculated to be:

R, = —%' aa—cyln (p(Q)p(—Q)>’QZO (44)
_ 19 2R(p(Q) [ &*r p(r)(~ir) exp(~iQr)) (45)
2 0Q p(Q)p(—Q) oo
P [ dr p(r) (=) exp(~iQr)
P(Q)p(—Q) Qo
_ J @r p(r)(ir) exp(iQr) [ d*r p(r)(—ir) exp(—iQr)
" p(Q)p(—Q) o + 0 (46)
= (%) — (r)? 47)

= (e-m)) (48)

The first line 44 contains the definition of the Taylor coe#fidi. Then, the derivatives are
calculated consequently. Finally, we arrive at terms dairtg the first and second momenta.
The last line 48 rearranges the momenta in the sense of angari&o the radius of gyration
is the second moment of the scattering length density kigtdn with the center of ‘gravity’
being at the origin. We used the momenta in the following sens

W = [ / [ ot (49)
@) = [ / [ o (50)

So far we assumed an isotropic scattering length densitgitdigon. In general, for oriented
anisotropic particles, the Guinier scattering law woulade

ax _d¥ 9 2 2 2 2 2

Z5Q=0) = 2= (0)exp (<@ (o= (0)") — @2 (= 1)) — Q2 (== (=) >251)
Here, we assumed a diagonal tensor of second moment. Thisssign allows for different
widths of scattering patterns for the different directiohs reciprocal space large dimensions
appear small and vice versa. Furthermore, we sedihat defined as the sum over all second
momenta, and so in the isotropic case a faétappears in the original formula 25.
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