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D1.2 H. Frielinghaus

1 Introduction

Scattering methods have to be seen in context to direct imaging methods (such as microscopy).
The wavelength of the probe gives a good guess for the accessible structural sizes to be resolved
– in either case it is connected to a lower boundary. Especially for the probes neutrons and x-
rays, small angle scattering opens a window on the nanometerlength scales. These length
scales are highly interesting as mesoscales where the atomistic properties are overcome and
many body effects come into play. A lot of macroscopic properties can only be explained on
the basis of mesoscopic length scale effects. Theoretical understanding, modeling and small
angle scattering are tightly linked.
Historically, lens systems for neutrons and x-rays were notaccessible and, thus, the only way
to the nanometer length scales were scattering experiments[1, 2]. While direct images are intu-
itively understandable, scattering experiments have to beunderstood on the basis of the Fourier
transformation. While for well ordered crystals the understanding remains a simple task (note
Bragg’s law) for many mesoscopic effects the scattering patterns demand for more complicated
modeling. Nonetheless, scattering models have been and aredeveloped for the focus of the ac-
tual research, and apart from that, plausible arguments arefound for many practical applications
such that the experienced small angle scatterer sees a lot ofdetails at first hand before tedious
modeling is applied.
Nowadays, electron microscopy has become a strong tool to probe the nano-world. It has to be
mentioned, that often surfaces (of fractures) are characterized. Single images are only excerpts
of the whole story – sometimes one even has to worry whether the conditions of preparation
represent the desired condition. Apart from that, average magnitudes – such as particle sizes
– have to be counted from many measurements. The scattering experiments are in most of the
cases in situ experiments. The sample can be kept at a certaintemperature, pressure, magnetic
and electric field – even shear and flow fields can be applied. Inmost of the cases, rather large
volumes are irradiated, and so an average impression is obtained from macroscopic volumes.
So, for instance, the obtained particle sizes base on good statistics.
A good example for small angle scattering are polymer systems. A polymer is a linear molecule
of identical monomeric units – so polystyrene is made of the styrene monomer. The monomer
properties are to be understood (more or less) as atomistic effects, and mainly the connectiv-
ity of the monomers is responsible for the mesoscopic understanding which finally ends in a
coil-shaped linear molecule. The small angle scattering experiment especially focuses on the
connectivity and is able to resolve the overall dimension ofthe single molecule. If chemically
different polymers form a compound material, often nanometer domains form – so the poly-
mers tend to phase separation. These domains can be tailoredby the thermal history, but also
by chemical additives (such as diblock copolymers) which support the miscibility by keeping
the domains small at a desired size. Still, these length scales are of several tens to hundreds of
nanometers and are ideally observed by small angle scattering. The mixing of polymers leads
to mixed macroscopic properties – so often mechanic properties are tailored from originally
individual favorable properties such as softness, rubber elasticity, and mechanical strength. A
microscopic understanding of these effects is invaluable.
Complex fluids consist of at least two components. In the case of microemulsions oil and water
are mixed macroscopically homogenously – but microscopically still domains of oil and water
form on the nano-scale. The added surfactant makes the microemulsion thermodynamically
stable and controls the domain size. Additives like amphiphilic polymers tailor the overall
properties of the amphiphile. Often, the surfactant film becomes stiffer, and larger domains can
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Fig. 1: Scheme of a small angle neutron scattering instrument. The neutrons pass from the left
to the right. The incident beam is monochromated and collimated before it hits the sample. Non-
scattered neutrons are absorbed by the beam stop in the center of the detector. The scattered
neutron intensity is detected as a function of the scattering angle2θ.

form. All these effects were monitored by small angle neutron scattering experiments.

2 Small Angle Neutron Scattering

The first small angle neutron scattering instruments have been developed for continuous sources
realized by research reactors. The neutrons are moderated by the cold source to ca. 20-30K.
Typical wavelengths are found between 4 and 6Å, and reasonable intensities are obtained up
to 20Å. A typical scheme of a small angle neutron scattering (SANS) instrument is depicted in
Figure 1. The cold neutrons can easily be guided by mirror coated cavities to the instrument.
The first important element is the neutron velocity selector(Fig. 2). It consists of tilted lamellae
on a rotating cylinder which selects the desired neutron velocity mechanically. The wavelength
uncertainty results from the gap width and length between the lamellae and typically takes
values of±5 to±10%. Then the collimation is formed by an entrance aperture and the sample
aperture with a certain distanceLC on which the neutrons propagate freely. For varying the
collimation distance, the neutrons are guided with movable1m neutron guides to the desired
distance relatively to the fixed sample position. Very often, the maximum length is 20 meters,
but other examples exist with 6 over 10 to 40m. The sample is placed directly behind the sample
diaphragm (see sample position on Fig. 3). Most of the neutrons (between 50 and 90%) pass the
sample unscattered. In front of the detector a beam stop absorbs these high intensities because
the highly sensitive detector does not serve this high dynamic range. The scattered neutrons are
detected on a position sensitive area detector. In this way,the scattering intensity is monitored
as a function of the scattering angle2θ. Typical sizes of the beam stop are 4×4cm2, and for the
sensitive area between 60×60 to 100×100cm2. For varying the covered angle, the detector is
placed at different distancesLD (symmetrically to the collimation distanceLC) inside a large
vacuum tube.
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Fig. 2: The neutron velocity se-
lector of the small angle scatter-
ing instrument KWS-3 at the re-
search reactor Garching FRM-2.
This selector was especially man-
ufactured for larger wavelengths
(above 7̊A).

Fig. 3: View on the sample position of the small
angle scattering instrument KWS-1 at the research
reactor Garching FRM-2. The neutrons come from
the left through the collimation and sample aperture
(latter indicated). A sample changer allows for run-
ning 27 samples (partially colored solutions) in one
batch file. The silicon window to the detector tube is
seen behind.

2.1 The scattering vector Q

In this section, the scattering vectorQ is described with its experimental uncertainty. The
scattering process is schematically shown in Fig. 4, in realspace and momentum space. In real
space the beam hits the sample with a distribution of velocities (magnitude and direction). The
neutron speed is connected to the wavelength, whose distribution is depending on the velocity
selector. The directional distribution is defined by the collimation. After the scattering process,
the direction of the neutron is changed, but the principal inaccuracy remains the same. The
scattering angle2θ is the azimuth angle. The remaining polar angle is not discussed further
here. For samples with no preferred direction the scattering is isotropic and, thus, does not
depend on the polar angle. In reciprocal space the neutrons are defined by the wave vector
k. The main direction of the incident beam is defined as the z-direction, and the modulus is
determined by the wavelength, so|ki| = 2π/λ. Again,k is distributed due to the selector and
the collimation inaccuracies. The wave vector of the (quasi) elastic scattering process has the
same modulus, but differs in direction, namely by the angle2θ. The difference between both
wave vectors is given by the following value:

Q =
4π

λ
sin θ (1)

For isotropic scattering samples, the measured intensity depends only on the absolute value of
the scattering vectorQ = |Q|. For small angles, the common approximation of small angle
(neutron) scattering is valid:

Q =
2π

λ
· 2θ (2)

The typicalQ-range of a small angle scattering instrument thus follows from the geometry. The
detector distancesLD vary in the range from 1m to 20m. The area detector is active between
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Fig. 4: Top: the neutron speed and its distribution in real space, beforeand after the scattering
process.Bottom:The same image expressed by wave vectors (reciprocal space).The scattering
vector is the difference between the outgoing and incoming wave vector.

∅D = 2cm and35cm from the center. The angle2θ is approximated by the ratio∅D/LD and
the wavelengthλ is 7Å. For the two SANS instruments KWS-1 and KWS-2 at the research
reactor Garching FRM-2, a typicalQ-range from 1×10−3 to 0.3Å−1 is obtained.
TheQ-vector describes which length scalesℓ are observed, following the ruleℓ = 2π/Q. If
a Bragg peak is observed, the lattice parameters can be taken directly from the position of the
peak. If the scattering shows a sudden change at a certainQ-value, we obtain the length scale
of the structural differences. There are characteristic scattering behaviors that can be described
by so called scattering laws that are simple power lawsQα with different exponentsα.

2.2 The Fourier transformation in the Born approximation

This section deals with the physical explanation for the appearance of the Fourier transforma-
tion in the Born approximation. In simple words, in a scattering experiment one observes the
intensity as the quadrature of the Fourier amplitudes of thesample structure. This is consider-
ably different from microscopy where a direct image of the sample structure is obtained. So the
central question is: Where does the Fourier transformation come from?
The classical SANS instruments are also called pin-hole instruments. Historically, pin-hole
cameras were discovered as the first cameras. They allowed topicture real sceneries on blank
screens – maybe at different size, but the image resembled the original picture. The components
of this imaging process are depicted in Fig. 5. Let’s assume the following takes place with
only one wavelength of light. The original image is then a monochromatic picture of the three
numbers 1, 2 and 3. The corresponding rays meet in the pin-hole, and divide afterwards. On
the screen, the picture is obtained as a real-space image, just appearing upside down. From
experience we know, that the screen may be placed at different distances resulting in different
sizes of the image. The restriction of the three beams through the pin-hole holds for the right
space behind the pin-hole. In front of the pin-hole the lightpropagates also in other directions
– it is just absorbed by the wall with the pin-hole.
So far, we would think that nothing special has happened during this process of reproduction.
But what did happen to the light in the tiny pin-hole? We shouldassume that the size of the pin-
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Fig. 5: The principle of a pin-hole camera transferred to the pin-hole SANS instrument.Top:
The pin-hole camera depicts the original image (here consisting of three numbers). For sim-
plicity, the three points are represented by three rays whichmeet in the pin-hole, and divide
afterwards. On the screen, a real space image is obtained (upside down).Bottom:The pin-hole
SANS instrument consists of an entrance aperture which is depicted on the detector through the
pin-hole (same principle as above). The sample leads to scattering. The scattered beams are
shown in green.

hole is considerably larger than the wavelength. Here, the different rays of the original image
interfere and inside the pin-hole a wave field is formed. The momentum along the optical z-axis
indicates the propagation direction and is not very interesting (because is nearly constant for
all considered rays). The momenta in the x-y-plane are much smaller and indicate a direction.
They originate from the original picture and remain constant during the whole process. Before
and after the pin-hole the rays are separated and the directions are connected to a real-space
image. In the pin-hole itself the waves interfere and the wave field looks more complicated.
The information about the original scenery is conserved through all the stages. That means that
also the wave field inside the pin-hole is directly connectedto the original picture.
From quantum mechanics (and optics) we know that the vector of momentum is connected
to a wave vector. This relation describes how the waves inside the pin-hole are connected
to a spectrum of momenta. In classical quantum mechanics (for neutrons) a simple Fourier
transformation describes how a wave field in real space (pin-hole state) is connected with a wave
field in momentum space (separated beams). In principle, theinterpretation is reversible. For
electromagnetic fields (for x-rays) the concept has to be transferred to particles without mass.
Overall, this experiment describes how the different states appear and how they are related.
The free propagation of a wave field inside a small volume (pin-hole) leads to a separation of
different rays accordingly to their momentum.
Now we exchange the original image by a single source (see yellow spot in lower part of Fig.
5). This source is still depicted on the image plate (or detector). If we insert a sample at the
position of the pin-hole the wave field starts to interact with the sample. In a simplified way
we can say that a small fraction of the wave field takes the realspace structure of the sample
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Fig. 6: How a Fourier transformation is obtained with refractive lenses. The real space struc-
ture in the focus of the lens is transferred to differently directed beams. The focusing lens is
concave since for neutrons the refractive index is smaller than 1.

while the major fraction passes the sample without interaction. This small fraction of the wave
field resulting from the interaction propagates freely towards the image plate and generates
a scattering pattern. As we have learned, the momenta present in the small fraction of the
wave field give rise to the separation of single rays. So the real space image of the sample
leads to a Fourier transformed image on the detector. This isthe explanation how the Fourier
transformation appears in a scattering experiment – so thisis a simplified motivation for the
Born approximation. A similar result was found by Fraunhoferfor the diffraction of light at
small apertures. Here, the aperture forms the wave field (at the pin-hole) and the far field is
connected to the Fourier transformation of the aperture shape.
Later we will see that the size of wave field packages at the pin-hole is given by the coherence
volume. The scattering appears independently from such small sub-volumes and is a simple
superposition.

2.3 Remarks on focusing SAS instruments

Small angle scattering instruments with focusing optics allow for larger samples. If the entrance
aperture remains at the old size the resolution of the experiment is kept, but the intensity is in-
creased tremendously. If the entrance aperture is closed byconsiderable factors the resolution is
increased strongly, and much lower scattering vectors (larger structures) are resolved. Usually,
the entrance aperture must have a minimum size for a minimal intensity. For a symmetric set-up
(collimation and detector distance equal, i.e.LC = LD) the focusing optic is in the middle at
the sample position. The focusf is half the collimation distance, i.e.f = 1

2
LC = 1

2
LD. Now

the places where exact Fourier transforms are obtained (from the entrance aperture and from the
sample structure) do not agree anymore. The sample is still considered as a small volume and
from there the waves propagate freely to the detector, and the already known relation between
sample structure and scattering image holds.
For focusing elements, the places of Fourier transformations differ (see Fig. 6). The original
structure is placed in the focus, and the resulting distinctive rays are obtained at the other side
of the lens in the far field. So for focusing SAS instruments, the places of appearing Fourier
transformations for the entrance aperture and the sample structure differ.
The historical development of cameras can be seen in parallel. The first cameras were pin-hole
cameras, but when lenses could be manufactured lens camerasreplaced the old ones. The direct
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advantage was the better light yield being proportional to the lens size. Another effect appeared:
The new camera had a depth of focus – so only certain objects were depicted sharply, which was
welcomed in the art of photography. The focusing SAS instrument depicts only the entrance
aperture, and the focusing is not a difficult task. The higherintensity or the better resolution are
the welcomed properties of the focusing SAS instrument.

2.4 The resolution of a SANS instrument

The simple derivatives of equation 2 support a very simple view on the resolution of a small
angle neutron scattering experiment. We obtain:

(

∆Q

Q

)2

=

(

∆λ

λ

)2

+

(

2∆θ

2θ

)2

(3)

The uncertainty about theQ-vector is a sum about the uncertainty of the wavelength and the
angular distribution. Both uncertainties result from the beam preparation, namely from the
monochromatization and the collimation. The neutron velocity selector selects a wavelength
band of either±5% or±10%. The collimation consists of an entrance aperture with adiameter
dC and a sample aperture of a diameterdS. The distance between them isLC .
One property of eq. 3 is the changing importance of the two contributions at small and largeQ.
At small Q the wavelength spread is nearly negligible and the small termsQ andθ dominate
the resolution. This also means that the width of the primarybeam is exactly the width of the
resolution function. More exactly, the primary beam profiledescribes the resolution function
at smallQ. Usually, the experimentalist is able to change the resolution at smallQ. At large
Q the resolution function is dominated by the wavelength uncertainty. So the experimentalist
wants to reduce it – if possible – for certain applications. This contribution is also an important
issue for time-of-flight SANS instruments at spallation sources. The wavelength uncertainty is
determined by the pulse length of the source and cannot be reduced without intensity loss.
A more practical view on the resolution function includes the geometrical contributions explic-
itly [3]. One obtains:

(

σQ

Q

)2

=
1

8 ln 2

(

(

∆λ

λ

)2

+

(

1

2θ

)2

·
[

(

dC
LC

)2

+ d2S

(

1

LC

+
1

LD

)2

+

(

dD
LD

)2
])

(4)

Now the wavelength spread is described by∆λ being the full width at the half maximum. The
geometrical terms have contributions from the aperture sizesdC anddS and the spatial detector
resolutiondD. The collimation lengthLC and detector distanceLD are usually identical such
that all geometric resolution contributions are evenly large (dC = 2dS then). This ideal setup
maximizes the intensity with respect to a desired resolution.
The resolution function profile is another topic of the correction calculations. A simple approach
assumes Gaussian profiles for all contributions, and finallythe overall relations read:

dΣ(Q̄)

dΩ

∣

∣

∣

∣

meas

=

∞
∫

0

dQ R(Q− Q̄) · dΣ(Q)

dΩ

∣

∣

∣

∣

theo

(5)

R(Q− Q̄) =
1√
2πσQ

exp

(

−1

2

(Q− Q̄)2

σ2
Q

)

(6)
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Fig. 7: The coherence volume is usually much smaller than the samplevolume (left). So the
overall scattering appears as an incoherent superpositionof the scattering from many coher-
ence volumes (right).

The theoretical macroscopic cross section is often described by a model function which is fit-
ted to the experimental data. In this case the computer program only does a convolution of
the model function with the resolution functionR(∆Q). Alternatively, there are methods to
deconvolute the experimental data without modeling the scattering at first hand.
The here described resolution function is given as a Gaussian. This is true for relatively narrow
distributions. The reason for using a Gaussian function although the original distributions ofλ
andθ are often triangular is: The central limit theorem can be applied to this problem because
we have seen from eq. 4 that there are four contributions to the resolution function, and the
radial averaging itself also smears the exact resolution function further out. Thus, the initial
more detailed properties of the individual distributions do not matter anymore. Equations 5 and
6 are a good approximation for many practical cases.
We now want to describe the connection between the resolution function and the coherence of
the neutron beam at the sample position. From optics we know about the transverse coherence
length:

ℓcoh,transv =
λLC

2dC
is similar to ∆Q−1

θ =
λLC

πdC
(7)

It can be compared well with the geometric resolution contribution that arises from the entrance
aperture only. Small differences in the prefactors we can safely neglect. For the longitudinal
coherence length we obtain:

ℓcoh,long =
1

4
λ

(

∆λ

λ

)−1

is similar to ∆k−1 =
1

2π
λ

(

∆λ

λ

)−1

(8)

This coherence length can be well compared to the wavevectoruncertainty of the incoming
beam. If we look back on Figure 4 we see that the coherence volume exactly describes the un-
certainty of the incoming wave vector. The two contributions are perpendicular which supports
the vectorial (independent) addition of the contributionsin eq. 4 for instance. The coherence
volume describes the size of the independent wave packages which allow for wave-like prop-
erties such as the scattering process. So the coherence volume describes the maximum size of
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structure that is observable by SANS. If larger structures need to be detected the resolution must
be increased.
The understanding how the small coherence volume covers thewhole sample volume is given in
the following (see also Fig. 7). Usually the coherence volume is rather small and is many times
smaller than the irradiated sample volume. So many independent coherence volumes cover the
whole sample. Then, the overall scattering intensity occurs as an independent sum from the
scattering intensities of all coherence volumes. This is called incoherent superposition.

2.5 The theory of the macroscopic cross section (the Born approximation)

We have seen that the SANS instrument aims at the macroscopiccross section which is a func-
tion of the scattering vectorQ. In many examples of isotropic samples and orientationally
averaged samples (powder samples) the macroscopic cross section depends on the modulus
|Q| ≡ Q only. This measured function has to be connected to important structural parameters
of the sample. For this purpose model functions are developed. The shape of the model func-
tion in comparison with the measurement already allows to distinguish the validity of the model.
After extracting a few parameters with this method, deeper theories – like thermodynamics –
allow to get deeper insight about the behavior of the sample.Usually, other parameters – like
concentration, temperature, electric and magnetic fields,... – are varied experimentally to verify
the underlying concepts at hand. The purpose of this and the following sections is to give some
ideas about model functions.
We have obtained a clear picture of the Born approximation in section 2.2. More formally, the
Born approximation arises from quantum mechanics, and several facts and assumptions came
along: The scattering amplitudes of the outgoing waves are derived as perturbations of the in-
coming plane wave. The matrix elements of the interaction potential with these two wave fields
as vectors describe the desired amplitudes. The interaction potential can be simplified for neu-
trons and the nuclei of the sample by the Fermi pseudo potential. This expresses the smallness
of the nuclei (∼1fm) in comparison to the neutron wavelength (∼Å). For the macroscopic cross
section we immediately obtain a sum over all nuclei:

dΣ

dΩ
(Q) =

1

V

∣

∣

∣

∣

∣

∑

j

bj exp(iQ · rj)
∣

∣

∣

∣

∣

2

(9)

This expression is normalized to the sample volumeV because the second factor usually is pro-
portional to the sample size. This simply means: The more sample we put in the beam the more
intensity we obtain. The second factor is the square of the amplitude because we measure inten-
sities. While for electromagnetic fields at low frequencies one can distinguish amplitudes and
phases (without relying on the intensity) the neutrons are quantum mechanical particles where
experimentally such details are hardly accessible. For light (and neutrons) for instance holo-
graphic methods still remain. The single amplitude is a sum over each nucleusj with its typical
scattering lengthbj and a phase described by the exponential. The square of the scattering
lengthb2j describes a probability of a scattering event taking place for an isolated nucleus. The
phase arises between different elementary scattering events of the nuclei for the large distances
of the detector. In principle, the scattering length can be negative (for hydrogen for instance)
which indicates an attractive interaction with a phaseπ. Complex scattering lengths indicate
absorption. The quadrature of the amplitude can be reorganized:
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Fig. 8: The concept of the scattering length density. On the left theatomic structure of a
polyethylene oxide polymer (PEO) is depicted. For small angle scattering the wavelength is
much larger than the atomic distance. So for SANS the polymer appears like a worm with a
constant scattering length density inside.

dΣ

dΩ
(Q) =

1

V

∑

j,k

bjbk exp
(

iQ(rj − rk)
)

(10)

Here we find then self-terms with identical indicesj andk without any phase and cross terms
with phases arising from distances between different nuclei. Here it becomes obvious that only
relative positions of the nuclei matter which is a result of the quadrature. The overall phase of
the sample does not matter because of the modulus in eq. 9. We will use this expression for the
polymer scattering.
Apart from this detailed expression a simplified view is allowed for small angle scattering ex-
periments. Firstly, we know that the wavelength is typically 7Å which is much larger than
the atom-atom distance of ca. 1.5Å. Secondly, the SANS experiment aims at structures at the
nano-scale. So the scattering vector aims at much larger distances compared to the atomistic
distances (i.e.2πQ−1 ≫ 1Å). This allows for exchanging sums by integrals as follows:

∑

j

bj · · · −→
∫

V

d3r ρ(r) · · · (11)

Such methods are already known for classical mechanics, butreappear all over physics. The
meaning is explained by the sketch of Figure 8. The polymer polyethylene oxide (PEO) contains
many different nuclei of different species (hydrogen, carbon and oxide). However, the SANS
method does not distinguish the exact places of the nuclei. The polymer appears rather like a
homogenous worm. Inside, the worm has a constant scatteringlength density which reads:

ρmol =
1

Vmol

∑

j∈{mol}

bj (12)

So, for each molecule we consider all nuclei and normalize bythe overall molecule volume.
Of course different materials have different scattering length densitiesρ. The initial equation 9
reads then:

dΣ

dΩ
(Q) =

1

V

∣

∣

∣

∣

∣

∣

∫

V

d3r ρ(r) exp(iQr)

∣

∣

∣

∣

∣

∣

2

(13)

=
1

V

∣

∣

∣
F [ρ(r)]

∣

∣

∣

2

=
1

V

∣

∣

∣
ρ(Q)

∣

∣

∣

2

(14)
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The single amplitude is now interpreted as a Fourier transformation of the scattering length
densityρ(r) which we simply indicate byρ(Q). The amplitude is defined by:

ρ(Q) =

∫

V

d3r ρ(r) exp(iQr) (15)

Again, equation 13 loses the phase information due to the modulus.

2.6 Spherical colloidal particles

In this section we will derive the scattering of diluted spherical particles in a solvent. These
particles are often called colloids, and can be of inorganicmaterial while the solvent is either
water or organic solvent. Later in the manuscript interactions will be taken into account.
One important property of Fourier transformations is that constant contributions will lead to
sharp delta peaks atQ = 0. This contribution is not observable in the practical scattering
experiment. The theoretically sharp delta peak might have afinite width which is connected
to the overall sample size, but centimeter dimensions are much higher compared to the largest
sizes observed by the scattering experiment (∼µm). So formally we can elevate the scattering
density level by any number−ρref :

ρ(r) −→ ρ(r)− ρref leads to ρ(Q) −→ ρ(Q)− 2πρrefδ(Q) (16)

The resulting delta peaks can simply be neglected. For a spherical particle we then arrive at the
simple scattering length density profile:

ρsingle(r) =

{

∆ρ for |r| ≤ R

0 for |r| > R
(17)

Inside the sphere the value is constant because we assume homogenous particles. The reference
scattering length density is given by the solvent. This function will then be Fourier transformed
accordingly:

ρsingle(Q) =

2π
∫

0

dφ

π
∫

0

dϑ sinϑ

R
∫

0

dr r2 ∆ρ exp
(

i|Q| · |r| cos(ϑ)
)

(18)

= 2π ∆ρ

R
∫

0

dr r2
[

1

iQr
exp

(

iQrX
)

]X=+1

X=−1

(19)

= 4π ∆ρ

R
∫

0

dr r2
sin(Qr)

Qr
(20)

= ∆ρ
4π

3
R3

(

3
sin(QR)−QR cos(QR)

(QR)3

)

(21)

In the first line 18 we introduce spherical coordinates with the vectorQ determining thez-
axis for the real space. The vector productQr then leads to the cosine term. In line 19 the
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Fig. 9: The form factor of a homogenous
sphere in a double logarithmic plot.

Fig. 10: Experimental scattering curve of
spherical SiO2 colloids in the deuterated
solvent DMF [4]. The resolution function
(eq. 5) is included in the fit (red line).

azimuthal integral is simply2π, and the variableX = cosϑ is introduced. Finally, in line 20
the kernel integral for spherically symmetric scattering length density distributions is obtained.
For homogenous spheres we obtain the final result of eq. 21. Putting this result together for the
macroscopic cross section (eq. 14) we obtain:

dΣ

dΩ
(Q) =

N

V
·
∣

∣

∣
ρsingle(Q)

∣

∣

∣

2

= (∆ρ)2 φspheres Vsphere F (Q) (22)

F (Q) =

(

3
sin(QR)−QR cos(QR)

(QR)3

)2

(23)

We consideredN independent spheres in our volumeV , and thus obtained the concentration
of spheresφspheres. Furthermore, we defined the form factorF (Q), which describes theQ-
dependent term for independent spheres (or the considered shapes in general). The function is
shown in Figure 9. The first zero of the form factor is found atQ = 4.493/R. This relation
again makes clear why the reciprocal space (Q-space) is called reciprocal. We know the limit
for small scattering angles isF (Q→ 0) = 1 − 1

5
Q2R2. So the form factor is normalized to1,

and the initial dependence onQ2 indicates the size of the sphere. For large scattering angles the
form factor is oscillating. Usually the instrument cannot resolve the quickest oscillations and
an average intensity is observed. The asymptotic behavior would readF (Q→∞) = 9

2
(QR)−4.

The obtained power lawQ−4 is called Porod law and holds for any kind of bodies with sharp
interfaces. So, sharp interfaces are interpreted as fractals with d = 2 dimensions, and the
corresponding exponent is6− d. The general appearance of the Porod formula reads then:

dΣ

dΩ
(Q) = P ·Q−4 (24)

The amplitude of the Porod scatteringP tells about the surface per volume and readsP =
2π(∆ρ)2Stot/Vtot. Apart from the contrast, it measures the total surfaceStot per total vol-
umeVtot. For our shperes, the Porod constant becomesP = 2π(∆ρ)24πR2/(4πR3/(3φ)) =
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6πφ1(∆ρ)2/R. The surface to volume ratio is smaller the larger the individual radiusR is.
The remaining scaling with the concentrationφ1 and the contrast(∆ρ)2 arises still from the
prefactor which we discussed in context with eq. 22.

When comparing the theoretical description of the sphericalform factor with measurements one
finds a good agreement (Fig. 10). Many fringes are seen, but after the third or fourth peak the
function does not indicate any oscillation any more. Furthermore, the sharp minima are washed
out. All of this is a consequence of the resolution function (eq. 5) which has been taken into
account for the fitted curve. For many other examples one alsoneeds to take the polydispersity
into account. The synthesis of colloids usually produces a whole distribution of different radii.
In our example the polydispersity is very low which is the desired case. Polydispersity acts in
a similar way compared to the resolution function. The sharpminima are washed out. While
the resolution appears as a distribution of differentQ-values measured at a certain point the
polydispersity integrates over several radii.

Another general scattering law for isolated (dilute) colloids is found for small scattering angles.
The general appearance of the Guinier scattering law is:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(

−1

3
Q2R2

g

)

(25)

When comparing the scattering law of a sphere and the Guinier formula we obtainRg =
√

3
5
R.

The radius of gyrationRg can be interpreted as a momentum of inertia normalized to thetotal
mass and specifies the typical size of the colloid of any shape. The Guinier formula can be seen
as an expansion at small scattering angles of the logarithm of the macroscopic cross section
truncated after theQ2 term. Further details are discussed in Appendix A.

Another general appearance for independent colloids shallbe discussed now using equation
22. The macroscopic cross section is determined by several important factors: The contrast
between the colloid and the solvent given by∆ρ2, the concentration of the colloids, the volume
of a single colloid, and the form factor. Especially for small Q the latter factor turns to1, and
the first three factors dominate. When knowing two factors from chemical considerations, the
third factor can be determined experimentally using small angle neutron scattering.

2.7 Scattering of a polymer

In this section we derive the scattering of a single (isolated) polymer coil. This model is the
basis for many more complicated models of polymers in solution, polymeric micelles, polymer
melts, diblock and multiblock copolymers and so on. So the understanding of these concepts is
rather important for scattering experiments on any kind of polymer systems.

This example starts apart from many other calculations frompoint-like monomers (see eq. 10).
These monomers are found along a random walk with an average step width ofℓK . We try
to argue for non-ideal chain segments, but finally will arrive at an expression for rather ideal
polymers. For the scattering function we obtain (definitionof S(Q) in eq. 37-39):
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S(Q) ∝ 1

N

N
∑

j,k=0

〈

exp (iQ · (Rj −Rk))
〉

(26)

∝ 1

N

N
∑

j,k=0

exp
〈

−1
2
(Q · (Rj −Rk))

2
〉

(27)

∝ 1

N

N
∑

j,k=0

exp
〈

−1
6
Q2 · (Rj −Rk)

2
〉

(28)

At this stage we use statistical arguments (i.e. statistical physics). The first rearrangement of
terms (line 27) moves the ensemble average of the monomer positions (and distances∆Rjk)
from the outside of the exponential to the inside. This is an elementary step which is true
for polymers. The underlying idea is, that the distance∆Rjk arises from a sum of|j − k|
bond vectors which all have the same statistics. So each sub-chain with the indicesjk is only
distinguished by its number of bond vectors inside. The single bond vectorbj has a statistical
average of〈bj〉 = 0 because there is no preferred orientation. The next higher moment is the
second moment〈b2

j〉 = ℓ2K . This describes that each bond vector does a finite step with an
average length ofℓK . For the sub-chain we then find an average size〈∆R2

jk〉 = |j − k|ℓ2K . The
reason is that in the quadrature of the sub-chain only the diagonal terms contribute because two
distinct bond vectors show no (or weak) correlations.
Back to the ensemble average: The original exponential can beseen as a Taylor expansion
with all powers of the argumentiQ∆Rjk. The odd powers do not contribute with similar
arguments than for the single bond vector〈bj〉 = 0. Thus, the quadratic term is the leading term.
The reason why the higher order terms can be arranged that they finally fit to the exponential
expression given in line 27 is the weak correlations of two distinct bond vectors. The next line
28 basically expresses the orientational average of the sub-chain vector∆Rjk with respect to
theQ-vector in three dimensions.
This derivation can be even simpler understood on the basis of a Gaussian chain. Then every
bond vector follows a Gaussian distribution (with a center of zero bond length). Then the
ensemble average has the concrete meaning〈· · · 〉 =

∫

· · · exp
(

− 3
2
∆R2

jk/(|j−k|ℓ2K)
)

d3∆Rjk.
This distribution immediately explains the rearrangementof line 27. The principal argument is
the central limit theorem: When embracing several segments as an effective segment any kind of
distribution converges to yield a Gaussian distribution. This idea came from Kuhn who formed
the term Kuhn segment. While elementary bonds still may have correlations at the stage of the
Kuhn segment all correlations are lost, and the chain reallybehaves ideal. This is the reason
why the Kuhn segment lengthℓK was already used in the above equations.
In the following we now use the average length of sub-chains (be it Kuhn segments or not),
and replace the sums by integrals which is a good approximation for long chains with a large
number of segmentsN .

S(Q) ∝ 1

N

N
∫

0

dj

N
∫

0

dk exp
(

−1
6
Q2 · |j − k| · ℓ2K

)

(29)

= N · fD(Q2R2
g) (30)
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Fig. 11: The theoretical Debye function
describes the polymer scattering of in-
dependent polymers without interaction.
The two plots show the function on a lin-
ear and double logarithmic scale.

Fig. 12: Scattering of a h/d-PDMS poly-
mer blend. The linear scale shows dif-
ferent compositions of hydrogenous poly-
mer (from bottom to top: 0.05, 0.94, 0.27,
0.65) while the double logarithmic plot
shows the 0.65 sample only [5].

fD(x) =
2
x2 (exp(−x)− 1 + x) with x = Q2R2

g (31)

In this integral one has to consider the symmetry of the modulus. The result is basically the
Debye function which describes the polymer scattering wellfrom length scales of the overall
coil down to length scales where the polymer becomes locallyrigid (see Fig. 11). The covalent
bonds of a carbon chain effectively contribute to a certain rigidity which will not be treated here.
The radius of gyration describes the overall dimension of the chain and isRg =

√

N/6 ℓK . The
limits of the polymer scattering are found to be:

S(Q) ∝ N(1− 1
3
Q2R2

g) for smallQ (32)

∝ N · 2/(Q2R2
g) for largeQ (33)

The line 32 describes the conventional Guinier scattering of the overall polymer (compare eq.
25). The second line 33 describes a power law. At these lengthscales the sub-chains of different
lengths are self-similar and so they reveal a fractal behavior. The prefactor is connected to the
magnitudeR2

g/N which is the effective segment size. From this magnitude onecan calculate
back to the local rigidity which is responsible for the effective segments.
When we want to compare experiments with this theory the best examples are obtained from
polymer blends (Fig. 12). One could come to the conclusion that diluted polymer solutions must
provide the ideal conditions for such an experiment but practically the interactions of the solvent
molecules with the monomers lead to a deviating behavior: The good solvent conditions lead
to energetic violations of monomer-monomer contacts and sothe polymer swells and displays
a different fractal behavior. The highQ power law in good solvents comes close toQ−1.7. The
Flory theory was the first attempt to describe this behavior while many refinements find small
corrections. The theoretically most precise Flory exponent is ν = 0.588 which is the reciprocal
value of the given exponent1.7 above.



Small Angle Scattering D1.17

Fig. 13: Typical scattering of a homopoly-
mer blend with interactions. The sample is
a polybutadiene(1,4) / polystyrene blend at
104◦C and 500bar [6].

Fig. 14: Typical scattering of a diblock
copolymer blend with interactions [7]. The
poly-ethylene-propylene–poly-dymethyl-
siloxane is heated to 170◦C (1bar).

So polymer blends are often better examples for weakly interacting chains. This finding is sup-
ported by the low entropy of mixing which enforces small interactions. The discussed example
of Fig. 12 [5] considers the isotopic mixture of hydrogenousand deuterated polydimethylsilox-
ane (PDMS). This practically leads to one of the lowest possible interactions even though they
are not completely zero. The theoretical concept of the random phase approximation is able
to deal with interactions and describes phase diagrams and the scattering in this way. At high
temperatures the polymers usually mix well, and the scattering comes closer to the weakly inter-
acting case. Closer to the demixing temperature at lower temperatures the scattering intensity
increases dramatically. This indicates strong composition fluctuations. The system loses the
tendency to form a homogenous mixture and so local enrichments of species A or B are pos-
sible. While the random phase approximation is a mean field concept which describes weak
fluctuations there are other concepts for strong fluctuations close to the phase boundary: The
3-dimensional Ising model – known for ferromagnets – describes the strong fluctuations of the
two component polymer system.
The example of an interacting homopolymer blend is shown in Fig. 13. The general aspects are
kept from non-interacting polymers (compare Fig. 12). The scattering curve has a maximum at
Q = 0, and is decaying to largeQ where a power law ofQ−2 for ideal chains is observed. The
maximal intensity is connected to the reciprocal susceptibility which describes the tendency of
spontaneous thermal fluctuations to decay. High intensities mean low susceptibilies and strong
fluctuations – the vice versa arguments are valid. The width of this curve is connected to the
correlation lengthξ. At low interactions it is tightly connected to the single coil size, i.e.Rg.
With strong fluctuations close to the phase boundary the correlation length tends to diverge,
which measures the typical sizes of the thermally fluctuating enrichments.
A diblock copolymer is a linear chain with two different monomer species. The first part is
pure A and the latter pure B. The typical scattering of a diblock copolymer blend is shown
in Fig. 14. At smallQ the ideal scattering increases withQ2 accordingly to the ‘correlation
holeł. The chemistry of the molecule does not allow for enrichments of A or B on large length
scales. A continuously growing volume would only allow for enrichments on the surface – this



D1.18 H. Frielinghaus

explains finally the exponent in the scattering law. The experimental finite intensities relate to
imperfections of the molecules. The chain length ratiof is distributed, and finally allows for
enrichments on large length scales.
The dominating fluctuations are found at a finiteQ∗. This expresses that the coil allows for
separations of A and B predominantly on the length scale of the overall coil. Close to the
phase boundary and especially below (where the polymer undergoes a micro phase separation)
the coils are stretched. The peak at finiteQ∗ also expresses that the fluctuations tend to form
alternating enrichments. From a center it would look like a decaying order of A-B-A-B-... The
width of the peak is again connected to the correlation length ξ ∼ ∆Q−1 which describes the
length of this decaying order. At highQ, again aQ−2 law is observed describing the sub-chains
being ideal chains. On these length scales homopolymer blends and diblock copolymers do not
differ.
The whole understanding of phase boundaries and fluctuations is important for applications.
Many daily life plastic products consist of polymer blends since the final product should have
combined properties of two different polymers. Therefore,polymer granulates are mixed at
high temperatures under shear in an extruder. The final shapeis given by a metal form where
the polymer also cools down. This process involves a certaintemperature history which covers
the one-phase and two-phase regions. Therefore, the final product consists of many domains
with almost pure polymers. The domain size and shape are veryimportant for the final product.
So the process has to be tailored in the right way to yield the specified domain structure. This
tailoring is supported by a detailed knowledge of the phase boundaries and fluctuation behav-
ior. Advanced polymer products also combine homopolymers and diblock copolymers for an
even more precise and reproducible domain size/shape tailoring [8, 9]. The diblock copoly-
mer is mainly placed at the domain interfaces, and, therefore, influences the domain properties
precisely.

2.8 Contrast variation

For neutron scattering the method contrast variation opensa wide field of possible experiments.
For soft matter research the most important labeling approach is the exchange of hydrogen1H
by deuterium2H ≡ D. Since in a single experiment the phase information is lostcompletely
the contrast variation experiment retrieves this information partially. Relative positions of two
components are obtained by this method.
The scattering length density of the overall sample is now understood to originate from each
component individually. So the specificρj(r) takes the value of the scattering length density of
componentj when the location points to componentj and is zero otherwise. We would then
obtain the following:

ρ(Q) =

∫

V

d3r

(

n
∑

j=1

ρj(r)

)

exp(iQr) (34)

n specifies the number of components. The assumption of incompressibility means that on
every place there is one component present, and so all individual functionsρj(r) fill the full
space. Furthermore, we would like to define component1 being the reference component, i.e.
ρref = ρ1 (see eq. 16). This means that on each place we have a∆ρj(r) function similar to eq.
17. Then, we arrive at:
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ρ(Q) =
n
∑

j=2

∆ρj1(Q) (35)

The macroscopic cross section is a quadrature of the scattering length densityρ(Q), and so we
arrive at:

dΣ

dΩ
(Q) =

1

V
·

n
∑

j,k=2

∆ρ∗j1(Q) ·∆ρk1(Q) (36)

=
n
∑

j,k=2

(∆ρj1∆ρk1) · Sjk(Q) (37)

=
n
∑

j=2

(∆ρj1)
2 · Sjj(Q) + 2

∑

2<j<k≤n

(∆ρj1∆ρk1) · ℜ Sjk(Q) (38)

In line 37 the scattering functionSjk(Q) is defined. By this the contrasts are separated from the
Q-dependent scattering functions. Finally, in line 38 the diagonal and off-diagonal terms are
collected. There aren − 1 diagonal terms, and1

2
(n − 1)(n − 2) off-diagonal terms. Formally,

these1
2
n(n − 1) considerably different terms are rearranged (the combinations{j, k} are now

simply numbered byj), and a number ofs different measurements with different contrasts are
considered.

dΣ

dΩ
(Q)

∣

∣

∣

∣

s

=
∑

j

(∆ρ ·∆ρ)sj · Sj(Q) (39)

In order to reduce the noise of the result, the number of measurementss exceeds the number
of independent scattering functions considerably. The system then becomes over-determined
when solving for the scattering functions. Formally, one can nonetheless write:

Sj(Q) =
∑

s

(∆ρ ·∆ρ)−1
sj · dΣ

dΩ
(Q)

∣

∣

∣

∣

s

(40)

The formal inverse matrix(∆ρ ·∆ρ)−1
sj is obtained by the singular value decomposition method.

It describes the closest solution of the experiments in context of the finally determined scattering
functions.
An example case is discussed for a bicontinuous microemulsion with an amphiphilic polymer
[10]. The microemulsion consists of oil and water domains which have a sponge structure. So
the water domains host the oil and vice versa. The surfactantfilm covers the surface between the
oil and water domains. The symmetric amphiphilic polymer position and function was not clear
beforehand. From phase diagram measurements it was observed that the polymer increases the
efficiency of the surfactant dramatically. Much less surfactant is needed to solubilize equal
amounts of oil and water. Fig. 15 discusses the meaning of thecross terms of the scattering
functions. Especially the film-polymer scattering is highly interesting to reveal the polymer
role inside the microemulsion (see Fig. 16). By the modeling it was clearly observed that the
amphiphilic polymer is anchored in the membrane and the two blocks describe a mushroom
inside the oil and water domains. So basically, the polymer is a macro-surfactant. The coils of
the polymer exert a certain pressure on the membrane and keepit flat. The membrane with less
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Fig. 15: Scheme of scattering functions
for the cross terms within the microemul-
sion. There are the film-polymer scatter-
ing SFP, the oil-film scatteringSOF, and
the oil-polymer scatteringSOP. The real
space correlation function means a con-
volution of two structures.

Fig. 16: A measurement of the film-
polymer scattering for a bicontinuous
microemulsion with a symmetric am-
phiphilic polymer. The solid line is de-
scribed by a polymer anchored in the
film. The two blocks are mushroom-like
in the domains. At lowQ the overall do-
main structure (or size) limits the ideal-
ized model picture.

fluctuations allows for the formation of larger domains witha better surface to volume ratio.
This is finally the explanation how the polymer acts as an efficiency booster.

3 Small Angle X-ray Scattering

While a detailed comparison between SANS and SAXS is given below, the most important
properties of the small angle x-ray scattering technique shall be discussed here. The x-ray
sources can be x-ray tubes (invented by Röntgen, keyword Bremsstrahlung) and modern syn-
chrotrons. The latter ones guide fast electrons on undulators which act as laser-like sources for
x-rays with fixed wavelength, high brilliance and low divergence. This simply means, that the
collimation of the beam often yields narrow beams, and the irradiated sample areas are consid-
erably smaller (often smaller than ca. 1×1mm2). A view on the sample position is given in Fig.
17 (compare Fig. 3). One directly has the impression that allwindows are tiny and adjustments
must be made more carefully.

The conceptual understanding of the scattering theory still holds for SAXS. For the simplest
understanding of the contrast conditions in a SAXS experiment, it is sufficient to count the
electron numbers for each atom. The resulting scattering length density reads then (compare
eq. 12):
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Fig. 17: The sample position of the SAXS
instrument ID2 at the ESRF, Grenoble,
France. The photons propagate from the
right to the left. The collimation guides on
the left and the detector tank window on top
of the cone on the left give an impression
about the small beam size (being typically
1×1mm2).

Fig. 18: The complex dispersion curve for
gold (Au) at the L3 edge [11]. The overall
effective electron numberf = f0+ f ′+if ′′

replaces the conventional electron number
Z = f0 in equation 41. On the x-axis the
energies of the x-rays is shown, with indica-
tions for the experimentally selected three
energies (black, red, blue). In this way,
equal steps for the contrast variation are
achieved.

ρmol =
re
Vmol

∑

j∈{mol}

Zj (41)

The classical electron radius isre = e2/(4πǫ0mec
2) = 2.82fm. The electron number of each

atomj is Zj. This means that chemically different substances have a contrast, but for similar
substances (often for organic materials) it can be rather weak. Heavier atoms against light
materials are much easier to detect. Finally, the density ofsimilar materials is also important.
Especially for organic materials (soft matter research), the high intensity of the source still
allows for collecting scattering data. Many experiments base on these simple modifications
with respect to SANS, and so the fundamental understanding of SAXS experiments does not
need any further explanation.

For completeness, we briefly discuss the scattering length density for light scattering. Here the
polarizability plays an important role. Without going intodetails, the final contrast is expressed
by the refractive index incrementdn/dc:

ρmol =
2πn

λ2
· dn

dcmol

(42)

The refractive index incrementdn/dc finally has to be determined separately experimentally
when the absolute intensity is of interest. The concentration cmol is given in units volume per
volume (for the specific substance in the solvent). The wavelength of the used light isλ.
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3.1 Contrast variation using anomalous small angle x-ray scattering

While for contrast variation SANS experiments the simple exchange of hydrogen1H by deu-
terium 2H ≡ D allowed for changing the contrast without modifying the chemical behavior, in
contrast variation SAXS experiments the applied trick is considerably different: The chemistry
is mainly dominated by the electron or proton numberZ and isotope exchange would not make
any difference. The electron shells on the other hand have resonances with considerable disper-
sion curves. An example is shown in Fig. 18 with the real partf ′ (called dispersion) and the
imaginary partf ′′ (called absorption). The overall effective electron number f = f0 + f ′ + if ′′

replaces the conventional electron numberZ = f0 in equation 41. Below the resonance energy
the considered L3 shell appears only softer and effectively less electrons appear forf . Above
the resonance energy single electrons can be scattered out from the host atom (Compton ef-
fect). This is directly seen in the sudden change of the absorption. Furthermore, the actual
dependence of the dispersion is influenced by backscattering of the free electrons to the host
atom (not shown in Fig. 41). This effect finally is the reason that the complex dispersion curve
can only theoretically be well approximated below the resonance (or really far above). For this
approximation it is sufficient to consider isolated host atoms.
For best experimental results thef -values have to be equally distributed. Thus, the energies
are selected narrower close to the resonance (see Fig. 41). The investigated sample consisted
of core-shell gold-silver nanoparticles in soda-lime silicate glass (details in reference [11]). By
the contrast variation measurement one wanted to see the whole particles in the glass matrix,
but also the core-shell structure of the individual particles. Especially, the latter one would
be obtained from such an experiment. First results of this experiment are shown in Fig. 19.
The most important result from this experiment is that the original scattering curves at first
hand do not differ considerably. The core-shell structure results from tiny differences of the
measurements. For contrast variation SANS experiments thecontrasts can be selected close to
zero contrast for most of the components which means that tiniest amounts of additives can be
highlighted and the intensities between different contrasts may vary by factors of 100 to 1000.
So for contrast variation SAXS measurements the statisticshave to be considerably better which
in turn comes with the higher intensities.
Another example was evaluated to a deeper stage [12]. Here, the polyelectrolyte polyacrylate
(PA) with Sr2+ counterions was dissolved in water. The idea behind was thatthe polymer is
dissolved well in the solvent. The charges of the polymer andthe ions lead to a certain swelling
of the coil (exact fractal dimensionsν not discussed here). The counterions form a certain cloud
around the chain – the structure of which is the final aim of theinvestigation. The principles of
contrast variation measurements leads to the following equation (compare eq. 39):

dΣ

dΩ
= (∆ρSr−H2O)

2 ·SSr−Sr + (∆ρPA−H2O)
2 ·SPA−PA + ∆ρSr−H2O∆ρPA−H2O ·SSr−PA (43)

The overall scattering is compared with two contributions in Fig. 20. The scattering functions of
the cross termSSr−PA and the pure ion scatteringSSr−Sr have been compared on the same scale,
and so the contrasts are included in Fig. 20. Basically, all three functions describe a polymer
coil in solvent – the different contrasts do not show fundamental differences. Nonetheless, a
particular feature of the ion scattering was highlighted bythis experiment: AtQ ≈ 0.11nm−1

is a small maximum which is connected to the interpretation of effective charge beads along
the chains. The charge clouds obviously can be divided into separated beads. The emphasis of
the observed maximum correlates with the number of beads: For small numbers it is invisible,
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Fig. 19: Absolute calibrated scatter-
ing curves of different core-shell Ag/Au
nanoparticles in soda-lime silicate glass
[11]. The implantation sequence has been
changed for the three samples. Note that
the three scattering curves for the selected
energies (colors correspond to Fig. 18) do
only slightly differ due to the small changes
of the contrast.

Fig. 20: Further evaluated scattering func-
tions of a different system [12]: A poly-
electrolyte with Sr2+ counterions in aque-
ous solution. The top curve (black) indi-
cates the overall scattering. The middle
curve (blue) displays the polymer-ion cross
terms being sensitive for relative positions.
The bottom curve (red) depicts the pure ion
scattering.

and becomes more pronounced with higher numbers. The authors finally find that the number
of 5 beads is suitable for the description of the scattering curves: An upper limit is also given
by the highQ scattering where the 5 chain segments appear as independentsub-coils. This
example beautifully displays, that the method of contrast variation can be transferred to SAXS
experiments. Difficulties of small contrast changes have been overcome by the good statistics
due to much higher intensities.

4 Comparison of SANS and SAXS

We have seen that many parallels exist between the two experimental methods SANS and
SAXS. The theoretical concepts are the same. Even the contrast variation method as a highly
difficult and tedious task could be applied for both probes. In the following, we will highlight
differences that have been discussed so far and others that are just mentioned now.

The high flux reactors are at the technical limit of highest neutron fluxes. For SANS instruments
maximal fluxes of ca. 2×108 neutrons/s/cm2 have been reached at the sample position. Typical
sample sizes are of 1×1cm2. For coherent scattering fractions of ca. 10% this results in maximal
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count rates of 107Hz, while practically most of the count rates stay below 106Hz. For long
collimations, the experimentalists deal often with 10 to 50Hz. The resolution for these count
rates has been relaxed. Wavelength spreads of either±5% or±10% are widely accepted, and
the collimation contributes equally, such that a typical resolution of∆Q/Q of 7 to 14% is
reached. For many soft matter applications this is more thanadequate. If one thinks of liquid
crystalline order, much higher resolution would be desiredwhich one would like to overcome
by choppers in combination with time-of-flight analysis. A resolution of ca. 1% would be a
reasonable expectation. The continuous sources are highlystable which is desired for a reliable
absolute calibration.

The spallation sources deliver either continuous beams or the most advanced ones aim at pulsed
beams. Repetition rates range from ca. 14 to 60Hz. The intensity that is usable for SANS
instruments could reach up to 20 times higher yields (as planned for the ESS in Lund), i.e. up to
4×109 neutrons/s/cm2. Surely, detectors for count rates of 10 to 100 MHz have to be developed.
The new SANS instruments will make use of the time-of-flight technique for resolving the
different wavelengths to a high degree. Of course other problems with such a broad wavelength
band have to be overcome – but this topic would lead too far.

The synchrotron sources reach much higher photon yields which often makes the experiments
technically comfortable but for the scientist at work highly stressful. The undulators provide
laser-like qualities of the radiation which explains many favorable properties. Some num-
bers for the SAXS beam line ID2 at the ESRF shall be reported. The usable flux of 5×1015

photons/s/mm2 (note the smaller area) is provided which results for a typical sample area of ca.
1×0.02mm2 in 1014 photons/s. In some respect the smallness of the beam urges tothink about
the representativeness of a single shot experiment. At somesynchrotron sources the beam is not
highly stable which makes absolute calibration and background subtraction difficult. The same
problem also occurs for the pulsed neutron sources where parts of the calibration procedure
become highly difficult.

For classical SANS experiments one can make some statements: The absolute calibration is
practically done for all experiments and does not take much effort – it is technically simple. Be-
tween different instruments in the world the discrepanciesof different calibrations results often
in errors of 10% and less. Part of the differences are different calibration standards, but also
different concepts for transmission measurements and manydetails of the technical realization.
The nuclear scattering is a result of the fm small nuclei and results in easily interpretable scat-
tering data for even large angles – for point-like scatterers no corrections have to be made. In
this way all soft matter and biological researchers avoid difficult corrections. Magnetic struc-
tures can be explored by neutrons due to its magnetic moment.Magnetic scattering is about
to be implemented to a few SANS instruments. Ideally, four channels are experimentally mea-
sured (I++, I+−,I−+, andI−−) by varying the polarization of the incident beam (up/down)and
of the analyzer. Nowadays, the3He technique allows for covering relatively large exit angles
at high polarization efficiencies. But also early magnetic studies have been possible with sim-
pler setups and reduced information. The unsystematic dependence of the scattering length
often opens good conditions for a reasonable contrast for many experiments. If the natural iso-
topes do not provide enough contrast pure isotopes might overcome the problem. The contrast
variation experiments have been presented for the SANS technique. By a simple exchange of
hydrogen by deuterium, soft matter samples can be prepared for complicated contrast variation
experiments. One advantage is the accessibility of the zerocontrast for most of the components
which allows for highlighting smallest amounts of additives. The high demand for deuterated
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chemicals makes them cheap caused by the huge number of NMR scientists. The low absorp-
tion of neutrons for many materials allows for studying reasonably thick samples (1 to 5mm
and beyond). Especially, for contrast variation experiments often larger optical path lengths
are preferred. The choice for window materials and sample containers is simple in many cases.
Neutron scattering is a non-destructive method. Espeically biological samples can be recovered.

Contrarily we observe for the SAXS technique: The demand for absolute calibration in SAXS
experiments is growing. Initial technical problems are overcome and suitable calibration stan-
dards have been found. The interpretation of scattering data at larger angles might be more
complicated due to the structure of the electron shells. Forsmall angle scattering the possible
corrections are often negligible. Magnetic structures areobservable by the circular magnetic
dichroism [13] but do not count to the standard problems addressed by SAXS. The high con-
trast of heavy atoms often makes light atoms invisible. For soft matter samples the balanced use
of light atoms results in low contrast but, technically, thebrilliant sources overcome any inten-
sity problem. The ASAXS technique is done close to resonances of single electron shells and
opens the opportunity for contrast variation measurements. The achieved small differences in
the contrast still allow for tedious measurements because the statistics are often extremely good
– only stable experimental conditions have to be provided. The absorption of x-rays makes the
choice of sample containers and windows more complicated. The absorbed radiation destroys
the sample in principle. Short experimental times are thus favorable.

To summarize, the method of small angle neutron scattering is good-natured and allows to
tackle many difficult tasks. The small angle x-ray scattering technique is more often applied
due to the availability. Many problems have been solved (or will be solved) and will turn to
standard techniques. So, in many cases the competition between the methods is kept high for
the future. Today, practically, the methods are complementary and support each other for the
complete structural analysis.
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Appendices

A Guinier Scattering

The crucial calculation of the Guinier scattering is done bya Taylor expansion of the logarithm
of the macroscopic cross section for small scattering vectorsQ. Due to symmetry considerations
there are no linear terms, and the dominating term of theQ-dependence is calculated to be:
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The first line 44 contains the definition of the Taylor coefficient. Then, the derivatives are
calculated consequently. Finally, we arrive at terms containing the first and second momenta.
The last line 48 rearranges the momenta in the sense of a variance. So the radius of gyration
is the second moment of the scattering length density distribution with the center of ‘gravity’
being at the origin. We used the momenta in the following sense:
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So far we assumed an isotropic scattering length density distribution. In general, for oriented
anisotropic particles, the Guinier scattering law would read:
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(51)
Here, we assumed a diagonal tensor of second moment. This expression allows for different
widths of scattering patterns for the different directions. In reciprocal space large dimensions
appear small and vice versa. Furthermore, we see thatRg is defined as the sum over all second
momenta, and so in the isotropic case a factor1

3
appears in the original formula 25.
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