000128612 001__ 128612 000128612 005__ 20240619091051.0 000128612 0247_ $$2doi$$a10.1088/0957-4484/23/49/495303 000128612 0247_ $$2ISSN$$a1361-6528 000128612 0247_ $$2ISSN$$a0957-4484 000128612 0247_ $$2WOS$$aWOS:000311431400009 000128612 037__ $$aFZJ-2013-00346 000128612 082__ $$a530 000128612 1001_ $$aWesche, Manuel$$b0$$uFZJ 000128612 245__ $$aA nanoporous alumina microelectrode array for functional cell–chip coupling 000128612 260__ $$aBristol$$bIOP Publ.$$c2012 000128612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1358868349_1726 000128612 3367_ $$2DataCite$$aOutput Types/Journal article 000128612 3367_ $$00$$2EndNote$$aJournal Article 000128612 3367_ $$2BibTeX$$aARTICLE 000128612 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000128612 3367_ $$2DRIVER$$aarticle 000128612 520__ $$aThe design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell–surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues. 000128612 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0 000128612 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1 000128612 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000128612 7001_ $$0P:(DE-Juel1)128689$$aHüske, Martin$$b1 000128612 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b2 000128612 7001_ $$0P:(DE-HGF)0$$aBrüggemann, Dorothea$$b3 000128612 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b4 000128612 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5 000128612 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b6$$eCorresponding author 000128612 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/23/49/495303$$gVol. 23, no. 49, p. 495303 -$$n49$$p495303 -$$tNanotechnology$$v23$$x1361-6528$$y2012 000128612 8564_ $$uhttp://iopscience.iop.org/0957-4484/23/49/495303 000128612 909CO $$ooai:juser.fz-juelich.de:128612$$pVDB 000128612 9141_ $$y2012 000128612 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000128612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000128612 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000128612 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000128612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000128612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000128612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000128612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000128612 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000128612 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000128612 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000128612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000128612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000128612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128689$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000128612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000128612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000128612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000128612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000128612 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000128612 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0 000128612 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1 000128612 920__ $$lyes 000128612 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0 000128612 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000128612 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x2 000128612 980__ $$ajournal 000128612 980__ $$aI:(DE-Juel1)PGI-8-20110106 000128612 980__ $$aI:(DE-82)080009_20140620 000128612 980__ $$aI:(DE-Juel1)ICS-8-20110106 000128612 980__ $$aVDB 000128612 980__ $$aUNRESTRICTED 000128612 981__ $$aI:(DE-Juel1)IBI-3-20200312 000128612 981__ $$aI:(DE-Juel1)ICS-8-20110106 000128612 981__ $$aI:(DE-Juel1)VDB881