000128631 001__ 128631
000128631 005__ 20210129211153.0
000128631 0247_ $$2doi$$a10.1016/j.electacta.2008.08.013
000128631 0247_ $$2ISSN$$a0013-4686
000128631 0247_ $$2ISSN$$a1873-3859
000128631 0247_ $$2WOS$$aWOS:000263282400003
000128631 0247_ $$2altmetric$$aaltmetric:21819605
000128631 037__ $$aFZJ-2013-00365
000128631 082__ $$a540
000128631 1001_ $$0P:(DE-Juel1)VDB57079$$aKomsiyska, L.$$b0$$eCorresponding author
000128631 245__ $$aElectrocrystallization of Au nanoparticles on glassy carbon from HClO$_{4}$ solution containing [AuCl$_{4}$]−
000128631 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2008
000128631 3367_ $$2DRIVER$$aarticle
000128631 3367_ $$2DataCite$$aOutput Types/Journal article
000128631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1476362260_31318
000128631 3367_ $$2BibTeX$$aARTICLE
000128631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128631 3367_ $$00$$2EndNote$$aJournal Article
000128631 520__ $$aThe mechanism and kinetics of electrocrystallization of Au nanoparticles on glassy carbon (GC) were investigated in the system GC/1 mM KAuCl4 + 0.1 M HClO4. Experimental results show that the gold electrodeposition follows the so-called Volmer–Weber growth mechanism involving formation and growth of 3D Au nanoparticles on an unmodified GC substrate. The analysis of current transients shows that at relatively positive electrode potentials (E ≥ 0.84 V) the deposition kinetics corresponds to the theoretical model for progressive nucleation and diffusion-controlled 3D growth of Au nanoparticles. The potential dependence of the nucleation rate extracted from the current transients is in agreement with the atomistic theory of nucleation. At sufficiently negative electrode potentials (E ≤ 0.64 V) the nucleation frequency becomes very high and the nucleation occurs instantaneously. Based on this behaviour is applied a potentiostatic double-pulse routine, which allows controlled electrodeposition of Au nanoparticles with a relatively narrow size distribution.
000128631 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000128631 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000128631 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b1
000128631 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2008.08.013$$gVol. 54, no. 2, p. 168 - 172$$n2$$p168 - 172$$tElectrochimica acta$$v54$$x0013-4686$$y2008
000128631 8564_ $$uhttps://juser.fz-juelich.de/record/128631/files/1-s2.0-S0013468608010177-main.pdf$$yRestricted
000128631 8564_ $$uhttps://juser.fz-juelich.de/record/128631/files/1-s2.0-S0013468608010177-main.gif?subformat=icon$$xicon$$yRestricted
000128631 8564_ $$uhttps://juser.fz-juelich.de/record/128631/files/1-s2.0-S0013468608010177-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000128631 8564_ $$uhttps://juser.fz-juelich.de/record/128631/files/1-s2.0-S0013468608010177-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000128631 8564_ $$uhttps://juser.fz-juelich.de/record/128631/files/1-s2.0-S0013468608010177-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000128631 8564_ $$uhttps://juser.fz-juelich.de/record/128631/files/1-s2.0-S0013468608010177-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000128631 909CO $$ooai:juser.fz-juelich.de:128631$$pVDB
000128631 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000128631 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000128631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000128631 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000128631 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000128631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000128631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000128631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000128631 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000128631 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000128631 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000128631 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000128631 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000128631 980__ $$ajournal
000128631 980__ $$aVDB
000128631 980__ $$aI:(DE-Juel1)PGI-3-20110106
000128631 980__ $$aI:(DE-82)080009_20140620
000128631 980__ $$aUNRESTRICTED