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We have studied the magnetization-reversal process of a Nd2Fe14B=Fe3B nanocomposite using

small-angle neutron scattering. Based on the computation of the autocorrelation function of the

spin misalignment, we have estimated the characteristic size lC of spin inhomogeneities around the

Nd2Fe14B nanoparticles. The quantity lC approaches a constant value of about 12.5 nm (�average

Nd2Fe14B particle radius) at 14 T and takes on a maximum value of about 18.5 nm at the coercive

field of �0.55 T. The field dependence of lC can be described by a model that takes into account

the convolution relationship between the nuclear and the magnetic microstructure. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4776708]

Rare-earth metals are key ingredients of countless tech-

nological products, and the global demand for these materi-

als has continuously increased during the last decades. In

recent times, geopolitical and strategic issues as well as the

danger of a strained supply chain have caused the rare-earth

elements to become the focus of attention of a wider public,

and the term “critical raw materials” was coined for them.1

One of the most important fields of application of rare-

earth metals are in high-performance permanent magnets,

which are used, e.g., in electronics devices or motors. Nowa-

days, permanent magnets made out of the rare-earth transi-

tion-metal compounds Nd-Fe-B or Sm-Co possess a

worldwide market share of about 65%.2 Essentially, the rare-

earth atoms in such alloys provide a high magnetic anisot-

ropy, which results in broad hysteresis loops with intrinsic

coercivities of the order of a few tesla, and the 3d transition-

metal atoms give rise to a large magnetization along with a

relatively high Curie temperature and a remanence of up to

1.5 T.3–8

Given that commercial-grade sintered Nd-Fe-B magnets

are rare-earth rich7 and in view of the above sketched situa-

tion, it is one of the central problems in the field of magnetic

materials to search for strategies to reduce the amount of

rare-earth elements by maintaining at the same time the mag-

nets’ performance.2 Hard magnetic nanocomposites9 are

considered to be promising candidates for future permanent-

magnet applications.10 The microstructure of these materials

consists of a dispersion of hard magnetic Nd-Fe-B or Sm-Co

based nanoparticles that are embedded in and magnetically

exchange-coupled to a soft magnetic transition-metal rich

phase. As a consequence of the nanocomposites’ reduced

rare-earth content, production costs may be significantly low-

ered as compared to their sintered counterparts. Due to the

technological relevance of such functional magnetic nanoma-

terials, a better understanding of the microstructure-property

relationship is crucial, in particular, the magnetization-

reversal process and the role of the thickness of the intergra-

nular soft phase for magnetic hardening.10–14

In the present experiment, we have scrutinized the char-

acteristic magnetic length scales associated with spin disor-

der during the magnetization-reversal process in a

Nd2Fe14B=Fe3B nanocomposite. For this purpose, we have

employed the technique of magnetic small-angle neutron

scattering (SANS), which provides access to bulk properties

on the interesting nanometer length scale.15–28

The SANS experiment was performed at the instrument

Quokka at the Bragg Institute, ANSTO, Australia.29 We used

unpolarized incident neutrons with a mean wavelength of

k ¼ 5:1 Å and with a bandwidth of Dk=k ¼ 10 % (FWHM).

The external magnetic field was provided by a superconduct-

ing magnet which had the field direction perpendicular to the

wave vector of the incoming neutron beam (k0?H k ez) and

in the plane of the ribbon sample (for sample details, see

below). Using three sample-to-detector distances, this setup

results in an accessible q-range of 0:03 nm�1 � q � 1:5 nm�1.

SANS raw data were corrected for background scattering and

detector efficiency. The autocorrelation function of the spin

misalignment C(r) was computed by means of the Fourier-

transformation technique within the interval rmin ¼ 2p=qmax

ffi 4 nm and rmax ¼ p=qmin ffi 100 nm. In order to reduce ter-

mination effects in the numerical calculation of C(r), the
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experimental SANS data beyond qmax were extrapolated to

infinity using Porod’s law, dRM=dX / q�4, and the extrapo-

lation from qmin to q¼ 0 was carried out using different

schemes (linear and constant).

The sample under study was a nanocrystalline hard

magnetic composite, which was synthesized by the melt-

spinning technique followed by rapid thermal annealing

(10 min at 650 �C). The nominal composition of the amor-

phous precursor material was Nd5Fe74Cr3B18. As reported

in Ref. 30, the microalloying of Cr supports the formation

of the hard magnetic 2-14-1 phase and retards the formation

of crystallization products with magnetically unfavorable

properties. The two-phase microstructure of the nanocom-

posite consists of hard magnetic Nd2Fe14B and soft mag-

netic Fe3B crystallites.30,31 Specimens that are prepared

under such annealing conditions typically contain a

Nd2Fe14B particle volume fraction of about 45%.30 Scan-

ning and energy-filtered transmission electron microscopy

was employed for the estimation of the respective average

crystallite sizes: The average Nd2Fe14B ðFe3BÞ particle size

is about 22 nm (29 nm). For the SANS experiments, several

Nd2Fe14B=Fe3B ribbons (thickness: 20 lm; width: 2 mm;

length: 10 mm) were stacked and arranged next to each

other in order to completely cover the neutron aperture.

Neutron absorption was reduced by employing low-

capturing 11B for the synthesis of the SANS sample.

For the above specified scattering geometry, the elastic

nuclear and magnetic SANS cross section dR=dX at

momentum-transfer vector q reads32

dR
dX
ðqÞ ¼ 8p3

V
b2

Hðj ~N j
2=b2

H þ j ~Mxj2 þ j ~Myj2 cos2h

þj ~Mzj2 sin2 h� ð ~My
~M
�
z þ ~M

�
y

~MzÞsin h cos hÞ; (1)

where V is the scattering volume, bH ¼ 2:9� 108A�1m�1,

the superscript “*” refers to the complex-conjugated quantity,

and ~NðqÞ and ~MðqÞ ¼ ½ ~MxðqÞ; ~MyðqÞ; ~MzðqÞ� represent,

respectively, the nuclear and magnetic scattering amplitudes.

In the small-angle limit q ffi q ð0; sin h; cos hÞ, where the

angle h is measured relative to ez.

Figure 1 displays dR=dX of the Nd2Fe14B=Fe3B nano-

composite at 300 K and at selected applied magnetic fields

H. The SANS experiments were performed by first applying

a large positive field and then reducing the field to the exper-

imental value, following the course of the hysteresis loop

(see inset in Fig. 1). On decreasing the field starting from a

value of l0H ¼ þ10 T (close to saturation), we observe the

emergence of long-range magnetization fluctuations at the

smallest momentum transfers. The total nuclear and mag-

netic dR=dX continues increasing up to a negative field

value close to the experimental coercive field of

l0Hc ¼ �0:55 T. Further increase of H towards more nega-

tive values results in a suppression of magnetization fluctua-

tions and in a concomitant decrease of dR=dX (open

symbols in Fig. 1).

It is the central aim of this study to quantify the length

scale and the applied-field dependence of spin-misalignment

fluctuations during magnetization reversal in Nd-Fe-B based

nanocomposites. From this point of view, and in order to

compute the associated correlation function of the spin mis-

alignment, it would be advantageous to separate [in Eq. (1)]

the spin-misalignment scattering from the scattering at com-

plete magnetic saturation, where dR=dX ¼ 8p3

V ðj ~N j
2 þ b2

H

j ~Mzj2sin2hÞ.
For a magnetic two-phase particle-matrix system close

to saturation j ~Mzj2 / ðDMÞ2, where DM is the jump in the

magnitude of the magnetization at the interface between the

particles and the matrix. This jump is quite small for our

nanocomposite, l0DM ffi 0:01 T,33 suggesting that the scat-

tering due to j ~Mzj2 correlations is much smaller than the nu-

clear SANS. Since j ~N j2 is field-independent and in view of

the strong field dependence of dR=dX (compare Fig. 1), it is

obvious that the dominating contribution to dR=dX is due to

transversal spin misalignment [compare Eq. (1)]. In order to

obtain the associated spin-misalignment SANS cross section

dRM

dX
ðqÞ ¼ 8p3

V
b2

Hðj ~Mxj2 þ j ~Myj2 cos2 h

�ð ~My
~M
�
z þ ~M

�
y

~MzÞsin h cos hÞ; (2)

we assume in the following that the measured dR=dX at the

highest field of 10 T represents to a good approximation the

scattering at saturation (compare magnetization curve in Fig.

1). This assumption is supported (besides the rðHÞ data) by

the finding that (1) the total dR=dX at 10 T exhibits an iso-

tropic intensity distribution (data not shown), in other words,

dR=dX at 10 T is essentially of nuclear origin; and (2) the

total dR=dX at 10 T can (asymptotically) be described by a

power-law dR=dX / q�4, as is characteristic for particle

scattering (compare Fig. 2).34 Subtraction of the (one-dimen-

sional) 10 T data set from the dR=dX at the lower fields then

yields dRM=dX.

The resulting data for dRM=dX are shown in Fig. 3. Note

also that as a consequence of the smallness of the ~Mz scatter-

ing (relative to the transversal contributions), the cross term

/ ~My
~Mz in dRM=dX may be much smaller than the other

terms. The magnitude of dRM=dX is comparable to the

FIG. 1. Azimuthally-averaged total SANS cross section dR=dX of

Nd2Fe14B=Fe3B as a function of momentum transfer q and applied magnetic

field H (T¼ 300 K). Solid circles (•): H values (in Tesla) decrease from

bottom to top: 10, 6, 1, �0.25, �0.55; (�): �1 T; (�): �3 T. Inset: Room-

temperature magnetization curve of Nd2Fe14B=Fe3B.
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magnitude of the total dR=dX but, remarkably, dRM=dX
exhibits a significantly different shape than dR=dX. In partic-

ular, the shoulder in dR=dX at q ffi 0:2 nm�1 (compare Fig.

1) is absent in dRM=dX. Possible origins for the shoulder in

dR=dX are interparticle interferences and/or diffusion zones

around the particles.15 Between þ8 T (data not shown) and

�0.55 T, dRM=dX (at the smallest q) increases by a factor of

about 180. The asymptotic power-law exponent n in

dRM=dX ¼ K=qn is at all fields investigated significantly

larger than the value n¼ 4 (compare Fig. 2). These findings

support the notion of dominant spin-misalignment

SANS, which may give rise to power laws as steep as

dRM=dX / q�8 (Refs. 32 and 35).

The correlation function of the spin misalignment C(r)

was computed from the dRM=dX data via36,37

CðrÞ ¼ a
r

ð1
0

dRM

dX
sinðqrÞ q dq; (3)

where a is a numerical constant; note that for the determina-

tion of the spin-misalignment length lC the absolute value of a

is not relevant. The field-dependent C(r) calculated according

to Eq. (3) are shown in Fig. 4(a) on a semi-logarithmic scale.

In agreement with the previous discussion, it is clearly seen

that the spin-misalignment correlations do not decay exponen-

tially, which would yield (asymptotically) dRM=dX / q�4

(compare Fig. 2). From the C(r) data, we determined the spin-

misalignment length lCðHÞ [see Fig. 4(b)]; lC at a particular

field was identified with the r value for which the correlation

function has decayed to expð�1Þ of its value at the origin

C(0), where the latter quantity was estimated by extrapolating

C(r) from rmin to r¼ 0 according to CðrÞ ffi Cð0Þ � ar2 [dot-

ted line in Fig. 4(a)]. The neglect of a linear term in the above

small-r expansion of C(r) is consistent with the absence of a

sharp interface in the magnetic microstructure (scattering

from infinitely extended magnetization profiles).34

The length lC is a measure of the size of gradients

(around lattice imperfections) in the spin microstruc-

ture.32,35,38 In the present case, it is expected that lC describes

the spatial extent of such magnetization inhomogeneities,

mainly within the soft magnetic Fe3B grains, that are caused

by the jump in the magnetic materials parameters (exchange

constant, magnetization, direction, and magnitude of magnetic

anisotropy) at the interface between the Nd2Fe14B particles

and the surrounding Fe3B crystallites [see inset in Fig.

4(b)].39 The local perturbation of the magnetization at the

phase boundary is transmitted by means of the exchange inter-

action into the soft phase.38 As can be seen in Fig. 4(b), lC

approaches a constant value of about 12.5 nm at the largest

positive fields and increases with decreasing applied field to

take on a maximum value of about 18.5 nm at the experimen-

tal coercive field of l0Hc ¼ �0:55 T. Further increase of H
towards more negative values results again in a decrease of lC

towards �12:5 nm.

The difference between the lCðHÞ data obtained at D11

(ILL) and at Quokka (ANSTO) is related to the fact that at

D11 the incoming neutron wave vector was parallel to the

applied magnetic field, whereas k0?H at Quokka (and

KWS 1). This entails a different SANS cross section and

results in the slightly different values for lC.40 On top of that,

one has to take into account the different demagnetizing-

field effects for both geometries.

For such a scenario, it was shown that the following

expression describes the field dependence of lC,32,35

lCðHiÞ ¼ L þ lHðHiÞ; (4)

where the field-independent parameter L is of the order of the

particle size and lH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ðl0MsHiÞ

p
denotes the exchange

length of the field with A the exchange constant and Hi the in-

ternal magnetic field. Note that L ffi R for spherical particles

(of radius R) with a uniform magnetic anisotropy field.35

Equation (4) embodies the convolution relationship between

the magnetic anisotropy field microstructure (L) and the mag-

netic microstructure (lH).

However, due to irregularities in the shape of the ribbon

sample and due to nonzero volume divergences of the mag-

netization, the precise value of the internal field Hi in Eq. (4)

is not known. Since in the SANS experiments the applied field

H is the control parameter, we set Hi ¼ H þ H? in Eq. (4) in

order to compare the experimental lCðHÞ data with the

FIG. 3. Applied-field dependence of the spin-misalignment SANS cross sec-

tion dRM=dX of nanocrystalline Nd2Fe14B=Fe3B (T¼ 300 K). Solid circles

(•): H values (in Tesla) decrease from bottom to top: 6, 1, �0.25, �0.55;

(�): �1 T; (�): �3 T. Dashed line: dRM=dX / q�5:5.

FIG. 2. Field dependence of the power-law exponent n which was deter-

mined by a fit of, respectively, dR=dX (Fig. 1) and dRM=dX (Fig. 3) to

K=qn (K¼ constant). In both cases, the fit was restricted to the interval

0:6 nm�1 	 q 	 0:7 nm�1. Solid horizontal line: n¼ 4.
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theoretical prediction; H? is expected to model the influence

of the magnetodipolar field and of the magnetic anisotropy.41

The solid line in Fig. 4(b) is the result of a fit of the, in this

way, modified Eq. (4) to the lCðHÞ data. We obtain L ¼
10:9 nm (close to the experimental average grain radius of the

Nd2Fe14B phase) and l0H? ¼ þ0:60 T, which is close to the

absolute value of the experimental coercive field.

It has been predicted10–14 that an optimum magnetic

hardness of two-phase hard/soft nanocomposites is obtained,

if the size of the magnetically soft phase is smaller than about

twice the domain-wall width dB ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
A=K1

p
of the hard mag-

netic phase (dB ffi 4:2 nm for Nd2Fe14B). By means of the

presented methodology it becomes possible to address this

question in more detail in the future, in particular, one can

relate macroscopic magnetic properties and the size of the

soft-phase grains (here: �15 nm) to an estimate for the size of

inhomogeneously magnetized regions: In the remanent state,

we find lC ffi 17 nm which (after subtraction of L) suggests a

penetration depth of the spin disorder into the soft magnetic

phase of about 5–6 nm. The sketched picture presupposes that

the Nd2Fe14B crystallites are essentially in a single-domain

state [compare also inset in Fig. 4(b)].

In summary, we have presented an analysis of magnetic

SANS data in terms of the autocorrelation function of the spin

misalignment, which allows one to study the magnetization-

reversal process of magnetic materials. For a Nd2Fe14B=Fe3B

nanocomposite, we have estimated the characteristic size of

spin inhomogeneities around the Nd2Fe14B nanoparticles.

Our results for the spin-misalignment length lC reveal an

increase of lC with decreasing applied field with a maximum

of about 18.5 nm at the experimental coercive field of

l0Hc ¼ �0:55 T. In the remanent state, the size of gradients

in the magnetization within the soft magnetic Fe3B phase is

estimated to about 5–6 nm. A modified version of Eq. (4) pro-

vides an excellent description of the field dependence of the

spin-misalignment correlations.
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FIG. 4. (a) Field dependence of the correlation function C(r) of the spin mis-

alignment of nanocrystalline Nd2Fe14B=Fe3B (semi-logarithmic scale). The

field values follow the course of a hysteresis loop, starting from a large posi-

tive field and then reducing the field to negative values. Dotted line (extrapo-

lating the 6 T data to r¼ 0): C(r)¼ 4.58 � 0.043 r2. (b) Field dependence of

the spin-misalignment length lC. Solid line: fit of the data to lCðHÞ
¼ L þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=½l0MsðH þH?Þ�

p
, where L ¼ 10:9 nm and l0H? ¼ þ0:60 T

are treated as adjustable parameters; the quantities A¼ 12.5 pJ/m and

l0Ms ¼ 1:6 T are held fixed. For comparison, lCðHÞ data obtained at the

SANS instruments KWS 1 (JCNS, Germany) and D11 (ILL, France) are

included. Dashed horizontal line: average Nd2Fe14B particle radius

R¼ 11 nm. Dotted vertical line: experimental coercive field l0Hc ¼ �0:55 T.

Inset: Sketch illustrating the meaning of lC ¼ Rþ lH . In the presence of an

applied magnetic field H, the magnetization Mp of the Nd2Fe14B particle may

be tilted away from the strong uniaxial anisotropy axis Ku of the particle. The

jump in the materials parameters at the “hard-soft” interface (here, predomi-

nantly Ku fluctuations) gives rise to spin disorder that is transmitted via the

exchange interaction (on a decay length lH) into the soft magnetic Fe3B

crystallites.
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