000128678 001__ 128678
000128678 005__ 20250129092448.0
000128678 037__ $$aFZJ-2013-00412
000128678 041__ $$aEnglish
000128678 1001_ $$0P:(DE-Juel1)143969$$aZhao, Yulong$$b0
000128678 1112_ $$aAmerican Geophysical Union’s 45th annual Fall Meeting$$cSan Francisco$$d2012-12-03 - 2012-12-07$$wUSA
000128678 245__ $$aNumerical correction of the phase error due to electromagnetic coupling effects in 1D EIT borehole measurements
000128678 260__ $$c2012
000128678 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1364225096_25635$$xAfter Call
000128678 3367_ $$033$$2EndNote$$aConference Paper
000128678 3367_ $$2DataCite$$aOutput Types/Conference Poster
000128678 3367_ $$2DRIVER$$aconferenceObject
000128678 3367_ $$2ORCID$$aCONFERENCE_POSTER
000128678 3367_ $$2BibTeX$$aINPROCEEDINGS
000128678 502__ $$cuniversity of Bonn
000128678 520__ $$aSpectral Electrical Impedance Tomography (EIT) allows obtaining images of the complex electrical conductivity for a broad frequency range (mHz to kHz). It has recently received increased interest in the field of near-surface geophysics and hydrogeophysics because of the relationships between complex electrical properties and hydrogeological and biogeochemical properties and processes observed in the laboratory with Spectral Induced Polarization (SIP). However, these laboratory results have also indicated that a high phase accuracy is required for surface and borehole EIT measurements because many soils and sediments are only weakly polarizable and show phase angles between 1 and 20 mrad. In the case of borehole EIT measurements, long cables and electrode chains (>10 meters) are typically used, which leads to undesired inductive coupling between the electric loops for current injection and potential measurement and capacitive coupling between the electrically conductive cable shielding and the soil. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurement to the mHz to Hz range. The aim of this study is i) to develop correction procedures for these coupling effects to extend the applicability of EIT to the kHz range and ii) to validate these corrections using controlled laboratory measurements and field measurements. In order to do so, the inductive coupling effect was modeled using electronic circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 2 mrad in the frequency range up to 10 kHz was achieved. In a field demonstration using a 10 m borehole EIT chain with 8 electrodes with 1 m electrode separation, the corrections were also applied within a 1D inversion of the borehole EIT measurements. The results show that the correction methods increased the measurement accuracy considerably.
000128678 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000128678 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b1
000128678 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J.A. (Sander)$$b2
000128678 7001_ $$0P:(DE-Juel1)144273$$aTreichel, Andrea$$b3
000128678 7001_ $$0P:(DE-Juel1)133958$$aWolters, Bernd$$b4
000128678 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5
000128678 7001_ $$0P:(DE-Juel1)VDB736$$aKemna, A.$$b6
000128678 909CO $$ooai:juser.fz-juelich.de:128678$$pVDB
000128678 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)143969$$aZentralinstitut für Elektronik$$b0$$kZEA-2
000128678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143969$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000128678 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133962$$aZentralinstitut für Elektronik$$b1$$kZEA-2
000128678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000128678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000128678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144273$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000128678 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133958$$aZentralinstitut für Elektronik$$b4$$kZEA-2
000128678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133958$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000128678 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)142562$$aZentralinstitut für Elektronik$$b5$$kZEA-2
000128678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000128678 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000128678 9141_ $$y2012
000128678 920__ $$lyes
000128678 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000128678 980__ $$aposter
000128678 980__ $$aVDB
000128678 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000128678 980__ $$aUNRESTRICTED
000128678 981__ $$aI:(DE-Juel1)PGI-4-20110106