000128683 001__ 128683
000128683 005__ 20250129092448.0
000128683 037__ $$aFZJ-2013-00417
000128683 041__ $$aEnglish
000128683 1001_ $$0P:(DE-Juel1)143969$$aZhao, Yulong$$b0$$eCorresponding author
000128683 1112_ $$aJoint PhD day: ENVITAM-GEPROC$$cGembloux$$d2012-02-08 - 2012-02-08$$wBelgium
000128683 245__ $$aNumerical modeling of electromagnetic coupling effects for phase correction of EIT borehole measurements
000128683 260__ $$c2012
000128683 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1365600892_21138$$xAfter Call
000128683 3367_ $$033$$2EndNote$$aConference Paper
000128683 3367_ $$2DataCite$$aOutput Types/Conference Poster
000128683 3367_ $$2DRIVER$$aconferenceObject
000128683 3367_ $$2ORCID$$aCONFERENCE_POSTER
000128683 3367_ $$2BibTeX$$aINPROCEEDINGS
000128683 520__ $$aThe electrical impedance tomography (EIT), combined with the capability of spectral induced polarization (SIP) has recently become important in the field of geophysics. To characterize weakly polarizable soils and sediments with EIT high phase accuracy is required. Usually long electrode cables with large electrode spacing are used for the borehole measurements, however, this leads to undesired electromagnetic coupling effects. Within the cable inductive coupling between the double wire pairs for current injection and potential measurement could be observed. Furthermore, capacitive coupling appeared between the electrically conductive shield of the cable and electrically conductive soil. Both coupling effects can cause large phase errors depending on the electrical conductivity of subsurface and measured transfer impedance. In order to correct the phase errors both coupling effects were modeled by using discrete mutual inductance and capacitance, whose electrical properties were measured in the laboratory and described for subsequent correction. The correction method was tested successfully on the basis of measurements under controlled conditions in a water-filled rain barrel. First results show that this correction method allows high phase accuracy in the frequency range of a few mHz up to greater than 1kHz.
000128683 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000128683 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b1
000128683 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J.A. (Sander)$$b2
000128683 7001_ $$0P:(DE-Juel1)144273$$aTreichel, Andrea$$b3
000128683 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4
000128683 7001_ $$0P:(DE-Juel1)VDB736$$aKemna, A.$$b5
000128683 909CO $$ooai:juser.fz-juelich.de:128683$$pVDB
000128683 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)143969$$aZentralinstitut für Elektronik$$b0$$kZEA-2
000128683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143969$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000128683 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133962$$aZentralinstitut für Elektronik$$b1$$kZEA-2
000128683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000128683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000128683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144273$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000128683 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)142562$$aZentralinstitut für Elektronik$$b4$$kZEA-2
000128683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000128683 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000128683 9141_ $$y2012
000128683 920__ $$lyes
000128683 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000128683 980__ $$aposter
000128683 980__ $$aVDB
000128683 980__ $$aUNRESTRICTED
000128683 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000128683 981__ $$aI:(DE-Juel1)PGI-4-20110106