001     128683
005     20250129092448.0
037 _ _ |a FZJ-2013-00417
041 _ _ |a English
100 1 _ |a Zhao, Yulong
|0 P:(DE-Juel1)143969
|b 0
|e Corresponding author
111 2 _ |a Joint PhD day: ENVITAM-GEPROC
|c Gembloux
|d 2012-02-08 - 2012-02-08
|w Belgium
245 _ _ |a Numerical modeling of electromagnetic coupling effects for phase correction of EIT borehole measurements
260 _ _ |c 2012
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1365600892_21138
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The electrical impedance tomography (EIT), combined with the capability of spectral induced polarization (SIP) has recently become important in the field of geophysics. To characterize weakly polarizable soils and sediments with EIT high phase accuracy is required. Usually long electrode cables with large electrode spacing are used for the borehole measurements, however, this leads to undesired electromagnetic coupling effects. Within the cable inductive coupling between the double wire pairs for current injection and potential measurement could be observed. Furthermore, capacitive coupling appeared between the electrically conductive shield of the cable and electrically conductive soil. Both coupling effects can cause large phase errors depending on the electrical conductivity of subsurface and measured transfer impedance. In order to correct the phase errors both coupling effects were modeled by using discrete mutual inductance and capacitance, whose electrical properties were measured in the laboratory and described for subsequent correction. The correction method was tested successfully on the basis of measurements under controlled conditions in a water-filled rain barrel. First results show that this correction method allows high phase accuracy in the frequency range of a few mHz up to greater than 1kHz.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|x 0
|f POF II
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 1
700 1 _ |a Huisman, J.A. (Sander)
|0 P:(DE-Juel1)129472
|b 2
700 1 _ |a Treichel, Andrea
|0 P:(DE-Juel1)144273
|b 3
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
700 1 _ |a Kemna, A.
|0 P:(DE-Juel1)VDB736
|b 5
909 C O |o oai:juser.fz-juelich.de:128683
|p VDB
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 0
|6 P:(DE-Juel1)143969
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143969
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 1
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144273
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 4
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21