001     12893
005     20250317091726.0
024 7 _ |2 DOI
|a 10.1109/TPS.2010.2055165
024 7 _ |2 WOS
|a WOS:000283252500038
024 7 _ |2 ISSN
|a 0093-3913
024 7 _ |2 ISSN
|a 1939-9375
037 _ _ |a PreJuSER-12893
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Fluids & Plasmas
100 1 _ |0 P:(DE-Juel1)132115
|a Gibbon, P.
|b 0
|u FZJ
245 _ _ |a Progress in mesh-free plasma simulation with parallel tree codes
260 _ _ |a New York, NY
|b IEEE
|c 2010
300 _ _ |a 2367 - 2376
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 2527
|a IEEE Transactions on Plasma Science
|v 38
|x 0093-3913
|y 9
500 _ _ |a Manuscript received December 1, 2009; revised May 31, 2010; accepted June 18, 2010. Date of publication August 12, 2010; date of current version September 10, 2010. This work was supported by the Alliance Program of the Helmholtz Association [HA216/ExtreMe Matter Institute (EMMI)].
520 _ _ |a The recent developments in mesh-free plasma modeling using parallel tree codes are described, covering the algorithmic and performance issues and how to apply this technique to multidimensional electrostatic plasma problems. Examples of the simulations of the ion acceleration by high-intensity lasers, heating, and the dynamics of the nanostructured targets, as well as more recent applications of this technique to the simulations of edge plasmas in tokamaks and mesh-free magnetoinductive models, are given.
536 _ _ |0 G:(DE-Juel1)FUEK403
|2 G:(DE-HGF)
|x 0
|c FUEK403
|a Fusion (FUEK403)
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 1
536 _ _ |0 G:(DE-Juel-1)ATMLAO
|a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)
|c ATMLAO
|x 2
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Plasma simulation
653 2 0 |2 Author
|a plasma transport properties
653 2 0 |2 Author
|a proton acceleration
700 1 _ |0 P:(DE-Juel1)132268
|a Speck, R.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)132156
|a Karmakar, A.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)132044
|a Arnold, L.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)132108
|a Frings, W.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB85332
|a Berberich, B.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)5006
|a Reiter, D.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Masek, M.
|b 7
773 _ _ |0 PERI:(DE-600)2025402-7
|a 10.1109/TPS.2010.2055165
|g Vol. 38, p. 2367 - 2376
|p 2367 - 2376
|q 38<2367 - 2376
|t IEEE Transactions on Plasma Science
|v 38
|x 1939-9375
|y 2010
856 7 _ |u http://dx.doi.org/10.1109/TPS.2010.2055165
909 C O |o oai:juser.fz-juelich.de:12893
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-174
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Kernfusion
|v Plasma-Wall-Interaction
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2010
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|g IEK
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|g JARA
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 2
970 _ _ |a VDB:(DE-Juel1)124644
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21