000128939 001__ 128939
000128939 005__ 20240711085703.0
000128939 0247_ $$2ISSN$$a1866-1793
000128939 0247_ $$2Handle$$a2128/4616
000128939 020__ $$a978-3-89336-788-7
000128939 037__ $$aFZJ-2013-00465
000128939 041__ $$aEnglish
000128939 082__ $$a500
000128939 082__ $$a333.7
000128939 082__ $$a620
000128939 1001_ $$0P:(DE-Juel1)VDB86332$$aGuignard, Alexandre$$b0$$eCorresponding author$$gmale$$ufzj
000128939 245__ $$aDevelopment of thermal spray processes with liquid feedstocks
000128939 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2012
000128939 300__ $$a128 S.
000128939 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1378813775_2354
000128939 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000128939 3367_ $$02$$2EndNote$$aThesis
000128939 3367_ $$2DRIVER$$adoctoralThesis
000128939 3367_ $$2BibTeX$$aPHDTHESIS
000128939 3367_ $$2DataCite$$aOutput Types/Dissertation
000128939 3367_ $$2ORCID$$aDISSERTATION
000128939 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich : Energie & Umwelt / Energy & Environment$$v141
000128939 502__ $$aRuhr-Universität Bochum, Diss., 2012$$bDr.$$cRuhr-Universität Bochum$$d2012
000128939 500__ $$3POF3_Assignment on 2016-02-29
000128939 500__ $$aRecord converted from JUWEL: 18.07.2013
000128939 520__ $$aThe manufacture of submicrometer-structured coatings by thermal spraying is currently a subject of increasing research efforts in order to obtain unique and often enhanced properties compared to conventional coatings. Injecting suspensions of submicron ceramic particles into the plasma jet or the flame enables to deposit finely-structured coatings. Such fine microstructures are desired for a large range of applications, such as in the field of thermal barrier coatings (TBCs) for gas turbines. Suspension plasma sprayed (SPS) TBCs show unique mechanical, thermal and optical properties compared to conventional atmospheric plasma sprayed (APS) TBCs. They have thus the potential of providing increased TBC performances under severe thermo-mechanical loading. The benefits of SPS-deposited yttria-stabilized zirconia (YSZ) TBCs are demonstrated, such as very fine porosity, high segmentation crack density and low Young’s modulus. Although segmentation cracks survive during thermal cycling at 1400°C, it was shown that the sintering tendency is high at such temperature exposure. An improvement of the SPS YSZ microstructure was realized by reducing significantly the fraction of unmolten clusters. However, this improvement was not reflected in thermal cycling performances in a burner rig. Further experimental investigations with modified spraying parameters yielded a columnar-structured YSZ coating. This type of microstructure is advantageous for TBC applications since intercolumnar voids can comply with in-plane stresses during thermal cycling, similar to electron beam physical vapor deposited (EB-PVD) TBCs. Further investigations on the SPS process with lanthanum zirconate (La$_{2}$Zr$_{2}$O$_{7}$) as a new promising material for TBCs yielded almost stoichiometric coatings by preventing lanthania evaporation with at the same time columnar-type structure being promising in terms of compliance. The deposition of TiO$_{2}$ coatings by SPS was also investigated. A large range of various microstructures was produced and specific anatase phase content can be tailored. Tree-like columnar structures are particularly attractive for their large surface area that promotes photoactivity. SPS appears as a highly versatile process with great potential for the manufacture of these coatings.
000128939 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000128939 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000128939 8564_ $$uhttps://juser.fz-juelich.de/record/128939/files/Energie%26Umwelt_141.pdf$$yOpenAccess
000128939 8564_ $$uhttps://juser.fz-juelich.de/record/128939/files/Energie%26Umwelt_141.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000128939 8564_ $$uhttps://juser.fz-juelich.de/record/128939/files/Energie%26Umwelt_141.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000128939 8564_ $$uhttps://juser.fz-juelich.de/record/128939/files/Energie%26Umwelt_141.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000128939 909__ $$ooai:juser.fz-juelich.de:128939$$pVDB
000128939 909__ $$ooai:juser.fz-juelich.de:128939$$pOA
000128939 909CO $$ooai:juser.fz-juelich.de:128939$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000128939 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000128939 9141_ $$y2012
000128939 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000128939 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000128939 920__ $$lyes
000128939 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000128939 970__ $$a2128/4616
000128939 9801_ $$aFullTexts
000128939 980__ $$aphd
000128939 980__ $$aVDB
000128939 980__ $$aJUWEL
000128939 980__ $$aConvertedRecord
000128939 980__ $$aUNRESTRICTED
000128939 980__ $$aI:(DE-Juel1)IEK-1-20101013
000128939 980__ $$aFullTexts
000128939 981__ $$aI:(DE-Juel1)IMD-2-20101013