001     128962
005     20250314084108.0
020 _ _ |a 978-3-642-37348-0
024 7 _ |a 10.1007/978-3-642-37349-7_8
|2 DOI
024 7 _ |a 2128/4939
|2 Handle
037 _ _ |a FZJ-2013-00487
041 _ _ |a eng
082 _ _ |a 004
100 1 _ |a Lorenz, Daniel
|0 P:(DE-Juel1)138271
|b 0
|e Corresponding author
111 2 _ |a 6th International Parallel Tools Workshop
|c Stuttgart
|d 2012-09-25 - 2012-09-28
|w Germany
245 _ _ |a Extending Scalasca's analysis features
260 _ _ |a Berlin
|c 2013
|b Springer
295 1 0 |a Tools for High Performance Computing 2012
300 _ _ |a 200 S
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 128962
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Scalasca is a performance analysis tool, which parses the trace of an application run for certain patterns that indicate performance inefficiencies. In this paper, we present recently developed new features in Scalasaca. In particular, we describe two newly implemented analysis methods: the root cause analysis which tries to identify the cause of a delay and the critical path analysis, which analyses the path of execution that determines the application runtime. Furthermore, we present time-series profiling, a method that allows to explore time-dependent behavior of an application. Finally, we extended the means of Scalasca and its output format CUBE to define and display topologies.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to GVK,
700 1 _ |a Böhme, David
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 2
700 1 _ |a Strube, Alexandre
|0 P:(DE-Juel1)140202
|b 3
700 1 _ |a Szebenyi, Zoltan
|0 P:(DE-HGF)0
|b 4
773 _ _ |p 115-126
856 4 _ |u http://deposit.d-nb.de/cgi-bin/dokserv?id=4264377&prov=M&dok_var=1&dok_ext=htm
856 4 _ |u https://juser.fz-juelich.de/record/128962/files/FZJ-2013-00487.pdf
|z Published final document.
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/128962/files/FZJ-2013-00487.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/128962/files/FZJ-2013-00487.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/128962/files/FZJ-2013-00487.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:128962
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138271
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132199
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140202
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21