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Abstract

HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the
host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational
modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast
two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions.
Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or
other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-
hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby
identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7,
CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are
involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality
control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1
Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef
interaction partners may help to further elucidate the molecular basis of HIV-related diseases.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) primarily

infects CD4+ T cells and cells of the monocyte-macrophage

lineage. In addition to immune deficiency, HIV-1 is the direct

source for a number of neurological symptoms, suggesting that

HIV-1 is able to enter the central nervous system (CNS) and cause

neurocognitive impairment, especially at later stages of the

infection. The HIV-1 Nef protein is an accessory protein that

plays an important role in the infectivity, persistence and

pathology of the virus. Its importance in the progression of AIDS

is evident, since it is known that deletion or absence of Nef

attenuates the symptoms in HIV patients [1]. The downmodula-

tion of cell surface levels of CD4 as well as the downmodulation of

major histocompatibility class I (MHC I) molecules, the mediation

of cellular signaling and activation, and the enhancement of viral

particle infectivity are the four most thoroughly documented Nef

activities that affect immune cells and have together with other

aspects been extensively reviewed elsewhere [2–5]. The number of

cell surface receptors modulated by Nef is steadily increasing [6],

but it is still not clear how any of these interactions contribute to

HIV pathogenesis.

Several attempts have been made to identify host cell proteins

that interact with Nef and to elucidate Nef mediated pathogenic

effects. Up to now however, all published yeast two-hybrid (Y2H)

screens with Nef as a bait were performed with conventional

protocols using classical Y2H screens that rely on transcriptional

activation of reporter genes in the nucleus [7–13]. Thus, the

detection of interaction partners that are integral membrane

proteins, membrane-associated proteins or other proteins that do

not translocate into the nucleus was impeded in those studies.

Because Nef is posttranslationally myristoylated and thus is at

least transiently localized to membranes, we set out to employ

a screening procedure that is potentially able to identify

membrane proteins.

Results

We performed a split-ubiquitin based membrane-associated

Y2H screen using a membrane-anchored Nef as a bait to facilitate

the identification of further Nef binding host cell proteins, which

are integrated in or associated to membranes. Because we were

especially interested in HIV-induced processes in the brain, we
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used a human brain cDNA library to screen for Nef interacting

partners.

Design and Results of the Yeast Two-hybrid Screen
To account for Nef’s increased attraction to membranes upon

its posttranslational myristoylation, we used full length Nef fused to

an Ost4p transmembrane anchor at its N-terminus. At the C-

terminal end, this bait contained the C-terminal part of ubiquitin

(Cub) linked to the transcription factor LexA-VP16. For a lot of its

activities, Nef requires dimerization, which is mediated by

interactions between residues located in the Nef core region

[14]. Fusion of Nef to Ost4p does not restrict dimerization in any

way. The schematic of the Y2H system with the resulting bait

plasmid (pDHB1-Nef) is shown in Figure 1. Preys were from

a purchased human adult brain cDNA library, which covered

approx. 1.756106 independent clones and was linked to the N-

terminal part of ubiquitin (Nub). The expression of the membrane-

localized Nef-bait was verified by Western blotting of cell extracts

using a mouse monoclonal antibody directed against the LexA

domain (data not shown).

The screen was carried out as described in the Methods part.

Altogether, 58 different host cell proteins were obtained as hits

from the initial screen. It is well known that Y2H screens, like any

genetic selection system, are prone to produce a certain number of

false positive results. Such hits would show a His+/Ade+/lacZ+

phenotype independent of a true interaction between the bait and

the prey. In order to eliminate such false positive clones, the

respective pPR3 vector-DNAs of each of the 58 hits were tested for

the His+/Ade+/lacZ+ phenotype. Approximately half of the

initially identified hits showed b-galactosidase activity when

coexpressed with the Nef-bait but not when coexpressed with

the large T control bait. Only those were further considered to be

Nef dependent positive hits. The results of the positive hits are

summarized in Table 1 listing the names and their hit frequencies.

Altogether, we identified the following proteins, although with very

different frequencies: the neuronal membrane glycoprotein M6B

(GPM6B), the B-cell receptor-associated protein 31 (BAP31), the

glycoprotein M6A (GPM6A), Tetraspanin 7 (TSPAN7), Cyto-

chrome B5 type B (CYB5B), the receptor for transcobalamin-

bound vitamin B12 (CD320/TCblR) and Vitamin K epoxide

reductase complex, subunit 1-like protein 1 (VKORC1L1), V-set

and immunoglobulin domain containing 4 (VSIG4), Transmem-

brane prostate androgen-induced protein (PMEPA1), OCIA

domain containing 1 (OCIAD1), Integrin beta-1 (ITGB1),

Chimerin 1 (CHN1), Hypoxia-inducible factor (HIF) prolyl 4-

hydroxylase (PH4), Claudin 10 (CLDN10), Heat shock 70 kDa

protein 9/mortalin (HSPA9), Apoptosis-related protein 3 (APR-3),

Solute carrier family 31 (copper transporter), member 2

(SLC31A2), Phosphatidylethanolamine binding protein 1

(PEBP1), Probable cation-transporting ATPase 13A2 (ATP13A2),

V-type proton ATPase subunit S1 (ATP6AP1) and N-acetyllacto-

saminide beta-1,3-N-acetylglucosaminyltransferase (B3GNT1).

Detailed information (gene ID, subcellular localization, function)

for each protein is given in the Table S1. Of those, VKORC1L1,

SLC31A2, ATP13A2 and ATP6AP1 were not further considered,

because they have been reported to appear unspecifically as false-

positive hits based on the components of the DUALhunter system

itself (for reference see http://www.dualsystems.com).

More than 80% of the identified proteins are localized in

membranes (17 out of 21) with membrane topologies containing at

least one transmembrane domain (TM) and spanning up to 12

TMs.

Yeast cells cotransfected with the prey vectors from eight hits

(GPM6B, GPM6A, BAP31, CHN1, CYB5B, ITGB1, PEB1, PH4)

and either pDHB1-Nef or pDHB1-largeT were directly subjected

to coimmunoprecipitation (CoIP) experiments (Figure 1B). As

summarized in Table 1, these immunoprecipitations (IP) experi-

ments confirmed the existence of precipitable immune complexes

including Nef and each of the eight hit proteins tested in yeast cell

lysates. Notably, detection of prey protein complexes with the

SV40 large T antigen as negative control bait was weak for CHN1

and not visible for all other samples tested. This suggests that the

detected Nef-prey complexes represent specific interactions and

are not caused by unspecific protein aggregation. In case of BAP31

and ITGB1, a CoIP of yeast cell lysates could be demonstrated

only in one direction (IP with anti-Lex and WB with anti-HA).

For a selection of the identified Nef interacting proteins we have

carried out colocalization studies in Cos-7 cells, as described in the

following.

Colocalization by Confocal Microscopy Studies on
Selected Hits
To further evaluate the significance of a subfraction of the hits

with regard to their physiological relevance on cellular level, we

analyzed their cellular distribution in absence and presence of Nef

in eukaryotic cells. Such experiments were performed with BAP31,

CD320/TCblR, CLDN10, and GPM6B. For this, pGFP-BAP31,

pGFP-CD320, pGFP-CLDN10 and pGFP-GPM6B expression

plasmids, a pNef-DsRed expression plasmid and a pDsRed

(Clontech) control vector were constructed and used for transient

transfection of Cos-7 cells as described in the Methods chapter.

Figure 2A summarizes the results obtained from cells that have

been cotransfected with the pGFP-host protein fusions together

with pNef-DsRed.

A representative result of the coexpression of GFP-BAP31 and

Nef-DsRed is shown in the top panel of Figure 2 and in the

merged image colocalization of BAP31 and Nef mainly along

membranes of the nucleus or ER/Golgi structures was seen.

Notably, the strongest colocalization occurs at the perinuclear

BAP31 accumulations (arrows). Cos-7 cells expressing GFP-

BAP31 alone also demonstrate a subcellular localization of the

BAP31 fusion protein adjacent to the nucleus and along ER/Golgi

structures. Depending on the area of the focal plane, some cells

showed prominent perinuclear accumulation (data not shown).

These accumulations are consistent with previous findings as made

by Wakana et al. [15]. No colocalization is visible at the plasma

membrane and inside the cytoplasm itself, where only Nef-DsRed

can be imaged.

The same experiments were carried out for CD320/TCblR,

CLDN10 and GPM6B. For CD320/TCblR, the strongest

fluorescence overlap was observed at the perinuclear region.

CLDN10, a protein in tight junctions, was visible at the border of

two adjacent cells, close to the nucleus and at some punctuate

likely vesicular structures inside the cell. Remarkably, when

overexpressing CLDN10 we observed that Nef clearly is

additionally localized in the tight junction region and at the

vesicular CLDN10 positive structures (arrows).

When GPM6B was cotransfected with Nef, colocalization of the

two fusion proteins at the perinuclear region and in most of the

vesicular accumulations was observed. To rule out an influence of

the fluorescent protein fusions, each GFP-host protein expression

construct was cotransfected with an empty pDsRed vector as

control (Figure 2B). These negative controls showed no or hardly

any overlap of the green and red fluorescence channels. Thus, an

effect of the fusion proteins can be very likely excluded and all

observed colocalizations are due to the close proximity or the

direct interaction of Nef with the analyzed proteins.

Screen for Membrane Proteins Binding HIV-1 Nef
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Figure 1. Schematic of the Y2H screen and coimmunoprecipitation of selected preys show interaction with Nef. A. Schematic
presentation of the split-ubiquitin Y2H screen with membrane-anchored Nef as bait. Wild type Nef myristoylation is replaced by the Ost4p
transmembrane anchor and amino acids 39–76 of yeast ubiquitin (Cub) linked to the LexA-VP16 transcription factor carboxy-terminally to Nef. A
human adult brain cDNA library (Dualsystems Biotech AG) cloned in pPR3-N expressing the cDNAs as fusions carboxy-terminally of amino acids 1–38
of yeast ubiquitin (Nub) and an HA-tag. Upon binding of the bait and prey both parts of the ubiquitin come together and are cleaved by the protease
to activate reporter genes. If no interaction with the Nef bait protein is possible, the ubiquitin subunits stay apart and no reporter genes in the
nucleus are turned on. B. Coimmunoprecipitation (CoIP) of Nef and preys. Yeast cell lysate proteins from different transfected cultures as well as
a non-transfected control (NMY51) as indicated at the top were immunoprecipitated (IP) either with anti-HA or anti-LexA antibodies. For negative

Screen for Membrane Proteins Binding HIV-1 Nef
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Notably, transiently transfected Cos-7 cells displayed a different

morphology when expressing GFP-GPM6B. Their plasma mem-

brane was untypically frayed and structures that are reminiscent of

neurite-like outgrowths or filopodia, which recently had been

described for Cos-7 cells by others [16,17], could be observed.

These structures showed high levels of GPM6B (Figure 3A).

Interestingly, the presence of Nef affected the extent to which the

membrane extensions occurred. In general, less and shorter

outgrowths were observed when Nef was present in the cells in

addition to GPM6B (Figure 3B). Cos-7 cells cotransfected with

pGFP-GPM6B and the empty control vector (pDsRed) did not

show significant changes in the length of the extensions compared

to cells transfected only with pGFP-GPM6B. This suggests that the

GPM6B-mediated formation of membrane extensions is negative-

ly influence by the Nef protein (Figure 3C).

The distributions of the respective GFP-host protein expression

constructs were compared with the expression patterns of the

respective endogenous proteins described by others (e.g. [15,18]),

or that were obtained in our laboratory by direct immunostaining

of fixed Cos-7 cells using commercially available primary

antibodies. In the case of CD320/TCblR, which is endogenously

expressed only at very low levels in Cos-7 (as well as in most other

cell lines), the immunostaining of endogenous CD320/TCblR was

not possible. For GFP-BAP31 and GFP-CLDN10, no big

differences could be observed compared to their endogenous

counterparts (data not shown).

In vitro Binding Studies of GPM6B with Nef
A brief look at the GPM6B amino acid sequence of the

cytoplasmic loops revealed a striking similarity to residues 408 to

419 inside the cytoplasmic domain of the T-cell co-receptor CD4.

This region is known to be necessary and sufficient for down-

regulation of CD4 by Nef (e.g. reviewed in [5,6]) and also its direct

binding to Nef is well characterized ([19–21]). Thus, we

investigated, whether any of the other proteins identified from

the Y2H-screen show similarities to already known Nef interaction

motifs. Comparison of residues 114 to 125 of the GPM6B

cytoplasmic loop (Q13491-1) and 108–119 of GPM6A with the

sequence of the Nef binding motif of CD4 (amino acids 408 to 419

of the mature protein chain; Figure 4A) resulted in striking

sequence similarities. In this region, GPM6B and CD4 sequences

show a 50% identity and 25% similarity by only three out of

controls, cells were alternatively transfected with a bait expression vector coding for the SV40 large T antigen (largeT) instead of Nef. The resulting
immunoprecipitates were electrophoretically separated, blotted (WB) on a PVDF-membrane as indicated at the right and detected with anti-Myc or
anti-HA antibodies. The approximate molecular weights of the proteins are shown. Two additional experiments gave similar results.
doi:10.1371/journal.pone.0051578.g001

Table 1. Analysis of the bait dependency test.

protein Nu of hits pDHB1-Nef pDHB1-LargeT CoIP

SD –leu -trp
SD -leu -trp -his -
ade b-gal SD -leu -trp

SD -leu -trp –his -
ade b-gal

IP:a-LexA
WB:a-HA IP: a-HA WB:a-LexA

GPM6B 23 5 5 5 5 2 0 + +

BAP31 10 5 5 5 5 0 0 - +

CD320 1 6 6 6 6 2 0 nd nd

CYB5B 2 8 8 7 5 2 0 + +

GPM6A 2 8 8 8 5 0 0 + +

TSPAN7 2 5 5 5 5 0 0 nd nd

APR-3 1 6 6 6 6 4 0 nd nd

B3GNT1 1 5 5 5 5 0 0 nd nd

CHN1 1 6 6 6 6 1 0 + +

CLDN10 1 6 6 5 6 5 0 nd nd

HSPA9 1 6 6 6 6 4 0 nd nd

ITGB1 1 6 6 6 6 0 0 - +

OCIAD1 1 6 6 6 6 0 0 nd nd

PEBP1 1 3 3 3 5 2 0 + +

PH4 1 5 5 5 5 0 0 + +

PMEPA1 1 6 6 5 6 0 0 nd nd

VSIG4 1 6 6 6 6 0 0 nd nd

VKORC1L1 2 2 2 2 5 0 0 nd nd

ATP13A2 1 6 6 6 6 5 0 nd nd

ATP6AP1 1 6 6 6 6 1 0 nd nd

SLC31A2 1 6 6 6 6 4 0 nd nd

Bait dependency test for growth on minimal media (His2/Ade2/lacZ2) of the positive preys coexpressed with pDHB1-Nef or pDHB1-LargeT (negative control) and
summarized CoIP results (last column). Only hits that passed the Nef dependency test are listed. The table is sorted by the number of hits, which is given beside the
protein name. Putative Nef-interacting proteins prone to be false-positive interactors based on the components of the Y2H system itself (according to the Dualsystems
support page) are written in italic.
doi:10.1371/journal.pone.0051578.t001
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twelve residues that do not fit the alignment. The alignment of the

respective regions of GPM6A and PLP1 with this CD4 region also

showed striking similarities (Figure 4B). This suggests that the

conserved cytoplasmic loop region of GPM6B and GPM6A might

contain a Nef binding site similar to that of CD4. This region is

notably also conserved in the myelin proteolipid protein (PLP1),

which is the prototype protein of the PLP family. As shown in

Figure 4D, fluorescence titrations using purified Nef protein and

synthetic FITC-labeled peptides derived from the cytoplasmic

parts of GPM6B or PLP1 respectively, verified a direct and rather

robust interaction between the molecules with KD values ranging

below 1 mM. Mutations in CD4, in which leucines 413 and 414

were replaced with alanines, renders CD4 refractory to Nef-

induced downregulation [22–24] and at least in vitro drastically

reduces the binding affinity of synthetic CD4 peptides to full-

length Nef protein [20,21]. If this is the same binding determinant

as the previously identified and well known Nef binding site of

CD4, one may expect that the residues in GPM6B that correspond

to the dileucine-motif also play an important role. Therefore, we

also analyzed a peptide variant (GPM6BAA) in which the

dileucine-motif corresponding residues leucine 119 and histidine

120 of GPM6B were replaced by alanines. The relative

fluorescence of FITC-labeled GPM6BAA was virtually indepen-

dent of Nef concentration, suggesting that it did not bind to Nef

(Figure 4D, open circles). The mutation of leucine 119 and

histidine 120 to alanines drastically reduced the affinity of the

examined GPM6B peptide to Nef. This clearly shows that both

residues contribute to Nef-GPM6B binding. It underlines the

similarities between the Nef binding sites in CD4 and PLP-like

proteins. Very interestingly, also in CD320/TCblR a region with

high similarity to the Nef binding site of CD4 could be identified

inside its short cytoplasmic portion (Figure 4C). In this region,

CD320/TCblR and CD4 sequences show also 50% identity and

25% similarity.

Discussion

We successfully performed a membrane-associated Y2H screen

with a membrane-anchored HIV-1 Nef protein as bait. Thereby,

21 novel cellular Nef interacting candidate proteins were un-

covered. They are mostly integral membrane proteins located in

various cellular compartments (Figure 5). The identified hits are

involved in diverse cellular processes like apoptosis, neurogenesis,

cell adhesion and protein quality control, and present a novel pool

of host cell factors that might be affected by HIV-1 Nef.

Comparison with the Results of Proteomic and RNAi
Knockdown Studies
In general, Y2H approaches work best to identify direct bait-

prey interactions, because exactly one prey protein is expressed

with one bait protein within the same yeast cell. In contrast, mass

spectrometry (MS) based approaches often yield proteins as hits

that did not necessarily bind directly to the bait but are part of

multi-protein complexes that bound to the bait. In addition,

because the various prey proteins are not equally expressed in their

native environment, MS based studies experience problems to

Figure 2. Analysis of subcellular localization of BAP31, CD320/TCblR, CLDN10 and GPM6B with and without Nef. A. Confocal
microscopy analysis of Cos-7 cells coexpressing GFP fusions of BAP31, CD320/TCblR, CLDN10 or GPM6B with Nef-DsRed. Cos-7 cells were transiently
cotransfected with pNef-DsRed and pGFP-BAP31, pGFP-CD320/TCblR, pGFP-CLDN10 or pGFP-GPM6B and fixed 24 h posttransfection. Single images
from the red (Nef-DsRed) and green (GFP-prey) channels were overlaid in the merged image. Yellow regions represent colocalization, details are
given in the text. Arrows point out BAP31 accumulations and distinct areas of CLDN10 and Nef overlay. Scale bar: 10 mm. B. Negative controls for the
colocalization images in Figure A. Confocal microscopy analysis of Cos-7 cells coexpressing GFP fusions of BAP31, CD320/TCblR, CLDN10 or GPM6B
with DsRed. Cos-7 cells were transiently cotransfected with pDsRed and pGFP-BAP31, pGFP-CD320/TCblR, pGFP-CLDN10 or pGFP-GPM6B and fixed
24 h posttransfection. Single images from the red (DsRed) and green (GFP-prey) channels were overlaid in the merged image. The respective scatter
grams, as well as the images and scatter grams from cotransfections with the pDsRed control vector are given.
doi:10.1371/journal.pone.0051578.g002
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identify proteins as positive hits when they are expressed at very

low levels. Thus, it is obvious that Y2H screens and MS based

approaches have different advantages and disadvantages and

therefore do not necessarily yield the same set of positive hits, but

render them rather complementary.

Concerning the very special case of HIV Nef, the situation

becomes even more complex. In parallel with Nef’s pleiotropic

functions, a cohort of cellular proteins has been described to

interact with Nef. However, most of these interactions are

considered to be low affinity interactions, and thus are not

accessible with affinity purification approaches followed by MS

analysis of the co-purified products. Such transient interactions are

more easily detected by using a split-ubiquitin based Y2H screen,

as was used in the present study. Here, Nef-prey complexes do not

have to overcome lysis and purification steps, but only have to exist

long enough to allow the ubiquitin hydrolase to separate the

transactivating moiety from the Nef-prey complex, which sub-

sequently switches on reporter gene transcription.

Figure 3. Analysis of GPM6B-induced outgrowth in Cos-7 cells. Cells were treated as described in Figure 2. For enhanced visualization of the
membrane extensions, magnifications of the boxed areas are depicted to the right of each picture. Representative images of cells transfected with
pGFP-GPM6B without (A) or with pNef-DsRed (B) or pDsRed (C) cotransfection are shown. Scale bar: 10 mm.
doi:10.1371/journal.pone.0051578.g003

Screen for Membrane Proteins Binding HIV-1 Nef
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This may be an explanation, why our results did not yield any

overlapping hit with the results from two recent MS based studies.

Aiming specifically to understand Nef interactions with the cellular

trafficking machinery, Mukerji et al. identified ten cellular Nef

binders (namely EXOC1, EXOC2, EXOC3, EXOC4, EXOC6,

NFKB1, PAK2, Q9NP29, Q9UL85, RPS20), which are suggested

to be involved in Pak2-association dependent Nef functions [25].

In a more global approach carried out by Jäger et al., only four

cellular proteins ACOT8, NMT1, MTDC and EXOC4 have

been identified as Nef binding candidates [26] with EXOC4 being

the only overlapping hit between both studies.

A third recently reported MS based study searched for cellular

proteins that bind to a short peptide including the Nef secretion

modification region (SMR) and identified four SMR-interacting

cellular proteins [27]. The most abundant one was identified to be

HSPA9/mortalin. Consistently, mortalin was coimmunoprecipi-

tated with Nef-GFP from Jurkat T cells, and further studies (e.g.

SMR-peptide inhibition assays, miRNA knockdown, antibody

inhibition) suggested that mortalin possibly delivers Nef to

endocytic vesicles, which then are released as exosomes. Notably,

in our Y2H-based screen, we independently identified HSPA9/

mortalin as a binding partner of membrane-anchored Nef as well

(see Table S1). Please note that mortalin belongs to the few

cytosolic proteins that were identified during our screen. Although

we identified only one common hit with this MS based study, it is

Figure 4. Sequence analysis of Nef binding site and in vitro binding studies of GPM6B and Nef. A. Amino acid sequence of the Nef
binding motif of CD4. B. Clustal W [70] based alignment of the cytoplasmic loops of GPM6B, GPM6A and PLP1. Note, for GPM6B, GPM6A and PLP-
DM20/PLP1 isoform 2, the sequences of the complete cytoplasmic loop regions are shown. Additionally, positions of the indicated proteolipid
proteins with homologies to a sequence region in the cytoplasmic tail of T-cell surface glycoprotein CD4 (shown at the top) that includes the core Nef
binding motif of CD4 [20,21] are highlighted. Positions identical to the respective CD4 residue are shaded black, those with high similarity are shaded
grey and those with lower similarity are boxed. The indicated residue numbers show the beginning and the end of the amino-terminally
fluoresceinylated GPM6B and PLP1 peptides used for the Nef binding studies shown in D. Numbering of GPM6B is based on UniProtKB entry Q13491-
1 throughout this figure. C. Sequence of the cytoplasmatic portion of CD320/TCblR, homologies to CD4 indicated as described above. D.
Fluorescence titration of 0.5 mM of fluoresceinyl-labeled peptides, GPM6B112–127, GPM6BAA, or PLP193–108 with recombinant HIV-1SF2 Nef2–210 protein
(prepared as described in [68]). The fluorescence signals are shown as a function of the Nef2–210 protein concentration. Values result from the
fluorescence of the peptides in the presence of the indicated concentration of Nef2–210 in comparison with a buffer control titration. Assuming
a simple bimolar interaction between the peptide and Nef2–210, the data were described by a model based solely on the law of mass action which
accounts for ligand depletion [71]. Nonlinear curve fitting of the model to the fluorescence data (lines) yielded dissociation constants of
0.6460.06 mM for GPM6B112–127 and of 0.7160.03 mM for PLP193–108.
doi:10.1371/journal.pone.0051578.g004
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an important proof for the validity and specificity of our Y2H

based screen in general.

Several recent genome-wide screening approaches for reduced

viral replication upon RNAi knock down revealed more than 1000

annotated gene candidates for cellular proteins, also called ‘‘HIV-1

dependency factors’’ (HDF) that negatively influenced viral

replication in cell culture [28–31]. Although hits of such RNAi

screens cannot be assigned to specific HIV-1 proteins, as for

example Nef, and it is well known that Nef is dispensable for HIV

replication in cell cultures [32], which actually was the readout in

the mentioned RNAi screens, we compared our hits with the lists

of the published HDFs. Not very surprisingly, only one common

hit was found with the study of Yeung et al. [30], namely

PMEPA1/TMEPAI (see Table S1).

Based on known facts in literature, in the following we discuss

the potential of selected hits, namely GPM6B, BAP31, CD320/

TCblR and CLDN10, to be involved in HIV-1 pathogenesis. This

includes the hits that were investigated further in this study.

Glycoprotein M6B (GPM6B)
The glycoprotein M6B (GPM6B) has been the most prominent

hit within the screen and like the glycoprotein M6A (GPM6A), is

an integral membrane protein with four transmembrane domains.

GPM6B is thought to have a function in the development of the

nervous system [33]. GPM6B was firstly described as a brain

specific protein expressed mainly in neurons and oligodendrocytes

[34], but several recent studies demonstrate its broad distribution

throughout many cell types and tissues [17,35,36]. HIV-1 infects

microglial cells and astrocytes in the brain and an evidence of Nef

being present in other cell type inside the CNS is insufficient to

date. Also in recent literature, Nef has been reported to be

translocated from HIV-1 infected cells to bystander cells via

secretion, trogocytosis or nanotubes [37–39] and it is conceivable

that Nef might be also secreted in the CNS from microglial cells

and astrocytes and thereby might indirectly affect neurons or

oligodendrocytes. Taken together, a clash of Nef and GPM6B

seems to be possible in many cell types, but clearly further

experiments would be necessary to prove this.

Our in vitro binding experiments using synthetic peptides,

comprising the putative Nef binding region of GPM6B and

recombinant Nef resulted in a robust binding with KD-values

below 1 mM. We demonstrated that Nef negatively influences

a function of GPM6B, namely the GPM6B-mediated induction of

membrane extensions in Cos-7 cells, possibly as a result of a Nef-

mediated downregulation of GPM6B. GPM6B-mediated mem-

brane extensions have recently been reported for hippocampal

neurons, where filopodia formation by GPM6B was analyzed and

Figure 5. Subcellular localization of the identified hits within a model cell. Overview of the subcellular localization of the interaction
partners of Nef identified via the split-ubiquitin based Y2H system based on the data given in Table S1. Marked in magenta are the proteins studied in
more detail.
doi:10.1371/journal.pone.0051578.g005
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characterized as a stress-mediated regulator of hippocampal

development. Similar effects were also described for other cells

types overexpressing GPM6B, in particular also for Cos-7 cell

lines, the cell type we used for our study [16].

Fjorback et al. described an interaction of GPM6B with the

serotonin transporter (SERT) and a GPM6B-modulated uptake of

serotonin [40]. Interestingly, with the serotonin receptor (5-HT4)

Yeung et al. identified another compound of the serotonin uptake

machinery as HDF [30]. These findings can help to unravel the

mechanisms underlying the benefit of drugs acting as serotonin

reuptake inhibitors [41,42] or serotonin receptor antagonist

[43,44] observed for HIV-1 infected patients.

B-cell Receptor-associated Protein 31 (BAP31)
B-cell receptor-associated protein 31 (BAP31) was identified ten

times and is an ubiquitous protein residing in the endoplasmic

reticulum (ER) of 28 kDa, forming a multi-pass membrane protein

with three transmembrane domains, which can be processed to

p20 BAP31 by caspase 8 cleavage [45]. BAP31 is known to be

involved in the transport of nascent proteins at the ER membrane

and presents an important factor in the quality control within the

ER-Golgi intermediate compartment (ERGIC) and ER-associated

degradation (ERAD) pathway [46]. Remarkably, certain viruses,

hijack the ERAD pathway to evade the immune system or to enter

the cytosol respectively [47–51].

Amongst the most described cargo of BAP31 is the major

histocompatibility complex (MHC or human HLA) class I

molecule [52]. Again, viruses have evolved elegant strategies to

inhibit various stages of the MHC I antigen presentation pathway

and thus evade a cellular surveillance mechanism (for review, see

[53]). HIV-1 Nef downregulates MHC I surface expression, both

by recruiting MHC I directly from the cell surface and by

transporting newly synthesized MHC I molecules to lysosomes (for

review see [54]). An important step during this process is the Nef

mediated association of the cytoplasmic domain of MHC I with

the clathrin adaptor protein complex 1 (AP1) at the trans-Golgi

network, which recently could be solved at atomic resolution [55].

Beside this, several observations suggest that Nef also might

interact with MHC I molecules earlier during the secretory

pathway ([56,57]). A direct interaction of Nef with BAP31 would

support these findings and may imply that Nef additionally could

interfere with the MHC I molecules upstream of the trans-Golgi

network.

To date, BAP31 has been reported only once to be directly

bound by a viral protein, namely the E5 protein of the human

papillomavirus [58].

CD320 Molecule/Transcobalamin Receptor (TCblR)
The CD320 molecule as a clearly Nef dependent hit was

identified twice during the Y2H screen. CD320 was first thought

to be specific for human B cells and in follicular dendritic cells

[59]. The function of CD320 as transcobalamin receptor (TCblR)

was discovered recently by Quadros et al. [60]. CD320/TCblR is

a plasma membrane resident protein and mediates the uptake of

extracellular vitamin B12 also known as cobalamin (Cbl) in

a transcobalamin-bound manner. Like for the PLP proteins, we

recognized a similarity to the known binding motif of Nef to the

human CD4 molecule also inside the short cytoplasmic tail of

CD320/TCblR.

Claudin 10 (CLDN10)
For claudin 10 (CLDN10), most of the literature to date shows

an involvement in cancer progression, especially of hepatocellular

carcinoma [18,61,62]. However, high CLDN10 mRNA expres-

sion levels have been observed in mouse brain capillary endothelial

cells. Therefore, a role of CLDN10 in tight junction formation at

the blood-brain barrier (BBB) has been postulated, [63]. Accord-

ingly, viruses make use of claudins to disrupt the BBB and to

traverse epithelial cell layers. Known targets are for example

claudin 1, claudin 6 and claudin 9, which have been identified as

coreceptors for hepatitis C virus (HCV) entry [64]. Claudin 7 is

involved in the infection of CD4(-) cells through HIV-1 [65] and

the HIV-1 Tat protein is held to be responsible for an increased

permeability of the BBB by influencing claudins [66,67]. Possibly,

disturbance of the BBB could be enhanced by an interaction of

Nef and CLDN10.

Overall, the above discussed four proteins are only one fifth of

the newly identified proteins that are prone to be involved in

a direct interaction with Nef inside the host cell. Except for

HSPA9/mortalin [27], all of the identified proteins are reported

here for the first time to be Nef binding partners and these results

may help to further understand the molecular mechanisms of Nef

during HIV pathogenesis. We carried out independent experi-

ments, including in vitro binding assays or confocal microscopy,

with a subset of the newly identified putative Nef targeted host

proteins and confirmed their interaction with Nef.

It is hard to imagine that all of the hereby revealed Nef

interactions are relevant for the HIV-1 infection cycle, but they are

potentially relevant for the pathology of HIV infection especially at

late stages of an HIV infection. One of such collateral damages of

HIV-infection may be the HIV-associated dementia.

Conclusions
Our approach to identify Nef binding proteins yielded 21

human proteins, of which approx. 80% were membrane proteins,

which underlines the special features of the employed split-

ubiquitin Y2H screening method. For BAP31 and CLDN10 we

demonstrated colocalization. For GPM6B and CD320, we

additionally characterized binding motifs that are conserved for

Nef binding to human CD4. Putative biological relevance of

selected interactions is discussed. The results will contribute

towards a better understanding of HIV-1 pathology.

Methods

Antibodies
Mouse monoclonal antibody directed against LexA was

obtained from Santa Cruz Biotechnology. Anti-HA rabbit

antibody (H 6908) was purchased from Sigma-Aldrich. Peroxidase

conjugated ImmunoPure goat anti-mouse IgG (H+L) and

ImmunoPure goat anti-rabbit IgG (H+L) were both from Pierce.

The following primary antibodies were used for immunostain-

ing: anti-M6B rabbit polyclonal antibody (HPA002913, Sigma-

Aldrich), goat polyclonal anti-BAP31 (sc-18579, Santa Cruz

Biotechnology), goat polyclonal anti-CD320/TCblR (AF1557,

R&D Systems) and mouse monoclonal anti-CLDN10 (BO1,

Abnova). Polyclonal anti-Nef from rabbit (SA6102, Eurogentec)

was produced from recombinant HIV-1 SF2 Nef2–210 as described

previously [68].

Yeast Two-hybrid Screen
The DUALhunter system (Dualsystems Biotech AG, Zurich,

Switzerland), which is based on the split-ubiquitin system [69], was

used to identify proteins that interact with membrane anchored

HIV-1 Nef. The Nef gene from HIV-1 isolate SF2 was amplified

from pUbi-Nef2–210 [68] and subcloned into the SfiI sites of

pDHB1. The resulting protein is a fusion of the small membrane

anchor of Ost4p, Nef, residues 39 to 76 of yeast ubiquitin (Cub)
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and the LexA-VP16 transcription factor (Figure 1A). The pDHB1-

Nef bait construct was transformed into the yeast strain NMY51.

Absence of self-activation was confirmed by cotransformation or

mating assays of the pDHB1-Nef bait, together with a control prey

(pAI-Alg5 and pDL2-Alg5) and selection on minimal medium,

lacking the amino acids tryptophane, leucine and histidine

(selective medium) according to the manufactures instructions.

To optimize the screening stringency for pDHB1-Nef, pilot

screens were carried out according to the supplier instructions

(DUALhunter kit user manual), in which the concentration of 3-

aminotriazole (3-AT) – a competitive inhibitor of the HIS3 gene

product – was adjusted. Thereby the library vector (pPR3-N),

without an insert in place of a cDNA library, was transformed into

the Nef bait-bearing strain. For the Y2H screen, pDHB1-Nef was

cotransformed with a human adult brain cDNA library (DUAL-

systems Biotech AG), cloned in pPR3-N expressing the cDNAs as

fusions carboxy-terminally of residues 1 to 38 of yeast ubiquitin

(Nub) and an HA-tag into yeast strain NMY51. Transformants

that were able to grow on selective medium were tested for their b-
galactosidase activity using the filter lift-off assay (described in User

manual DUALhunter kit, DUALsystems). More than 99% of the

tested transformants showed b-galactosidase activity and were

considered to be positives. Library plasmids were isolated from the

positive clones, sequenced and analyzed.

Bait Dependency Test
The respective pPR3 prey vector DNAs of each of the hits was

isolated and retransformed into yeast strain NMY51 either with

the bait plasmid (pDHB1-Nef) or with a control bait (pDHB1-

largeT) encoding an Ost4p-largeT-Cub-LexA-VP16- fusion.

Retransformants were analyzed for their growth and phenotype

on plates lacking leucine and tryptophane (SD -leu -trp) or on

plates additionally lacking histidine and adenine (SD -leu -trp -his -

ade) as well as for their b-galactosidase activity as described in

more detail in the DUALhunter kit handbook (DUALsystems).

Only those who showed a prominent b-galactosidase activity when
coexpressed with the Nef-bait, but not when coexpressed with the

largeT control bait, were considered to be Nef dependent positive

ligands.

Plasmid Constructs
The Nef coding sequence was amplified from pUbi-Nef [68]

without the stop codon, using sense and antisense primers

including unique EcoRI and BamHI sites. The PCR product was

subcloned in-frame into the respective sites of pDsRed-N1 vector

(Clontech), yielding pNef-DsRed coding for a Nef protein N-

terminally fused to DsRed.

All potential interaction partners of Nef were subcloned from

the Y2H screen vector pPR3-N via SfiI sites into pHA-Mex-eGFP

vector (DUALSystems) yielding pHA-Mex-eGFP-GPM6B, pHA-

Mex-eGFP-BAP31, pHA-Mex-eGFP-CD320 and pHA-Mex-

eGFP-CLDN10 coding for hit proteins C-terminally fused to

eGFP, henceforth only named pGFP-hit for convenience. Lower

case letters mark the amino acid positions of the used protein

regions. Numbering is done according to the database entries

(UniProtKB), which are P51572, Q9NPF0, P78369 and Q13491

for BAP31, CD320/TCblR, CLDN10 and GPM6B respectively.

Immunoprecipitation Analysis
S. cerevisiae cells were cotransformed with the prey expression

plasmid (pPR3-N-prey), including a HA-tag and either a Nef bait

expression plasmid (pDHB1-Nef) or a control LargeT bait

expression plasmid (pDHB1-LargeT) both including the LexA

encoding region. Cells were lysed by vortexing with glass beads in

50 mM HEPES pH 7.4, 50 mM NaCl, 1% Triton X-100 and

a cocktail of protease inhibitors (Complete Mini EDTA-free,

Roche). Glass beads were separated from the lysate by low speed

centrifugation and the resulting supernatant was centrifuged at

higher speed (20 sec and 14.000 rpm). Membranes were separated

from the remaining supernatant by centrifugation at 48.000 rpm

for 30 min and 4uC, and subsequently lysed in 120 ml Triton
buffer (50 mM TrisHCl pH 7.5, 150 mM NaCl, 0.3 mM MgCl2,

0.5% Triton X-100, 10% glycerin and a cocktail of protease

inhibitors). The resulting extracts were subjected to immunopre-

cipitation with anti-HA or anti-LexA antibody. Immunoprecipi-

tates were separated by SDS-PAGE and probed by western blot

analysis for HA or LexA immunoreactivity. Nef-LexA (70 kDa)

and largeT-LexA (114 kDa) immunoreactivity was detected with

mouse monoclonal antibody directed against the LexA domain,

and a HRP-conjugated goat anti-mouse IgG. Prey proteins

immunreactivity was detected with rabbit anti-HA antibody, and

a HRP-conjugated goat anti-rabbit IgG.

Western Blots
Equal amounts of the respective samples from the CoIP were

subjected to denaturing electrophoresis on a 12% sodium dodecyl

sulfate-polyacrylamide gel. Proteins were transferred to a poly-

vinylidene difluoride membrane (10 mA, 40 min) which was

blocked by 10% BSA (Sigma) for 30 min. The membrane was

incubated with specific primary antibody overnight, followed by

incubation with peroxidase conjugated secondary antibody for

90 min. Blots were visualized by chemiluminescence (SuperSignal

West Pico Chemiluminescent Substrate, Pierce) and documented

using the ChemiDoc system (Bio-Rad).

Cell Culture
The Cos-7 (African green monkey kidney) cell line was obtained

from DSMZ and cultivated in Dulbecco’s modified Eagle’s

medium (DMEM) with 4.5 g/l glucose containing 10% fetal

bovine serum at 37uC and in a 5% CO2 atmosphere. At

confluence between 80 and 90% cells were subcultivated and

counted using a coverslipped improved Neubauer chamber. Cells

were passaged with Trypsin/EDTA and seeded at a density of

26106 cells per 75 m2 flask and used between passages 10 and 25

for all experiments. Furthermore they were regularly tested for

mycoplasm contamination.

Transfection
Transient transfection of Cos-7 cells was performed with the

electroporator GenePulser (Biorad) set to an exponential pulse,

450 mF and 450 V in a 4 mm cuvette. Generally, 16106 cells/ml

were used per transfection and plated out in 10x35 mm dishes with

glass cover slides. Per transfection, a total amount of 10 mg DNA

was used (endofree, QIAGEN EndoFree Plasmid Purification

Maxi kit). After transfection, cells were incubated at 24 h.

Immunocytochemical Staining
Cells were fixed either with 4% paraformaldehyde or with

methanol:acetone (1:1) for 1 min, then permeabilized with 0.2%

(v/v) Triton X-100/PBS for 10 min followed by blocking with 1%

BSA in PBS for 30 min up to 1 h. Primary antibodies were diluted

1:500 in blocking buffer. Secondary antibody conjugated with

Alexa488, Alexa647 or Cy5 were used at a 1:500 dilution. DAPI

staining of the nucleus was performed before the cover slips were

mounted with fluorescent mounting medium (Trevigen) on glass

slides and sealed.
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Microscopy
Microscopy was done with a confocal laser scanning microscope

(LSM 710, Zeiss MicroImaging Inc.) equipped with an EC-Plan-

Neofluar 40x/1.30 oil DIC objective. Images were acquired using

Zen 2008 Software from Zeiss. Pixel dwell was set to 3.15 ms,
image size 1024x1024, 8-bit, averaging over 4 times. Experiments

were repeated independently at least twice and cells of minimum 5

fields of view were taken.

Supporting Information

Table S1 Overview of the identified hits from the Y2H-screen

with membrane-associated HIV-1 Nef. The table summarizes the

characteristics of the identified positive interactors via DUALhun-

ter system. Information is given for the complete protein name,

synonyms, subcellular localization, main known function, tissue

specify as well as its involvement in disease, if known. The

information for each putative interaction partner of membrane-

bound Nef was evaluated on the basis of the gene data bank

(NCBI gene) and protein knowledgebase bank (UniProtKB)

annotations.
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tional Radiology, Tübingen) for help with the fluorescence titrations and

Arnd Baumann (ICS-4; Forschungszentrum Jülich) for valuable discussions
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