001     129079
005     20210129211218.0
024 7 _ |a 10.1007/s11249-012-0057-y
|2 doi
024 7 _ |a 1573-2711
|2 ISSN
024 7 _ |a 1023-8883
|2 ISSN
024 7 _ |a WOS:000312666000020
|2 WOS
037 _ _ |a FZJ-2013-00601
082 _ _ |a 670
100 1 _ |a Gachot, Carsten
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Dry Friction Between Laser-Patterned Surfaces: Role of Alignment, Structural Wavelength and Surface Chemistry
260 _ _ |a Basel
|c 2013
|b Baltzer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1358865056_31586
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The ability to tune friction by tailoring surface topographies at micron length scales and by changing the relative orientation of crystallites at the atomic scale is well established. Here, we investigate if the two concepts combine, i.e. if the relative orientation of surfaces affects dry friction between laser-textured surfaces. Laser patterning was used on austenitic stainless steel substrates and on tribometer testing balls made of 100Cr6 to create linear periodic arrays with different structural wavelengths or periodicities (5, 9 and 18 μm). Pairing each substrate with a ball of the same periodicity, the different arrays were subjected to dry sliding tests at 0°/90° relative alignment between the linear patters. We observe that the patterning reduces friction after running-in. The reduction increases with decreasing wavelength and also depends sensitively on the relative alignment and the chemistry of the sliding surfaces. Our results highlight the possibility to create tailored contacting surface geometries leading to tunable frictional properties.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Rosenkranz, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Reinert, Leander
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ramos-Moore, Estéban
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Souza, Nicolas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 5
700 1 _ |a Mücklich, Frank
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1007/s11249-012-0057-y
|g Vol. 49, no. 1, p. 193 - 202
|0 PERI:(DE-600)2015908-0
|n 1
|p 193 - 202
|t Tribology letters
|v 49
|y 2013
|x 1573-2711
856 4 _ |u https://juser.fz-juelich.de/record/129079/files/FZJ-2013-00601.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:129079
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144442
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21