001 | 129080 | ||
005 | 20210129211218.0 | ||
024 | 7 | _ | |a 10.1007/s11249-012-0064-z |2 doi |
024 | 7 | _ | |a 1573-2711 |2 ISSN |
024 | 7 | _ | |a 1023-8883 |2 ISSN |
024 | 7 | _ | |a WOS:000316364100005 |2 WOS |
037 | _ | _ | |a FZJ-2013-00602 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Prodanov, Mykola |0 P:(DE-Juel1)145800 |b 0 |e Corresponding author |
245 | _ | _ | |a Contact Mechanics of Laser-Textured Surfaces |
260 | _ | _ | |a Basel |c 2013 |b Baltzer |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1365685383_17239 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a We study numerically the contact mechanics of a flat and a curved solid. Each solid bears laser-induced, periodic grooves on its rubbing surface. Our surface topographies produce a similar load and resolution dependence of the true contact area as nominally flat, but randomly rough, self-affine surfaces. However, the contact area of laser-textured solids depends on their relative orientation. The estimated true contact areas correlate with kinetic friction measurements. |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Gachot, Carsten |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Rosenkranz, Andreas |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mücklich, Frank |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Müser, Martin |0 P:(DE-Juel1)144442 |b 4 |
773 | _ | _ | |a 10.1007/s11249-012-0064-z |0 PERI:(DE-600)2015908-0 |n 1 |p 41-48 |t Tribology letters |v 50 |x 1573-2711 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/129080/files/FZJ-2013-00602.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:129080 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145800 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144442 |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |
910 | 1 | _ | |k FZJ |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |
910 | 1 | _ | |6 P:(DE-Juel1)144442 |
910 | 1 | _ | |b 4 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a Peer review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|