000129082 001__ 129082
000129082 005__ 20210129211219.0
000129082 0247_ $$2doi$$a10.1140/epjb/e2012-21081-8
000129082 0247_ $$2ISSN$$a1434-6028
000129082 0247_ $$2ISSN$$a1434-6036
000129082 0247_ $$2WOS$$aWOS:000303545400008
000129082 037__ $$aFZJ-2013-00604
000129082 082__ $$a530
000129082 1001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b0$$eCorresponding author
000129082 245__ $$aThe chemical hardness of molecules and the band gap of solids within charge equilibration formalisms
000129082 260__ $$aBerlin$$bSpringer$$c2012
000129082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1358865392_31585
000129082 3367_ $$2DataCite$$aOutput Types/Journal article
000129082 3367_ $$00$$2EndNote$$aJournal Article
000129082 3367_ $$2BibTeX$$aARTICLE
000129082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000129082 3367_ $$2DRIVER$$aarticle
000129082 520__ $$aThis work finds that different charge equilibration methods lead to qualitatively different responses of molecules and solids to an excess charge. The investigated approaches are the regular charge equilibration (QE), the atom-atom-charge transfer (AACT), and the split-charge equilibration (SQE) method. In QE, the hardness of molecules and the band gap of solids approaches zero at large particle numbers, affirming the claim that QE induces metallic behavior. AACT suffers from producing negative values of the hardness; moreover valence and conduction bands of solids cross. In contrast to these methods, SQE can reproduce the generic behavior of dielectric molecules or solids. Moreover, first quantitative results for the NaCl molecule are promising. The results derived in this work may have beneficial implications for the modeling of redox reactions. They reveal that by introducing formal oxidation states into force field-based simulations it will become possible to simulate redox reactions including non-equilibrium contact electrification, voltage-driven charging of galvanic cells, and the formation of zwitterionic molecules.
000129082 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000129082 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000129082 773__ $$0PERI:(DE-600)1459068-2$$a10.1140/epjb/e2012-21081-8$$gVol. 85, no. 4, p. 135$$n4$$p135$$tThe @European physical journal / B$$v85$$x1434-6036$$y2012
000129082 8564_ $$uhttps://juser.fz-juelich.de/record/129082/files/FZJ-2013-00604.pdf$$yRestricted
000129082 909CO $$ooai:juser.fz-juelich.de:129082$$pVDB
000129082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000129082 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000129082 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000129082 9141_ $$y2012
000129082 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000129082 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000129082 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000129082 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000129082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000129082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000129082 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000129082 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000129082 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000129082 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000129082 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000129082 980__ $$aVDB
000129082 980__ $$ajournal
000129082 980__ $$aUNRESTRICTED
000129082 980__ $$aI:(DE-Juel1)JSC-20090406