001     129082
005     20210129211219.0
024 7 _ |a 10.1140/epjb/e2012-21081-8
|2 doi
024 7 _ |a 1434-6028
|2 ISSN
024 7 _ |a 1434-6036
|2 ISSN
024 7 _ |a WOS:000303545400008
|2 WOS
037 _ _ |a FZJ-2013-00604
082 _ _ |a 530
100 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 0
|e Corresponding author
245 _ _ |a The chemical hardness of molecules and the band gap of solids within charge equilibration formalisms
260 _ _ |a Berlin
|c 2012
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1358865392_31585
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a This work finds that different charge equilibration methods lead to qualitatively different responses of molecules and solids to an excess charge. The investigated approaches are the regular charge equilibration (QE), the atom-atom-charge transfer (AACT), and the split-charge equilibration (SQE) method. In QE, the hardness of molecules and the band gap of solids approaches zero at large particle numbers, affirming the claim that QE induces metallic behavior. AACT suffers from producing negative values of the hardness; moreover valence and conduction bands of solids cross. In contrast to these methods, SQE can reproduce the generic behavior of dielectric molecules or solids. Moreover, first quantitative results for the NaCl molecule are promising. The results derived in this work may have beneficial implications for the modeling of redox reactions. They reveal that by introducing formal oxidation states into force field-based simulations it will become possible to simulate redox reactions including non-equilibrium contact electrification, voltage-driven charging of galvanic cells, and the formation of zwitterionic molecules.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
773 _ _ |a 10.1140/epjb/e2012-21081-8
|g Vol. 85, no. 4, p. 135
|0 PERI:(DE-600)1459068-2
|n 4
|p 135
|t The @European physical journal / B
|v 85
|y 2012
|x 1434-6036
856 4 _ |u https://juser.fz-juelich.de/record/129082/files/FZJ-2013-00604.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:129082
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144442
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21