000129103 001__ 129103 000129103 005__ 20240711085646.0 000129103 0247_ $$2doi$$a10.1088/0957-4484/23/48/485301 000129103 0247_ $$2WOS$$aWOS:000311138100011 000129103 0247_ $$2altmetric$$aaltmetric:21819653 000129103 0247_ $$2pmid$$apmid:23124114 000129103 037__ $$aFZJ-2013-00623 000129103 082__ $$a530 000129103 1001_ $$0P:(DE-Juel1)VDB88034$$aKisner, A.$$b0 000129103 245__ $$aIn situ fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors 000129103 260__ $$aBristol$$bIOP Publ.$$c2012 000129103 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384508372_7473 000129103 3367_ $$2DataCite$$aOutput Types/Journal article 000129103 3367_ $$00$$2EndNote$$aJournal Article 000129103 3367_ $$2BibTeX$$aARTICLE 000129103 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000129103 3367_ $$2DRIVER$$aarticle 000129103 500__ $$3POF3_Assignment on 2016-02-29 000129103 520__ $$aIn situ fabrication in a single step of thin films of alumina exhibiting a thickness of less than 100 nm and nanopores with a highly regular diameter distribution in order to pattern nanostructures over field-effect devices is a critical issue and has not previously been demonstrated. Here we report the fabrication in situ of 50 nm thick ultrathin nanoporous alumina membranes with a regular pore size directly over metal-free gate ion-sensitive field-effect transistors. Depositing thin films of aluminum by an electron beam at a relatively low rate of deposition on top of chips containing the transistors and using a conventional single-step anodization process permits the production of a well-adhering nanoporous ultrathin layer of alumina on the surface of the devices. The anodization process does not substantially affect the electrical properties of the transistors. The small thickness and pore size of ultrathin alumina membranes allow them to be sequentially employed as masks for patterning Au nanocrystals grown by an electroless approach directly on the top of the transistors. The patterning process using a wet chemical approach enables the size of the patterned crystals to be controlled not only by the dimensions of the pores of alumina, but also by the concentration of the reactants employed. Surface modification of these nanocrystals with alkanethiol molecules demonstrates that the electrostatic charge of the functional groups of the molecules can modulate the electrical characteristics of the transistors. These results represent substantial progress towards the development of novel nanostructured arrays on top of field-effect devices that can be applied for chemical sensing or non-volatile memories. 000129103 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0 000129103 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1 000129103 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b1 000129103 7001_ $$0P:(DE-Juel1)129605$$aFischer, Werner$$b2 000129103 7001_ $$0P:(DE-Juel1)131004$$aTillmann, Karsten$$b3 000129103 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4 000129103 7001_ $$0P:(DE-HGF)0$$aKubota, L. T.$$b5 000129103 7001_ $$0P:(DE-Juel1)128710$$aMourzina, Youlia$$b6$$eCorresponding author$$ufzj 000129103 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/23/48/485301$$n48$$p485301$$tNanotechnology$$v23$$x1361-6528 000129103 8564_ $$uhttps://juser.fz-juelich.de/record/129103/files/FZJ-2013-00623_PV.pdf$$yRestricted$$zPublished final document. 000129103 909__ $$ooai:juser.fz-juelich.de:129103$$pVDB 000129103 909CO $$ooai:juser.fz-juelich.de:129103$$pVDB 000129103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000129103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129605$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000129103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131004$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000129103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000129103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128710$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000129103 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0 000129103 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1 000129103 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0 000129103 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1 000129103 9141_ $$y2012 000129103 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000129103 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000129103 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000129103 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000129103 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000129103 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000129103 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000129103 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000129103 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000129103 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000129103 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000129103 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000129103 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0 000129103 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000129103 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x2 000129103 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x3 000129103 980__ $$ajournal 000129103 980__ $$aVDB 000129103 980__ $$aUNRESTRICTED 000129103 980__ $$aI:(DE-Juel1)PGI-8-20110106 000129103 980__ $$aI:(DE-82)080009_20140620 000129103 980__ $$aI:(DE-Juel1)ICS-8-20110106 000129103 980__ $$aI:(DE-Juel1)IEK-1-20101013 000129103 981__ $$aI:(DE-Juel1)IMD-2-20101013 000129103 981__ $$aI:(DE-Juel1)IBI-3-20200312 000129103 981__ $$aI:(DE-Juel1)ICS-8-20110106 000129103 981__ $$aI:(DE-Juel1)IEK-1-20101013 000129103 981__ $$aI:(DE-Juel1)VDB881