
Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys.: Conf. Ser. 406 012005

(http://iopscience.iop.org/1742-6596/406/1/012005)

Download details:

IP Address: 134.94.122.242

The article was downloaded on 28/06/2013 at 10:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/406/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


 
 
 
 
 
 

Plasma Spray-PVD: Plasma Characteristics 
and Impact on Coating Properties 
 

G Mauer and R Vaßen 

Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-1) 
52425 Jülich, Germany 

E-mail: g.mauer@fz-juelich.de 

Abstract. Typical plasma characteristics of the plasma spray-physical vapour deposition (PS-
PVD) process were investigated by optical emission spectroscopy. Electron temperatures were 
determined by Boltzmann plots while temperatures of the heavy species as well as electron 
densities were obtained by broadening analysis of spectral lines. The results show how the 
plasma properties and thermodynamic equilibrium conditions are affected by the admixture of 
hydrogen and the ambient chamber pressure. Some experimental examples of PS-PVD 
coatings demonstrate the impact on feedstock treatment and deposited microstructures. 

1.  Introduction 
The very low pressure plasma spray (VLPPS) process has been developed with the aim of depositing 
uniform and thin coatings with large area coverage based on plasma spraying. At typical pressures 
below 500 Pa, the characteristics of the plasma jet change compared to conventional low pressure 
plasma spraying processes (LPPS, often called vacuum plasma spraying, VPS) operating at 5-20 kPa. 
By VLPPS, quite thin and dense ceramic coatings can be obtained for special applications like solid 
oxide fuel cells [1], gas separation membranes [2], and wear protection [3]. 

The combination of VLPPS with enhanced electrical input power has led to the development of the 
plasma spray-physical vapor deposition process (PS-PVD [4], initially called LPPS-TF process, TF = 
thin film). At appropriate parameters it is even possible to evaporate the powder feedstock material 
providing advanced microstructures and non-line of sight deposition e.g. of thermal barrier coatings 
for turbine components [5]. Since relative large deposition rates and areas can be achieved, PS-PVD 
has the potential to fill the gap between PVD on the one hand and conventional plasma spraying on the 
other hand. 

To exploit the potential of such novel gas phase deposition, the plasma characteristics and their 
dependency on process conditions must be better understood. Besides power, spray distance and 
plasma flow conditions, the characteristics of the plasma gas are important parameters which are 
dependent particularly on its composition and chamber pressure. Thus, plasma conditions were 
investigated by optical emission spectroscopy. Based on the results, the distributions of plasma 
temperatures and electron densities were determined. Some experimental examples are given to 
demonstrate the impact on coating microstructures. 

2.  Experimental 
Experiments were carried out on a Sulzer Metco Multicoat PS-PVD System (Sulzer Metco, Wohlen, 
Switzerland) which resulted from a comprehensive reconstruction of an existing conventional LPPS 
system. In particular, the system is equipped with an additional vacuum pumping unit, a large vacuum 
blower to provide sufficient pumping capacity at low pressures, enlarged cooling capacity, additional 
power sources, a new torch transfer system and new control units. In addition to a modified single 
cathode O3CP gun, which was used in this work, also the F4-VB torch as well as the three-cathode 
TriplexPro torch can be operated. Figure 1 shows the facility. 
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Figure 1. PS-PVD facility at Forschungszentrum Jülich, IEK-1. 
 

For the experiments an agglomerated 7-8 wt.% Yttria partially stabilized zirconia powder (YSZ, 
Sulzer Metco M6700) was used. The grain sizes measured by laser diffraction were d10 = 2 µm, 
d50 = 8 µm, and d90 = 18 µm. For PS-PVD operations, the powder grain sizes should be preferably 
small. The substrates used were polished stainless steel and were preheated by the plasma jet 
immediately before coating. Table 1 shows the appropriate plasma spray parameters. 
 

Table 1. Plasma spray parameters. 

 Parameter A Parameter B 

plasma gas Ar 35 / He 60 slpma Ar 35 / He 60 / H2 10 slpma 

current 2600 A 2200 A 

net power 60 kW 60 kW 

pressure 200-1000 Pa (varied) 200-1000 Pa (varied) 

powder feed rate 1-20 g min-1 (varied) 1-20 g min-1 (varied) 

spray distance 300-1400 mm (varied) 300-1400 mm (varied) 
a slpm = standard liters per minute 

 
The spectrometer applied for plasma characterization was an ARYELLE 200 (Laser Technik Berlin 

(LTB), Berlin, Germany) scanning a wavelength range of 381-786 nm. Plasma radiation was collected 
through a borosilicate glass window and an achromatic lens, transferred by an optical fiber to the 
50 µm entrance slit and detected by a 1024x1024 CCD array. The system is equipped with an echelle 
grating and the spectral resolution obtained is 15.9-31.8 pm. Calibration was carried out with a 
spectral Hg lamp. 

3.  Plasma Characterization 
Plasma characteristics were investigated by optical emission spectroscopy. Electron and excitation 
temperatures were determined by the Boltzmann plot method, respectively. Electron densities and 
heavy particle temperatures were calculated by peak broadening analysis. Some initial results based on 

12th High-Tech Plasma Processes Conference (HTPP-12) IOP Publishing
Journal of Physics: Conference Series 406 (2012) 012005 doi:10.1088/1742-6596/406/1/012005

2



 
 
 
 
 
 

the first two hydrogen spectral lines of the Balmer series Hα and Hβ obtained at VLPPS conditions are 
given in [6, 7]. 

As the plasma jets are optically thin, the measurement is spatially integrated along the line of sight 
of the optical sampling setup [8]. To obtain the central characteristics of the plasma jet, generally a 
deconvolution of the measured two-dimensional projections of the integrated intensities must be 
performed to reconstruct the spatial plasma temperature field. This can be done by Abel inversion 
based on the assumption of axial symmetry [9]. However this method is very laborious and potentially 
increases the measurement errors due to high error transfer coefficients. Thus, alternative methods 
have also been developed to circumvent Abel inversion. In this work, a method proposed in [10] was 
applied to the evaluation of Boltzmann plots. However, the corrections of the temperatures obtained 
along the plasma jet axis were found to be small compared to the temperature bandwidths due to the 
standard errors of the linear fits. Hence, the uncorrected excitation temperatures were considered to be 
representative of the jet center zone. In contrast, a method to correct the spectral line broadening [11] 
yielded substantial corrections of the measured values und was thus applied for broadening analysis. 

3.1.  Boltzmann plot method 
Based on spectroscopically measured emissions, plasma excitation temperatures can be determined by 
the atomic Boltzmann plot method [12, 13]. Applying the Boltzmann distribution, the absolute 
intensity Ijk of a spectral line emitted by the plasma due to the transition from an excited state j to a 
lower energy state k is 
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where L is the emission source depth, h is the Planck constant, c is the velocity of light, Ajk is the 
transition probability, n is the density of emitting atoms/ions, gj is the statistical weight (degeneracy) 
of the excited level j, λjk the wavelength of the emission, Z is the partition function, Ej the energy of the 
excited level, kB the Boltzmann constant, and Texc the excitation temperature. If the intensities of a set 
of emission lines of the same final state are measured a linear plot 
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will yield a slope that is inversely proportional to the desired excitation temperature Texc. The left side 
of this equation is called atomic-state distribution function (ASDF). The values of the energy of the 
excited level Ej, of the transition probability Ajk and the statistical weight gj were taken from [14]. The 
intensity values were obtained from the areas under Voigt fits of the measured spectral emission line 
profiles. Error bars related to the temperature results were calculated based on the standard errors of 
the linear fits. They were found to be approximately ±5%. More details on the application of the 
Boltzmann plot method can be found elsewhere [15]. 

Thermodynamic equilibrium (TE) conditions affect the applicability of the Boltzmann plot method 
considerably. There are four types of balance mechanisms resulting in four corresponding distribution 
functions for particles and photons [16], 

 Kinetic energy exchange and conservation (Maxwell distribution characterized by the 
kinetic temperature T) 

 De-excitation and excitation (Boltzmann distribution characterized by the excitation 
temperature Texc) 

 Recombination and ionization (Saha distribution characterized by the Saha temperature 
TSaha) 

 Absorption and emission (Planck distribution characterized by the radiation temperature 
Trad) 

The TE requires that all these temperatures are unique which is often not fulfilled, Figure 2. The 
weakest form of TE departure is when part of the emitted radiation is not reabsorbed in the plasma and 
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escapes, but Maxwell, Boltzmann and Saha balances still can be maintained. As spatial and time-
related gradients are the reason, this is called local thermodynamic equilibrium (LTE) [16]. A larger 
deviation from TE occurs if the kinetic energy transfer between electrons and heavy particles (atoms, 
ions) is no longer sufficient to balance energy evenly among them. This leads to the two-temperature 
(2T) model [17] with the kinetic electron temperature Te , the kinetic temperature of the heavy 
particles Th , and the non-equilibrium parameter θ = Te/Th. 

 

 

Figure 2. Different stages of departure from thermodynamic equilibrium in thermal plasmas; 
for abbreviations refer to the text. 

 
The density distribution of excited atoms is assumed to be dominated by electron-induced 

transitions leading to a Boltzmann distribution where Texc is equal to Te. Thus, the results of Boltzmann 
plots can be regarded to represent the electron temperatures Te [16]. Free electrons can also control the 
equilibrium between ionization and recombination so that TSaha can be identified also with Te. 
However, atoms in the energy levels close to the ground state do not de-excite predominantly by such 
electron-induced transitions, but rather radiatively [17], Figure 2. In case of recombining plasmas as 
given in expanding plasma jets, this leads to underpopulation of the lower energy levels and thus to 
lower values of the ASDF. This situation is referred to as partial local thermodynamic equilibrium 
(PLTE) [18]. As a consequence, the data points of the Boltzmann plots do not develop linearly [19] 
and only those at higher energy levels represent Te. 

Figure 3 gives an example of Boltzmann plot for recombining plasmas. Fifteen Ar I lines between 
549.59 nm and 751.47 nm were evaluated. Four of them correspond to lower energy levels (4p – 4s). It 
is evident that they are not aligned linearly with respect to the eleven other data points of the higher 
energy levels (4d, 6s, 5d, and 6d – 4p). Thus, they were not included into the linear regression. The 
excitation temperature derived from its slope Texc, h is 5065 +466/-394 K which represents TSaha and Te 
as shown in Figure 2. The error bandwidth results from the standard error of the slope of the linear fit. 
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Figure 3. Example of Boltzmann plot for recombining plasmas with 15 evaluated Ar I spectral lines; 
parameter B, chamber pressure 200 Pa, and stand-off distance 400 mm. 

 
Figure 4 gives the Boltzmann plot for the same plasma condition, but instead of Ar I lines eight 

He I multiplets were evaluated between 447.15 nm and 728.13 nm. For the same reasons as stated 
above, the data point for the transition being lowest to the ground state (3p – 2s) was not included into 
the linear fit since it slightly deviates. The excitation temperature obtained from the remaining seven 
data points (3s, 3d, 4s, and 4d - 2p) is 4344 +225/-204 K. It is not clear whether the difference to the 
excitation temperature obtained from the Ar I lines is substantial. However, considering He lines has 
practical advantage in this work since He is the largest plasma gas fraction in both investigated 
parameters. In particular at increasing stand-off distance the argon peaks become weak and the 
evaluation more uncertain. 

 

 
Figure 4. Example of Boltzmann plot for recombining plasmas with 8 evaluated He I spectral lines; 
parameter B, chamber pressure 200 Pa, and stand-off distance 400 mm. 

3.2.  Line broadening analysis 
Spectral line broadening analysis was used to determine the electron density ne as well as the kinetic 
temperature of the heavy species (atoms and ions) Th. In principle, several broadening mechanisms 
exist [20], 
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 Stark broadening ΔλS due to collisions between charged particles with exited emitting 
atoms is significant in plasmas with ne > 1021 m-3. At lower electron densities, lines of non-
hydrogenic species are too narrow. Hydrogen lines are subjected to linear Stark effect 
whereas non-hydrogenic lines show quadratic Stark effect. For neutral atom lines, electron-
impact broadening produces a symmetrical, shifted profile of the Lorentzian type, while 
ion-contribution introduces asymmetry as well as additional contribution to the width and 
the shift of the profile. 

 Van der Waals broadening is produced by the collisions of neutral ground state atoms and 
exited emitting atoms. It is usually small and can be neglected for the conditions 
investigated here. 

 Natural broadening arises from uncertainty in energy of the states involved in the 
transitions. It is rarely significant in atomic spectroscopy.  

 Resonance broadening is confined to lines involving an energy level being coupled to the 
ground state which is not relevant for the lines investigated in this work. 

 Doppler broadening ΔλD occurs due to the thermal motion of excited atoms. The line 
intensity distribution is Gaussian. 

 The line shapes obtained by a spectrometer are usually approximately Gaussian profiles. 
Such instrument broadening ΔλI has to be determined by means of a laser source or spectral 
lamp. 

Those effects which give rise to Gaussian line shapes tend to be independent from those producing 
Lorentzian broadening profiles. As such, the convolution of these two types of functions results in the 
Voigt function where the Gauss contribution determines the profile core while the Lorentzian part 
governs the far wings. In order to separate the Gauss and Lorentz contributions, a form of the Voigt 
function was used where the Gaussian and the Laurentzian half widths at full maximum (HWHM) 
ΔλG/2 and ΔλL/2 are direct parameters (ΔλG and ΔλL are the full widths at half maximum, FWHM); 
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where a0 is the area, a1 the centre wavelength, a2 the Gaussian half width, and a3 the Lorentzian half 
width. Thus, the fit of the measured intensity distribution yields immediately the Lorentzian as well as 
the Gaussian broadening FWHMs and analogically their standard errors by 

ீߣ߂  ൌ 2ܽଶඥ2ln	ሺ2ሻ, ௅ߣ߂ ൌ 2ܽଷ	 (4) 

To obtain the Doppler broadening the instrument broadening has to be subtracted by 

஽ߣ߂  ൌ ටீߣ߂
ଶ െ ூߣ߂

ଶ (5) 

Since only Stark broadening causes a significant Lorentzian contribution they can be equated 
ௌߣ߂  ൌ  ௅ (6)ߣ߂

The selection of the spectral lines for broadening analysis has to be done carefully. The most 
widely used for diagnosis purposes because of its great Stark width is the Hβ line of the Balmer series 
of hydrogen at 486.13 nm [21]. It is relatively isolated, does not show significant self-absorption, and 
is almost independent on Te and ion dynamics effects. The latter cannot be neglected if using other 
species like He I [22]. There are also some well investigated Ar I lines, e. g. at 696.54 nm [23, 24, 25]. 
However in this work, broadening analysis was only successful using the Hβ line as it is supported by 
sufficient measured data points so that the Gaussian and Lorentzian broadening contributions could be 
separated reliably. Several non-hydrogenic lines of Ar I and He I were tried but found to be too narrow 
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with respect to the spectrometer resolution. Thus, the determination of Th and ne could be performed 
only for the hydrogen containing parameter B. 

Figure 5 shows three examples of Voigt fits and residuals of the Hβ line profile at Parameter B and 
400 mm stand-off distance. The quality of the fits is very similar for the three investigated chamber 
pressures 200, 500, and 1000 Pa. The coefficients of determination are better than 0.999 each. The 
developments of the residuals do not show any significant indication of asymmetry. The central dip is 
hardly discernible from the observed data. 
 

Figure 5. Voigt fits and residuals of Hβ line at Parameter B and 400 mm stand-off distance,
chamber pressures 200, 500, and 1000 Pa. 

Electron density ne (in m-3) is calculated according to the Stark profile calculations in [26]. The 
method is independent of the assumption of PLTE. The FWHM (in nm) is calculated by 

ௌߣ∆  ൌ 2.507 ∙ 10ିସߙ	݊௘
ଶ
ଷൗ  (7) 

The Stark broadening parameter α is tabulated depending on ne and Te; the latter dependence is 
only weak. Based on the Lorentzian broadening contribution separated from the measured broadening 
as described above, equation 6 was solved iteratively for ne. Cross checks with other simplified 
approaches [27, 28] yielded similar results. Error bandwidths related to the electron density results 
were checked based on the standard errors of the Voigt fits. They were found to be small by 
approximately ±5% und hence not included in the graphs. 

The FWHM due to Doppler broadening is calculated according to [29] by 
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where λ0 is the central wavelength of the emission line, kB is the Boltzmann constant, M is the relative 
atomic mass of the absorbing atom, u is the atomic mass unit, and c is the speed of light. Based on the 
Gaussian broadening contribution separated from the measured broadening and corrected for the 
instrumental broadening as described above, equation 7 was solved for Th. Error bars related to the 
temperature results were calculated based on the standard errors of the linear fits. They were found to 
be approximately ±10 to 15%. Thus, the temperature determination based on Doppler broadening 
turned out to be prone to uncertainties. 

The investigated plasma jets are supersonic when they exit the nozzle. The first transition to 
subsonic conditions is indicated by the so-called Mach disk. Further downstream, expansion and 
compression zones due to reflections at the jet fringes can be observed in particular at higher chamber 
pressures. In addition, the turbulent zones at the jet ends move closer to the torch exit with increasing 
chamber pressures. Thus, local pressure differences compared to the chamber pressure occur. 
However, these local static pressures pstat were not determined. Hence, only for the relatively 
homogeneous jet at the lowest chamber pressure of 200 Pa but not for 500 Pa and 1000 Pa the neutral 
densities n0 and the ionization degrees xion were determined assuming that the pressure at the 
measurement positions in the jet was equal to the chamber pressure by  

 ݊଴ ൌ ቆ
௣ೞ೟ೌ೟
௞ಳ

െ ݊௘ሺ ௛ܶ ൅ ௘ܶሻቇ ௛ܶ
ିଵ (9) 

(only single ionization is considered). xion is then obtained by 
௜௢௡ݔ  ൌ 	݊௘/ሺ݊௢ ൅ ݊௘ሻ (10) 

4.  Results and Discussion 

4.1.  Electron temperatures 
The results of the determination of the electron temperatures are given in Figure 6 for parameters A 
and B in dependence on the stand-off distance and the chamber pressure. For the hydrogen containing 
parameter B the values are on a lower level than for parameter A with He and Ar only. For both 
parameters the net power was the same. But the addition of almost 10% hydrogen for parameter B 
consumes energy for heating and dissociation. Furthermore the jet is broadened and the radial 
temperature profile is probably flattened. This is supposed to be the explanation for the lower 
temperature level. 

Figure 6. Electron temperatures determined for parameters A and B in dependence on the stand-off 
distance and the chamber pressure; the error bars result from the standard errors of the linear fit slopes 
of the Boltzmann plots. 

For parameter B, the electron temperatures generally decrease with larger stand-off distances; only 
at 200 Pa and 500 Pa the densities increase initially. It is assumed that dissociation energy of 
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recombining hydrogen atoms is released and transferred [30]. At 1000 Pa, this happens closer to the 
nozzle so that it was not covered by the measurements. At higher chamber pressures, the electron 
densities are slightly affected probably by the formation of expansion and compression zones due to 
the equilibration of the static pressure in the jet and the ambient pressure. 

4.2.  Electron densities and ionization rates 
Electron densities and ionization rates determined for parameter B are given in Figure 7 in dependence 
on the stand-off distance and the chamber pressure. In principle, the electron densities decrease along 
the jet axis due to recombination and thus the ionization rate drops. The decrease is faster if the jet 
becomes shorter at higher chamber pressures of 500 Pa and 1000 Pa. Here, the electron densities are 
larger as the density in the jet is higher in general. The initial increase of the electron densities is 
assumed to be associated to static pressure and temperature alterations along the jet axis due to 
equilibration with the ambient pressure [30]. As recombination is already advanced at the applied 
measurement positions, the ionization rates are on low level. This is confirmed by the fact that no 
significant ionic lines of Ar II or He II are observed in the measured spectra. 

 

Figure 7. Electron densities and ionization rates determined for parameter B in dependence on the 
stand-off distance and the chamber pressure. 

Figure 8. Temperatures of the heavy species and non-equilibrium parameters determined for 
parameter B in dependence on the stand-off distance and the chamber pressure; the error bars result 
from the standard errors of the Voigt fit parameters of the spectral line profile. 

4.3.  Temperatures of the heavy species 
Temperatures of the heavy species (atoms and ions) and non-equilibrium parameters are given in 
Figure 8 determined for parameter B in dependence on the stand-off distance and the chamber 
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and leads to energy consumption for dissociation. Thus, evaporation of the feedstock is incomplete. 
Figure 10 shows columnar and dense structured coatings only from nano-sized clusters and vapor 
phase obtained by parameter A [35]. The difference of these two structures is due to the plasma flow 
conditions along the substrate surface and shadowing effects [32]. 

6.  Conclusion 
The results of the optical emission spectroscopy show that the plasma jet at PS-PVD conditions 
consists of recombining plasma with a low degree of ionization. The admixture of hydrogen to the 
He/Ar plasma gas affects the plasma enthalpy due to initial consumption and later release of 
dissociation energy. Obviously, there is no significant effect on the transport properties. However, the 
hydrogen broadens the plasma jet and probably flattens the radial temperature profiles. Experimental 
examples show that this has impacts on the heating of the feedstock and the microstructure of the 
deposited coatings. 

At the lowest investigated chamber pressure of 200 Pa, a moderate departure from LTE was found. 
Here, the distribution of temperatures and electron densities along the jet axis was smooth and 
homogeneous. In contrast, at higher chamber pressures large fluctuations of the plasma characteristics 
and thus distinct non-equilibrium conditions occur due to static pressure and temperature changes 
along the jet axis. Such conditions are assumed to be detrimental for treatment and transport of the 
feedstock. In future work this could be investigated more in detail by calculation of transport 
properties considering non-equilibria. 
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