000001292 001__ 1292
000001292 005__ 20201211114143.0
000001292 0247_ $$2Handle$$a2128/3601
000001292 0247_ $$2URI$$a3601
000001292 0247_ $$2ISSN$$a1866-1777
000001292 020__ $$a978-3-89336-543-2
000001292 037__ $$aPreJuSER-1292
000001292 041__ $$aGerman
000001292 082__ $$a620
000001292 1001_ $$0P:(DE-Juel1)VDB64142$$aRoeckerath, Jens Martin$$b0$$eCorresponding author$$gmale$$uFZJ
000001292 245__ $$aSeltenerd-basierte ternäre Oxide als alternative Gatedielektrika
000001292 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2008
000001292 300__ $$a148 S.
000001292 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000001292 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000001292 3367_ $$02$$2EndNote$$aThesis
000001292 3367_ $$2DRIVER$$adoctoralThesis
000001292 3367_ $$2BibTeX$$aPHDTHESIS
000001292 3367_ $$2DataCite$$aOutput Types/Dissertation
000001292 3367_ $$2ORCID$$aDISSERTATION
000001292 4900_ $$0PERI:(DE-600)2428215-7$$aSchriften des Forschungszentrums Jülich. Information / Information$$v3
000001292 502__ $$aRWTH Aachen, Diss., 2008$$bDr. (Univ.)$$cRWTH Aachen$$d2008
000001292 500__ $$aRecord converted from VDB: 12.11.2012
000001292 520__ $$aFor the further scaling of silicon-based field effect transistors the use of alternative gate dielectrics with $\kappa$>20 – so called high-$\kappa$ dielectrics – is crucial. Only with these materials the leakage currents in the devices can be kept below a critical limit compared to the so far used silicon dioxide. And, the ongoing reduction of feature size of integrated circuits ist the basis for the success of microelectronics industry during the last four decades. Thermodynamic calculations predict that some rare earth based ternary oxides (e.g. $\textit{RE}$ScO$_{3}$ or $\textit{RERE}$O$_{3}$ with $\textit{RE}$ = Y, La or an element from the lanthanide group) are stable in contact with silicon and therefore being considered for the use as alternative gate dielectrics. In this work, GdScO$_{3}$ and LaLuO$_{3}$ thin films deposited with different techniques (pulsed laser deposition, atomic layer deposition and electron beam evaporation) were morphologically and electrically characterized. The produced films are stoichiometric, homogeneous and smooth. They reveal dielectric constants as high as 23 for GdScO$_{3}$ and even up to 32 for LaLuO$_{3}$, undisturbed C-V curves and low leakage current densities. Furthermore, a process for the integration of GdScO$_{3}$ as gate dielectric into silicon-based field effect transistors was developed. The prepared devices show normal transfer and output characteristics. Carrier mobilities of about 120 cm$^{2}$/Vs for bulk silicon and 155 cm$^{2}$/Vs for silicon on insulator substrates were determined. The use of strained silicon yields an improvement of 140% for the carrier mobility and about 30% for the maximum drain current and a doubling of the maximum transconductance. The integration of GdScO$_{3}$ as gate dielectric into AlGaN/GaN-MISHFETs resulted in a reduction of the gate leakage current by four orders of magnitude, a doubling of the output power, and a significant improvement of the power added efficiency. In summary, the results of this work confirm the suitability of the rare earth based ternary oxides GdScO$_{3}$ and LaLuO$_{3}$ for the use as alternative gate dielectrics in microelectronics.
000001292 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000001292 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000001292 8564_ $$uhttps://juser.fz-juelich.de/record/1292/files/Information_03.pdf$$yOpenAccess
000001292 909CO $$ooai:juser.fz-juelich.de:1292$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000001292 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000001292 9141_ $$y2008
000001292 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000001292 920__ $$lyes
000001292 9201_ $$0I:(DE-Juel1)VDB799$$d31.12.2010$$gIBN$$kIBN-1$$lHalbleiter-Nanoelektronik$$x1
000001292 970__ $$aVDB:(DE-Juel1)102304
000001292 980__ $$aVDB
000001292 980__ $$aJUWEL
000001292 980__ $$aConvertedRecord
000001292 980__ $$aphd
000001292 980__ $$aI:(DE-Juel1)PGI-9-20110106
000001292 980__ $$aUNRESTRICTED
000001292 980__ $$aFullTexts
000001292 9801_ $$aFullTexts
000001292 981__ $$aI:(DE-Juel1)PGI-9-20110106