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Synopsis

The nonlinear yielding responses of three theoretical models, including the Bingham, a modified

Bingham, and Giesekus models, to large-amplitude oscillatory shear are investigated under the

framework proposed recently by Rogers et al. (2011). Under this framework, basis states are

allowed to wax and wane throughout an oscillation, an approach that conflicts directly with the

assumptions of all Fourier-like linear algebraic approaches. More physical yielding descriptions

of the nonlinear waveforms are attained by viewing the responses as representing purely elastic to

purely viscous sequences of physical processes. These interpretations are compared with, and

contrasted with, results obtained from linear algebraic analysis methods: Fourier-transform rheol-

ogy; and the Chebyshev description of the so-called elastic and viscous stress components r0 and
r00. Further, we show that the discrepancies between the built-in model responses and parameters,

and the interpretations of the Chebyshev and Fourier coefficients are directly related to misinterpre-

tations of r0 and r00 as being the elastic and viscous stress contributions. We extend these ideas

and discuss how every linear algebraic analysis is likely to conflate information from predomi-

nantly elastic and viscous processes when a material yields. VC 2012 The Society of Rheology.
[DOI: 10.1122/1.3662962]

I. INTRODUCTION

A. LAOS in the literature

Numerous methods exist for analyzing the response of materials to oscillatory shear

which go beyond the classical determination of the storage and loss moduli at low strain

amplitudes [Ferry (1980)]. These include Fourier transform (FT) rheology as introduced

by Philippoff (1966), Harris and Bogie (1967), and Dodge and Krieger (1971), the use of

dimensionless graphs [Cho et al. (2010)], the decomposition of the full stress response

into parameters that have been called the elastic and viscous stress contributions via the

stress decomposition (SD) [Cho et al. (2005) and enhanced by Yu et al. (2009)], and the

description of these derived contributions by orthogonal Chebyshev polynomial series

[Ewoldt et al. (2008)].

We argue that there are issues with each of these techniques that cannot be resolved,

namely, that the Fourier and Chebyshev approaches rely on the erroneous assumption
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that material basis states are present throughout the entire waveform, and that the SD

method assumes symmetries in nonlinear responses that are not present. We expose and

investigate these shortcomings and present the beginnings of a resolution in this paper in

the form of an alternative method of analysis, which takes a physical rather than mathe-

matical approach.

Throughout this work, we shall frequently refer to “linear algebraic approaches.”

These are a general class of mathematically rigorous techniques for analyzing material

responses to large-amplitude oscillatory shear (LAOS) that have their roots in the formal-

ism of linear algebra. Each of the techniques assumes a basis set and describes the mate-

rial responses from oscillatory shearing in terms of amplitudes (and possibly phases) of

the basis states. In the classical analysis of linear regime responses, for instance, it is

assumed that (only) elasticity and viscosity, the two fundamental responses of materials,

occur simultaneously. In the language of linear algebra, one would say that, in the linear

regime, the total material response is assumed to be the result of a linear combination of

the two basis states; an elastic state and a viscous state. It is, therefore, reasonable that

the analysis of linear-regime responses [Ferry (1980)] to find the dynamic moduli G0 and
G00, dynamic viscosities g0 and g00, or modulus G0 and phase difference (between input

and output vectors) d exhibits such assumptions; the elastic and viscous responses of the

material are uncoupled and uniquely determined by finding the amplitudes of the corre-

sponding basis states. For a sinusoidal application of strain, c tð Þ ¼ c0 sin xtð Þ, the elastic

response is uniquely determined by the amplitude of the elastic basis state, or the in-

phase component, sin xtð Þ, and the viscous response is uniquely determined by the

amplitude of the viscous basis state, or the out-of-phase component, cos xtð Þ. Using the

amplitudes of the basis states, the full response can be reconstructed without loss of infor-

mation. Reconstruction of a linear regime response can therefore be equated with under-

standing the relative contributions of elastic and viscous processes.

It is well established that in the nonlinear regime, where sinusoidal excitations result

in nonsinusoidal outputs, the elastic and viscous parameters obtained using linear-regime

assumptions and techniques are ill-defined. In this regard, it is clear that description of

nonlinear responses requires the linear-regime analysis to be extended. In order to accu-

rately reconstruct measured material responses, some researchers have taken the

approach of extending the linear regime analysis in a linear algebraic way to encompass

more basis states, without setting an upper limit on the number of basis states allowed.

The basis states are commonly referred to as harmonics in analogy with audio tonal anal-

ysis. What these basis states=harmonics physically correspond to, beyond elastic and vis-

cous states, has never been explained. This raises the questions as to whether extension to

an infinite number of basis states is a physically meaningful approach to take, and why

more basis states would be expected in the first place. We will argue here, by following

the yielding responses of three nonlinear models, which materials can exhibit only two

fundamental responses, those of elasticity and viscosity (which may themselves change

with strain, stress, or their temporal derivatives). We propose that the way forward, in

terms of understanding nonlinear responses to oscillatory shearing, is also by extending

the traditional linear regime analysis, but not by applying ideas from linear algebra and

infinitely expanding the size of the basis sets, or by changing the constituents of the basis,

but by allowing the elasticity and viscosity, the two fundamental material responses, to

independently wax and wane throughout an oscillation.

There are a number of reasons that make linear algebraic methods attractive to

researchers studying nonlinear responses. They are mathematically rigorous, invertible,

and convergent procedures that can be applied to any periodic response, regardless of

shape. Furthermore, amplitudes (and phases if required) of basis states can be uniquely
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and quickly determined using well-established protocols, allowing for quick results to be

obtained. By setting no upper bound on the number of basis states allowed, linear alge-

braic techniques can be used to obtain arbitrarily accurate reconstructions of any oscilla-

tory stress response. However, we will argue that these benefits are outweighed, when

analyzing yielding responses, by the shortcomings associated with the falsity of the

assumptions that are often not discussed. This can be summarized by stating that recon-

structions do not necessarily constitute useful physical descriptions.

FT rheology [Philippoff (1966), Harris and Bogie (1967), Dodge and Krieger (1971)]

assumes periodicity in the time domain and transforms the response into the reciprocal

frequency space. Usually in the literature, oscillatory strains are applied and the stress

response is analyzed. A period of the total stress is then represented as a sum of sines and

cosines, the frequencies of which are odd integer multiples of the excitation frequency,

x. That is,

r t;x; c0ð Þ ¼ c0

X

n

G0
n sin nxtð Þ þ G00

n cos nxtð Þ
� �

; (1)

where n ¼ 2k þ 1; 8k 2 N (where N is the set of natural numbers, which includes zero)

refers to the order of the harmonic and G0
n and G00

n are higher order generalized dynamic

moduli. No upper bound exists for n, meaning an infinite number of basis states is

assumed in FT-rheology. The stress is also often decomposed into a series of sine func-

tions only, allowing for magnitude, In, and phase, dn, information of the harmonics to be

gathered. Thus, FT-rheology expresses a period of the total stress response in a linear

algebraic manner, using the infinite set of sinusoids of different frequencies as a basis. In

most cases, the amplitudes of the higher harmonics are presented normalized by the am-

plitude of the fundamental (n¼ 1). Much work [Wilhelm (2002) and onwards] has gone

into developing methods to reduce the experimental signal-to-noise ratio so that reliable

measurements of higher harmonics can be made even when the relative intensities In=I1
are as low as 1� 10�5. There has been much discussion about how to physically interpret

the infinite number of basis states corresponding to n= 1 that could be used to describe

stress responses to LAOS but no consensus has been reached. There has been compara-

tively little discussion on whether infinite extension of the size of the basis is a justifiable

practice in the first place. Due to these problems, FT rheology has mainly been limited to

engineering applications. Hyun and Wilhelm (2009) have recently suggested, in analogy

with the third-order nonlinear susceptibility parameter v(3) from studies of nonlinear

optics, that the magnitude of third Fourier harmonic divided by the square of the applied

strain amplitude is a sensitive measure of polymer architecture in the medium-amplitude

oscillatory shear (MAOS) regime (which is defined as the region where this quantity is

constant. The MAOS regime for polymer melts typically extends between strain ampli-

tudes of 10 and 200%). The use of the third harmonic in other systems has mainly been

restricted to determining the limits of the linear viscoelastic regime and checking experi-

mental values against simulations. Most researchers present the Fourier frequency do-

main information of their material responses as individual harmonic magnitudes, often as

functions of strain amplitude or frequency [Wilhelm (2002) and onwards], Renou et al.

(2010)]. This practice, in conjunction with the assumptions and techniques for gathering

information from linear-regime data, implicitly suggests a link between individual har-

monics and distinct physical processes.

Many researchers have begun their investigations by displaying the material stress

responses to LAOS as Lissajous-Bowditch curves [Philipoff (1966), Tee and Dealy

(1975)]. In such representations, the full stress response is plotted parametrically against

3SEQUENCE OF PHYSICAL PROCESSES IN LAOS



the oscillating strain (the so-called elastic representation) or the shear rate (the so-called

viscous representation). A purely elastic stress response (a Hookean spring) when plotted

as an elastic Lissajous-Bowditch curve forms a straight line, the gradient of which is

equal to the elastic modulus, through the origin in the first and third quadrants, while a

purely viscous stress response (a Newtonian fluid) forms an ellipse in the elastic represen-

tation, whose major and minor axes coincide with the stress and strain axes. In the vis-

cous representation, the response of a Newtonian fluid forms a straight line, the gradient

of which is equal to the viscosity. A general linear viscoelastic material response forms

an ellipse in both representations, the major axis of which has an inclination to the posi-

tive strain axis between 0 and p=2, an example of which is shown in the elastic represen-

tation in Fig. 1.

Cho et al. (2005) suggested a decomposition of stress responses to LAOS based upon

constructions that use the elastic and viscous Lissajous-Bowditch curves as a starting

point. The total stress response is decomposed into orthogonal contributions which are

functions of strain and strain-rate. The interpretation comes about using similar assump-

tions of symmetry as FT rheology (that is, in the steady-state case, strain in one direction

results in an identical response to strain in the opposite direction). In the SD method, the

total stress is expressed as

r c;
_c

x

� �

¼
r c;

_c

x

� �

� r �c;
_c

x

� �

2
þ
r c;

_c

x

� �

� r c;� _c

x

� �

2
; (2)

where the first term on the right-hand side is referred to as the “elastic stress,” and the

second term as the “viscous stress” because of their relative dependencies on the strain

and strain-rate during an oscillatory test. These derived quantities are denoted r0 and r00,
respectively. In the SD method, the total stress is therefore the sum of these terms,

rtotal¼ r0 þr00. We shall, in this work, only refer to them as r0 and r00. A graphical way

of forming the r0 and r00 decompositions is to imagine a vertical line moving across the

elastic or viscous Lissajous-Bowditch figure. At every point you wish to know the value

of r0 or r00, the line stops and a mark is made at the location that is halfway between the

points where the stress orbit intercepts the line. In fact, using the previously mentioned

FIG. 1. The geometrical method of determining r0. The stress orbit intersects the vertical line at the square

points, the centre of which, marked by a circle, represents the value of r0 at that strain.
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assumption about the symmetry of the stress response, expressed in the same notation as

used in Cho et al. (2005), r �c; _c
x

� �

¼ �r c;� _c
x

� �

(that is, the Lissajous figures are

assumed to show rotational symmetry of order 2 about the origin), it is possible to rear-

range the original definition of the stress decomposition to read

r c;
_c

x

� �

¼
r c;

_c

x

� �

þ r c;� _c

x

� �

2
þ
r c;

_c

x

� �

þ r �c;
_c

x

� �

2
; (3)

which makes this interpretation clearer. In the SD method, Eqs. (2) and (3) are equiva-

lent. We show in Fig. 1 a visual guide to finding r0 using as an example a (constructed)

typical linear viscoelastic response. The solid black ellipse shows the total stress

response, while the blue line represents r0. The vertical black line (which is to be inter-

preted as having moved across the figure) is intersected by the stress orbit at the points

marked by squares. The section of the vertical line between the two squares has a centre

at the circle. The point of the circle marks the value of r0 at that particular strain.
A similar process with a viscous Lissajous-Bowditch curve (where the stress is plotted

as a parametric function of the rate) yields r00. Therefore [Eq. (3)], r0 is an average of the

stress responses of a system at equal (global) strains from shear rates of equal magnitude

but opposing signs. Likewise, r00 is an average of the stress responses of the same system

at equal shear rates from (global) strains of equal magnitude but opposing signs. This is a

crucial point that will be important to keep in mind throughout this work.

If one takes more than a cursory look at the SD definitions presented in Eqs. (2) and

(3), it becomes apparent that SD requires only half of a complete waveform to compute

r0 and r00. The first term on the right hand side of Eq. (2) and the second term on the right

hand side of Eq. (3) differ only in the sign between the two terms of the denominator;

from Eq. (2) r0 is equal to half the difference between stresses at opposite (global) strains

and equal shear rates, while from Eq. (3) r00 is half the sum of the stresses from the same

two points. This means that only positive (or negative) shear rate information [the top

(bottom) half of the Lissajous figure displayed in Fig. 1] needs to be retained in order to

perform the SD. Using the second term on the right hand side in Eq. (2) and the first term

on the right of Eq. (3) show how the SD can be performed with only the positive (or neg-

ative) strain information. The SD method, therefore, makes the implicit assumption that

based on the symmetries present [Eqs. (2) and (3)], the elastic and viscous stress contri-

butions, when presented as functions of time, constitute 2*1 (spinning sidle) frieze

groups. Nonlinear stress responses, in general, constitute 1� (step) frieze groups

[Rogers and Vlassopoulos (2010)], while linear stress responses constitute 2*1 (spinning

sidle) frieze groups. We will show that the symmetry assumptions placed on r0 and r00

are too strict for nonlinear responses and that they lead to conflation of information from

elastic and viscous processes.

The SD method changed the problem of describing nonlinear waveforms from having

to describe two open shapes (the elastic and viscous Lissajous-Bowditch curves) to only

having to describe two lines (r0 and r00).
Ewoldt et al. (2008) noted that r0 and r00 are related directly to the Fourier decomposi-

tion by

r0 � c0

X

n

G0
n x; c0ð Þ sin nxtð Þ; r00 � c0

X

n

G00
n x; c0ð Þ cos nxtð Þ; (4)

where n ¼ 2k þ 1; 8k 2 N, as in the formalism of FT rheology. The relations in Eq. (4)

are another example of a description using linear algebraic ideas: r0 is expressed in terms
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of the orthogonal set of sines of different frequencies and r00 is expressed in terms of the

orthogonal set of cosines of different frequencies. The amplitudes of the various basis

states are referred to as higher-order (dynamic) moduli. Ewoldt et al. (2008) proposed a

further level of orthogonal decomposition by describing r0 and r00 as series of Chebyshev
polynomials of the first kind, Tn, which are defined by the recurrence relation

T0 xð Þ ¼ 1

T1 xð Þ ¼ x;

Tnþ1 xð Þ ¼ 2xTn xð Þ � Tn�1 xð Þ:
(5)

These polynomials form an orthonormal basis set over the interval [�1, 1], with respect

to the inner product 2
p

Ð 1

�1
Tn xð ÞTm xð Þ dx

ffiffiffiffiffiffiffiffi

1�x2
p (except for the case where n and m¼ 0

when the prefactor becomes 1
p
) and can be used to unambiguously and uniquely describe

r0 and r00 by

r0 cð Þ ¼ c0

X

n:

en x; c0ð ÞTn cð Þ;

r00
_c

x

� �

¼ _c0

X

n:

vn x; c0ð ÞTn
_c

x

� �

;
(6)

where n ¼ 2k þ 1; 8k 2 N and the en’s and vn’s, the amplitudes of the basis states, are the

elastic and viscous (Chebyshev) coefficients of order n. The linear algebraic relations in

Eq. (6) express r0 and r00 in terms of the basis of orthonormal Chebyshev polynomials.

The relations expressed in Eqs. (4) and (6) detail how the Chebyshev approach is related

to FT rheology. One of the most exciting and enticing reasons for using Chebyshev poly-

nomials of the first kind of order n is that under a limited range of conditions for n¼ 1

and 3, physical interpretations can be attached to both the en’s and vn’s. e1 and v1 are

interpreted as describing the linear elastic and viscous responses. When en< e3< e1 for

all values of n� 5, that is, when the third order harmonic is the leading order nonlinear-

ity, positive values of e3 result in larger stresses at larger strains and so are considered to

describe strain-hardening. Similar arguments lead to the interpretation of negative values

of e3 as depicting strain-softening and v3 as describing the shear-thickening=shear-thin-
ning behavior. The physical interpretations attached to the first and third-order Cheby-

shev coefficients also rely on the implicit assumption (from the intimately related FT

rheology) made by many researchers that, as in the linear regime, individual harmonics

should be related to separate physical processes or behaviors. For the first time, terms

such as (intracycle) strain-hardening (e3> 1), strain-softening (e3< 1), shear-thickening

(v3> 1), and shear-thinning (v3< 1) could be quantified. Indeed, quantification is not

required for a “first-glance” analysis under this approach, as these behaviors can simply

be read off the elastic and viscous Lissajous-Bowditch curves by following r0 and r00 as
both strain and shear rate increase. The Chebyshev series description of r0 and r00, like
FT rheology, suffers from a potential problem of large numbers of higher harmonics in

LAOS measurements. Many material responses to LAOS show a number of harmonics

well in excess of the first two for which physical interpretations have been proposed. The

limiting factor to the number of higher harmonics that can be measured is often only the

precision of the measuring setup and the inherent signal-to-noise ratio.

The important underlying assumption that comes from their linear algebra roots that

links FT rheology and the Chebyshev description of r0 and r00 is that, as in the linear re-

gime, the total stress response is best represented by a linear combination of basis states.

Put another way, these commonly used analysis methods both make the implicit
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assumption that the basis states (the assumed underlying “true” responses of the systems

under investigation) are present in linear combination with one another, or absent,

throughout the total stress response. As a result, both methods have an inherent weakness

in that descriptions of responses that are transient, in terms of alternating between states,

on the timescale of one period are misrepresented because of false assumptions. Using

these formalisms, the problem of describing the total stress response is reduced to calcu-

lating the amplitudes (and possibly phases) of the various basis states present. FT rheol-

ogy assumes the infinite set of trigonometric functions [Eq. (1)] as a basis and lacks

physical interpretability for all harmonics higher than the fundamental. The Chebyshev

description of the SD constructions r0 and r00 uses the infinite set of Chebyshev polyno-

mials of the first kind as a basis and has physical interpretations for only the first and third

harmonics under limited conditions [Eq. (6)]. There are currently no published reports of

an infinite orthonormal basis set that can be used to describe material responses in a

physically meaningful way.

A number of contributions in recent years have suggested that physically meaningful

interpretations can be garnered not from individual harmonics, but rather from considering

groups of (Fourier or Chebyshev) harmonics. Klein et al. (2007) also used the ideas of lin-

ear algebra by suggesting that nonlinear material responses could be described by linear

combinations of sine, rectangular, triangular, and sawtooth waves. With the exception of

the sine wave, each of these wave-types, viewed in the frequency domain, contain infinitely

many higher harmonics of differing amplitudes and phases. Klein et al. attached to each

wave a physical interpretation; sine waves represented linear responses, rectangular waves

were attributed to strain softening, triangular waves represented strain hardening, and a

sawtooth contribution was attributed to the presence of shear bands or wall slip.

As well as introducing the Chebyshev description of r0 and r00, including the interpre-

tations of the (individual) first and third harmonics, Ewoldt et al. (2008) also defined a

number of meaningful viscoelastic moduli and dynamic viscosities based on the geome-

try of a nonlinear stress response. These moduli and viscosities can be calculated from

the Chebyshev (or Fourier) coefficients and reduce to G0 and g0, respectively, in the linear

regime. In order to accurately calculate the local measures suggested by Ewoldt et al., an

experimentalist has two options: calculate the values from the harmonic series represen-

tation, using the same number of harmonics that are assumed to accurately reconstruct

the stress response; or calculate the moduli and viscosities directly from the total stress

responses and their derivatives. It should be noted that the series description for the sug-

gested moduli and viscosities include the first and third order harmonics, which have their

own (sometimes conflicting) suggested interpretations.

Most recently, Rogers et al. (2011) suggested that nonlinear stress responses are best

viewed as representing a sequence of physical processes. This was the first suggestion of

a technique not based on the assumptions of linear algebra to analyzing LAOS responses.

Rogers et al. (2011) also showed that power-law fluid responses with indices less than

unity contain infinitely many higher harmonics and linked this to the assumption of inter-

preting individual harmonics as relating to separate physical processes. Higher harmon-

ics, in this case, are inseparable and therefore ought not to be viewed as representing

separate physical processes or behaviors.

B. Motivation and manuscript layout

The sequence of physical processes (SPP) work of Rogers et al. (2011) motivated

us to use two models that are known to approximate the nonlinear yielding behavior

of a large class of complex fluids to examine more closely the interpretations of the
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different analysis techniques described above. In all cases presented here, the applied

oscillatory shear field is assumed to be sinusoidal, so that the time-dependent shear

rate is identically out of phase with the strain. In addition, we analyze a special case

of a toy model which can be viewed as approximating the response of colloidal

glasses. Investigations using these three examples suggest that even if an orthonormal

basis set could be found which allowed physical interpretations (larger stresses at

larger strains, for instance), that those interpretations would be, at best incomplete, and

at worst, fundamentally inaccurate for a large class of material responses. We further

suggest that, despite the mathematical rigor with which they are defined, the SD pa-

rameters r0 and r00 do not, and cannot, accurately depict the true elastic and viscous

stresses of a system undergoing yielding while being subjected oscillatory shear for

the models we studied and thus for a wide range of materials. We evolve these ideas

toward their logical conclusion and state that any linear algebraic approach to describ-

ing yielding responses to LAOS, no matter how rigorously defined, will potentially

conflate information from elastic and viscous processes.

The methods we use to analyze yielding responses in this article do not readily lend

themselves to the construction of a standard LAOS recipe in the way that linear algebraic

techniques do. Interested readers are directed to the earlier work of Rogers et al. (2011)

for a full phenomenological treatment of the SPP technique.

The first two examples given will be theoretical yield-stress materials, based on the

Bingham model. The first example is the Bingham model as proposed by Yoshimura and

Prud’homme (1987) which behaves perfectly Hookean with no dissipation until a yield

stress is exceeded, whereby the model responds by flowing, with the stress from flowing

being proportional to the shear rate. Flow ceases in the Bingham model when the stress

drops to the yield stress again, the point beyond which the model response is elastic. The

arguments presented in this section can be easily expanded to encompass the response of

the Herschel–Bulkley model (where a power-law index that is not necessarily equal to

unity is included in the flow term) also. In the second example, we modify the Bingham

model so that the model continues to flow until the rate is instantaneously zero. That is,

we include a nonzero static yield stress, but design the dynamic yield stress to be zero (the

modification to the Bingham model, which has identical static and dynamic yield stresses).

This can be thought of as approximating a physical (perhaps colloidal) system that has

some sort of structure that is completely destroyed once the yield conditions are exceeded.

The structure then reforms the instant the material comes to rest at the point of zero instan-

taneous rate. This is a toy model and will only be used at a specific frequency and ampli-

tude for ease of use. The third example given is the Giesekus model [Bird et al. (1987)]

which has been used to model nonlinear oscillatory and steady-shear flow of a wide vari-

ety of materials. To conclude, we present arguments as to why the responses seen in each

scenario can be viewed as being representative of nonlinear yielding responses in general.

II. RESULTS AND DISCUSSION

A. The Bingham model

The Bingham model, as expressed by Yoshimura and Prud’homme (1987), is

s ¼ GcE cEj j < cy
� �

;

s ¼ GcE þ l _c cEj j ¼ cy
� �

;
(7)

where s designates the stress, G the elastic modulus, l the Bingham (plastic) viscosity, cE
the elastic (recoverable) strain, _c the strain rate, and cy the yield strain. The yield stress,
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sy, is intimately related to the yield strain by sy¼Gcy. At stresses=strains smaller than the

yield conditions, the model behaves elastically and dissipates no energy; the stress is in

phase with the strain. If the applied stress=strain exceeds the yield condition, the stress

increases proportional to the shear rate. The stress in the viscous regime is completely

out of phase with the strain. The Bingham model can be thought of as a special case of

the Herschel–Bulkley model [Herschel and Bulkley (1926)] which includes a power-law

exponent of the shear rate in Eq. (7). In the Bingham model, the power-law exponent is

simply unity. We shall preferentially use the Bingham model but note that the comments

of this section relate also to the response of the more general Herschel–Bulkley model. A

representative stress response of the Bingham model, with unit modulus, viscosity, and

yield stress, to oscillatory shear of strain amplitude ten and frequency one is shown in

Fig. 2 as black lines. While the jump in stress observed under these conditions at yielding

is perhaps unphysical, suggesting that the conditions imposed are outside those intended

for use, the general shape of the Bingham model is well captured: regions of elastic

extension and viscous flow are clearly identifiable. The decomposed functions r0 and r00

are shown as blue and red lines, respectively. It should be noted that the stress orbits

clockwise in the elastic representation and anticlockwise in the viscous.

A cursory examination of r0, shown in blue in the elastic representation in Fig. 2,

reveals that at a global strain of zero, c¼ 0, r0 is zero. As the applied deformation is

increased, r0 remains zero until the strain is equal to c0� 2cyield. At this point, r
0 jumps

to a positive value, which decreases with further increases of strain. This sudden increase

in r0 followed in sequence by the decreasing response of r0 with increasing strain would

be interpreted as showing a short interval of strain-hardening followed by strain-soften-

ing. However, by definition, all strain-related stress changes in the Bingham model are

linear. The interpretations of the decomposed functions from the SD method are clearly

at odds with design of the model.

Describing r0 and r00 in terms of a Chebyshev series gives indications of the general-

ized intracycle behaviors as presented by Ewoldt et al. (2008). Using this analysis for the

current case, we obtain a positive first-order elastic coefficient (e1¼ 0.17), and a positive

normalized third-order elastic coefficient (e3=e1¼ 0.40). A positive first-order viscous

coefficient (v1¼ 1.06) and a positive normalized third-order viscous coefficient

(v3=v1¼ 0.09) are also acquired. Ewoldt et al. (2008) suggest that this should be inter-

preted as showing (intracycle) strain hardening (e3=e1> 0) and shear thickening

(v3=v1> 0). These interpretations also conflict with the designed model properties.

FIG. 2. A representative stress response of the Bingham model with relevant quantities from the SD method

shown.
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An alternative way to view and analyze nonlinear response curves, such as those dis-

played in Fig. 2, which does not rely on the assumptions of linear algebra, is as a SPP, as

suggested by Rogers et al. (2011). In this framework, the stress response is not decom-

posed into a linear sum of contributions (which are assumed to exhibit particular strict

symmetries) that are dependent on strain and strain-rate as in the SD method, but rather

viewed as being the result of a sequence of distinct physical processes. The Bingham

model is somewhat trivial to analyze in this framework because it is created piecewise to

begin with by demanding that a viscous response follows an elastic one. Nevertheless, it

is a worthwhile exercise applying these ideas to the typical Bingham response to LAOS

displayed in Fig. 2 because of the relative ease with which the model parameters are

determined. We remind the reader at this point that perfectly elastic (Hookean) extension

appears in the elastic representation of the Lissajous-Bowditch curve as a straight line,

the gradient of which is equal to the modulus, while perfectly viscous (Newtonian) flow

appears in the viscous representation of the Lissajous-Bowditch curve as a straight line,

the gradient of which is equal to the viscosity.

Beginning at zero stress (near �c0) and observing the response to increasing strain

(reading the Lissajous-Bowditch figure from left to right), the stress increases linearly

with strain proportional to the modulus, G, as depicted by the portions of the Lissajous

curve which are straight in the elastic representation in Fig. 2. Once the yield stress,

shown by the dashed lines in Fig. 2, is exceeded, the Bingham material flows with a plas-

tic viscosity lp which is seen in the linearity of that portion of the stress trajectory in the

viscous representation. Therefore, using the SPP approach, we can completely recon-

struct the Bingham constitutive equation from half a single oscillatory response. While

this may seem like a simple task given the nature of the model, the best the FT and Che-

byshev approaches can do is to describe a single particular response curve with poten-

tially an infinite number of physically meaningless parameters. It should also be noted

that the large number of parameters generated by the FT and Chebyshev approaches to

describe the response of the Bingham model [see, for instance, Klein et al. (2007)] will

change with each strain amplitude and frequency investigated (as long as the yield condi-

tions are exceeded), while the parameters obtained using the SPP approach will remain

the same.

It can be said that the Bingham model displays two fundamental responses—purely

Hookean elastic extension for all stresses smaller than the yield stress and Newtonian vis-

cous flow for all stresses above the yield stress. It is of primary importance to note that

the viscous response of the Bingham model is not present continuously throughout the

waveform, but rather comes into existence following yielding. In order to describe the

Newtonian region of the Bingham model, a linear algebraic approach necessarily takes

into account the (unrelated) elastic extension at the start of a cycle. It follows that the vis-

cous response of the Bingham fluid cannot be represented by any linear algebraic analysis

technique, because of their inherent assumption of the symmetries exhibited by the basis

states (the sinusoidal basis states of order n assumed by FT-rheology are equal to zero

2nþ 1 times every period and are antisymmetric about those points). It is also significant

that neither this simple sequence of physical processes (elastic extension which gives

way to viscous flow) nor the values of the modulus or yield stress can be captured in any

linear algebraic analysis. It should be noted that the Bingham viscosity can be calculated

from a linear algebraic approach. Ewoldt et al. (2008) define the large-rate dynamic

viscosity g0L � r= _cj _c¼ _c0
¼ 1=xð ÞPn G

00
n ¼ v1 þ v3 þ… This parameter does equal the

plastic viscosity, lp, included in the model, but can only be calculated at the point of

maximum shear rate. In the more general Herschel–Bulkley case, the fluid response of

the system is described by a power-law which results in a shear rate dependence of the
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viscosity. The large-rate dynamic viscosity is only a measure of the material viscosity at

a single point, and therefore contains no information regarding the rate dependence of the

viscosity. A series of LAOS tests, of varying shear rate amplitudes, would need to be car-

ried out using the large-rate dynamic viscosity in order to provide the same amount of in-

formation as one oscillation viewing the response in the SPP framework.

The Chebyshev description of r0 and r00 and FT rheology both fail to correctly

describe the physics for similar reasons described above. This is an important point which

we shall find ourselves coming back to throughout this work: when the fundamental ma-

terial responses are not always present, linear algebraic methods fail to clearly and fully

describe the physics. It is clear that some linear algebraic methods such as FT rheology

[which was applied to the Bingham model in Klein et al. (2007)] and the Chebyshev

approach are convergent, so that it is possible to reconstruct with arbitrary accuracy any

periodic response function. However, reconstructions do not necessarily constitute useful

physical descriptions, especially when the fundamental assumptions leading to the recon-

struction are false. What is less clear, and what has not been discussed fully in the litera-

ture up to now, is how these linear algebraic methods cope with responses that are not

simply linear superpositions of a basis.

B. The modified Bingham model

We next modify the Bingham model so that ideal Hookean elastic behavior is fol-

lowed in sequence by ideal Newtonian flow. In this toy model there thus exists a nonzero

static yield stress, but once yielded, the model behaves Newtonianly until the instantane-

ous rate returns to zero. The stress response of this modified Bingham material is shown

in Fig. 3 in black along with r0 in blue and r00 in red. The quantities are plotted in elastic

(left) and viscous (right) Lissajous-Bowditch figures.

Similar comments can be made regarding the form of r0 in the modified Bingham

model as in the standard Bingham model: r0 is zero at zero strain and remains so until the

strain is increased to c0� cyield. At this point of strain, r
0 begins to increase, reaches a

maximum and then returns to zero again when the strain is equal to c0. It is worth noting

that in the region where the designed elastic response of the system is causing the stress

to change linearly with strain, r0 is nonlinear and has a sign opposite to that of the stress.

It is also worth noting that during this part of the waveform, where there is, by design, no

dissipation of energy, r00 is nonzero. Taking the SD and Chebyshev extension approach,

we would interpret this as an interval of strain hardening followed by an interval of

FIG. 3. The stress response of our modified Bingham model with relevant quantities from the SD method

shown.
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strain softening, an interpretation that is clearly at odds with the way the model is

designed.

Similar remarks can be made about r00, shown in the viscous representation in Fig. 3.

Beginning at zero and increasing the shear rate, an interval of shear thickening is fol-

lowed by a small region of Newtonian flow. The reason we are able to discern a small

section of Newtonian flow is that the yield stress is smaller than the stress amplitude

achieved by the material under the flow conditions imposed. It can be seen from Fig. 3

that above the dotted line marking the yield condition the stress response is symmetric

about zero strain and maximum shear rate. The interpretation of r00 with increasing strain

as representing shear thickening is in conflict with the design of the model.

Using the methods outlined by Ewoldt et al. (2008) we can ascribe numbers to the

generalized intracycle responses of the modified Bingham response. We measure a posi-

tive first-order elastic coefficient and a negative third-order intracycle strain softening

coefficient (e3=e1< 0). Further, a positive first-order viscous coefficient and a positive

third-order shear thickening coefficient (v3=v1> 0) are calculated. These terms are in

obvious conflict with the design of the model.

Using the SPP framework, the response we designed into our model is immediately

obvious. Starting at zero stress in the elastic representation at �c0, the stress increases

linearly with increasing strain, indicative of a purely elastic response, until the yield con-

ditions are exceeded whereby the material flows in a Newtonian manner. The elastic

response of the system causes the corresponding stress portion of the waveform to appear

as a straight line when plotted against strain and the viscous response of the material,

postyielding, appears as a straight line when plotted against rate.

In the modified Bingham model, as in the standard version, the viscous state, which is

defined by a single value of viscosity, is not present throughout an entire oscillation but

only comes into existence once the yield stress has been exceeded. It is, therefore, not

possible to describe the viscous response of this model with a single basis state in any lin-

ear algebraic analysis technique. Similar to the standard Bingham model, the large rate

dynamic viscosity as defined by Ewoldt et al. (2008) does correctly reproduce the viscos-

ity of this model. It does so, however, only at the point of maximum rate.

C. The Giesekus model

The Giesekus model, as presented by Bird et al. (1987), is given by

r ¼ rs þ rp;

rs ¼ gs _c;

rp þ k1rpð1Þ þ a k1gp
rp � rp

� �

¼ gp _c;

(8)

where rs is the stress tensor for the solvent, rp is the polymer stress tensor, rp(1) is the

upper convected time derivative of the polymer stress, gs is the solvent viscosity, gp is the

polymer viscosity, k1 is the relaxation time, and a is the so-called mobility factor. In the

linear viscoelastic regime, the Giesekus model reduces to the linear Jeffreys model which

can be mechanically approximated by a Maxwell element (a spring and dashpot in series)

in series with another dashpot.

The stress response of the Giesekus model to sinusoidal strain c(t)¼ cosin(xt) was

calculated with the parameters k1¼ 1 s, gs¼ 0.01 Pa � s, gp¼ 10 Pa � s, and a¼ 0.3.

This choice of parameters, chosen for the comparison available to data published by

Ewoldt et al. (2008), gives rise to the derived quantities of the zero-shear-rate viscosity
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g0¼ gsþ gp¼ 10.01 Pa � s, the retardation time k2¼ k1(gs=gp)¼ 0.001 s, and a polymer

shear modulus G¼ gp=k1¼ 10 Pa.

Before showing and discussing the nonlinear oscillatory response of the Giesekus

model with these parameters, we first confirm the two “zero-limits” of oscillatory tests by

showing the linear viscoelastic relaxation spectrum (c0! 0, all x) and the steady-shear

flow curve (x! 0, all c0) in Fig. 4. The crossover frequency of 1=k1¼ 1 rad � s�1 is indi-

cated in the linear relaxation spectrum and flow curve as a vertical dashed line. To the

flow curve, we also add indications of the rate which is the inverse of the retardation time

1=k2¼ 1000 s�1 (vertical dashed line), and the zero-shear and infinite-shear viscosity pre-

dictions (angled dotted lines). It is important that we keep these responses in mind when

analyzing the nonlinear oscillatory responses, as they represent the two extremes which

the large-amplitude oscillatory tests will interpolate. In both the Chebyshev description

of the SD constructions r0 and r00 and FT rheology, only the linear regime frequency in-

formation is retained, while the information from the steady-shear flow curve is

neglected. This contrasts with the SPP framework proposed by Rogers et al. (2011)

where knowledge of both extremes is fully exploited, or elucidated, to gather physically

meaningful material insights.

We now turn our attention to some representative calculated waveforms of the stress

response of the Giesekus model to oscillatory shear of strain amplitude c0¼ 178 and

angular frequencies of x¼ 0.1, 1, and 10 rad � s�1. These are shown from startup in

Fig. 5 in color along with r0 as solid black lines. The steady-state responses correspond

to the rotationally symmetric (of order 2 about the origin) orbits, while the startup

response begins at the origin.

Following the approach of Ewoldt et al. (2008) for the x¼ 0.1 rad � s�1 data, we obtain a

positive first-order elastic (Chebyshev) coefficient (e1¼ 0.0007 Pa), and a positive relative

third-order elastic coefficient (e3=e1¼ 3.35) which could be interpreted as showing strain

hardening. However, because the third harmonic is larger than the fundamental in this case,

no such interpretation shall be ascribed. We also obtain a negative relative third-order vis-

cous coefficient (v3=v1¼�0.29), which is interpreted in the scheme proposed by Ewoldt

et al. (2008) as showing shear thinning (an interpretation supported by the form of the flow

curve). Similar results are obtained for the two higher frequencies, where the first-order elas-

tic coefficient is positive [e1¼ 0.002 Pa (x¼ 1 rad � s�1) and 0.045 Pa (x¼ 10 rad � s�1)],

FIG. 4. Left—Linear viscoelastic relaxation spectrum of the Giesekus model showing plateau modulus of 10 Pa

and a relaxation time of 1 s. Right—Steady-shear flow curve showing predicted responses based on g0, gs
(angled dotted lines) and the inverses of the two relaxation times k1 and k2 (vertical dashed lines).
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which would be interpreted as indicating very weak, but increasing with frequency, elastic

contributions. The potential for interpreting strain hardening behavior also changes with fre-

quency as evidenced by relative third-order elastic (Chebyshev) coefficients (e3=e1¼ 5.13

at x¼ 1 rad � s�1, where no interpretation is ascribed, and e3=e1¼ 0.80 at x¼ 10 rad � s�1,

where the strain hardening interpretation is attached). For completeness, we note that the

first-order viscous coefficients for x¼ 1 and 10 rad � s�1 are positive (v1¼ 0.12 Pa � s and
0.02 Pa � s, respectively), which indicate a decreasing linear viscous contribution with

increasing frequency, and relative third-order viscous coefficients v3=v1¼�0.29 and 0.026,

which would be interpreted as indicating a change from shear thinning to shear thickening

with increasing frequency.

We now interpret the responses of the Giesekus model in terms of the SPP framework

used previously in the analysis of the Bingham and modified Bingham models. We have

already seen that with the model parameters in use there is a polymer shear modulus of

10 Pa and that the flow curve has a plateau at approximately 10 Pa between rates of 1 and

1000 s�1. We propose that the waveforms observed in Fig. 5 are better understood as rep-

resenting an elastic extension which yields and is followed by viscous flow. In support of

this claim, we show in Fig. 5 straight lines (black dashed lines) of constant differential

modulus @r=@c

	 


superimposed on the steady-state orbits displayed as elastic Lissajous-

Bowditch curves. Interestingly, the value of modulus obtained in this manner (which is

calculated at the point where the second derivative of the stress with respect to strain,

which could be interpreted as the rate of softening, is closest to zero before the local

stress maximum. That is, the value of the differential modulus we take is from the point

where the first derivative of the stress with respect to the strain changes least prior to the

stress overshoot) is a nonlinear function of frequency, as shown in Fig. 6. This nonlinear

dependence on the frequency indicates that the elastic response does not reflect the linear

modulus and can be rationalized by noting that the model contains a constant relaxation

time, here set to 1 s. It is also an important part of the rationalization that LAOS has a

nontrivial shear history. In order to measure the linear modulus of 10 Pa in LAOS tests,

we would expect that the frequency of shearing would have to be high enough in order

for the model not to relax stress while being extended. The period of oscillation would

also have to be much longer than the relaxation time in order for full relaxation to have

taken place between yielding events so that the equilibrium state is probed. These, of

course, are mutually conflicting ideas that result in moduli smaller than the linear modu-

lus being calculated from LAOS responses. Even at an angular frequency of x¼ 0.1

rad � s�1¼xk1¼ 0.1, the measured modulus is only 2=3 of the linear viscoelastic value.

FIG. 5. Representative waveforms of the Giesekus model calculated under oscillatory shear conditions of

c0¼ 178 and x¼ 0.1 (left), 1 (centre), and 10 (right) rad � s�1 displayed in elastic Lissajous-Bowditch curves.

Colored lines show the calculated stress response from startup, which quickly becomes the “steady-state”

response. Solid black lines indicate r0 and dashed and dotted black lines are described in the text.
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Below a frequency of xk¼ 0.1 (at an amplitude of c0¼ 178), the (differential) modulus

drops because the increased time taken to complete an oscillation is sufficient for the

model to relax stresses (that is, behave like a fluid).

We also show in Fig. 6 the maximum instantaneous differential viscosity, which is cal-

culated as the maximum value of the numerically differentiated stress with respect to rate

(full waveforms are not shown as functions of rate). In the limit that the frequency

approaches zero, that is as x ! 0, we expect to obtain the zero shear viscosity of

10.01 Pa � s. We observe this occurring in Fig. 6 at frequencies lower than �0.03 rad � s�1.

At frequencies higher than about 0.1 rad � s�1, the maximum instantaneous viscosity

decreases rapidly. We associate this decrease in viscosity with the increasing frequency.

This results in a decreased ability of the model to dissipate energy, resulting in a more

solidlike response.

Our rationalization of the trend of a decreasing modulus with increasing frequency is

further supported by observing not the steady-state response, but the transient response

from startup (where the initial stress is zero), also shown in Fig. 5. Examining the initial

stress response in this way removes all complications resulting from the shear history and

we therefore expect to retain the polymer shear modulus. When this data is viewed, it

becomes clear that the very first response of the system to LAOS is to deform elastically,

where the stress is proportional to the strain, with the proportionality constant being the

polymer shear modulus. This is marked by the coincidence of the stress response and the

dotted black lines in Fig. 5. The width of the overshoot peak is related to the relaxation

time (k1¼ 1 s) and therefore appears to be wider for higher frequencies (where 1 s makes

up a larger fraction of the period of oscillation).

Prior to the stress overshoot, which we interpret as representing static yielding, the

model responses display strain softening (a decrease in the differential modulus with

increasing strain), which can be thought of as modeling plastic deformation. After the

stress overshoot (i.e., yielding), the material flows as described by the flow curve.

Directly after yielding, where the stress overshoots are observed in Fig. 5, the stress

FIG. 6. The differential modulus and differential viscosity (see text) measured from calculated responses of the

Giesekus model to a strain amplitude of 178, some of which are shown in Fig. 5. The polymer shear modulus of

10 Pa, indicated by the horizontal dotted line, is never fully recovered in the frequency regime investigated,

while the zero-rate viscosity of 10 Pa � s is achieved at low frequencies, as expected.
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response of the system can be considered a convolution of the stress from the flow curve

with the memory function. If the relaxation is fast compared with the frequency of oscil-

lation, the memory of the system decays leaving just the stress response of the flow curve.

This can be seen from the data of Fig. 7 where the oscillatory stress for the cases shown

in Fig. 5 is superimposed on the steady-shear flow curve of Fig. 2. This method of display

emphasizes the effects of a constant and finite relaxation time in that there is a nonzero

stress at an instantaneous shear rate of zero. This effect arises whenever a fluidized mate-

rial is sheared in an (sinusoidally) oscillatory manner: the material attempts to follow the

flow curve, but the instantaneous shear rate is decreased faster than the material can relax

(the rate of which is set by the relaxation time) the stress set by the flow curve. An exami-

nation of the linear viscoelastic response (in the linear regime, the stress residual in the

system at zero rate is set by the storage modulus) of the Giesekus model [Bird et al.

(1987)] suggests that the residual stress in the Giesekus model at an instantaneous shear

rate of zero should be equal to g0
_c0x k1�k2ð Þ
1þk21x

2

	 
h i

. In direct analogy with the flow curve,

which is a pictorial representation of the relation r ¼ g _c, a plot of rj _c¼0 vs
_c0x k1�k2ð Þ
1þk21x

2

	 


should superimpose with the flow curve. In the case where k1�k2, and therefore

k1 � k2ð Þ 	 k1 the result reduces to the same expression as for the linear Maxwell model.

Such a plot can therefore act as an alternative method for determining k1. While this

result is interesting, it does require prior knowledge of, or an assumption of the form of,

the material constitutive equation to calculate. We reserve a full investigation of this

topic for a further publication so as not to dilute the message of the current submission. It

should be noted that the oscillatory data displayed in Fig. 7 that fall below the flow curve

are from the elastic extension previously discussed and are shown merely for

completeness.

The interpretation of the response of the Giesekus model offered here is very similar to

that of the Bingham and modified Bingham models discussed previously. We suggest that

greater physical understanding can be garnered by viewing the calculated response to

LAOS as representing a sequence of purely elastic and viscous physical processes. We

FIG. 7. Positive oscillatory stress (filled color symbols) superimposed on the steady-shear flow curve (unfilled

squares).
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further suggest that the specific sequence of physical processes exhibited by the Giesekus

model is of elastic extension, yielding, stress relaxation (at a rate set by the model relaxa-

tion time), followed by viscous flow (nearly identical to that of the steady-state response of

the system indicated by the flow curve). Because of the differing natures of the effects of

each one of these processes, it is sensible to analyze these calculated responses by a method

other than a linear algebraic one. We must note, however, that similar to our discussions on

the Bingham and modified Bingham models, the large rate dynamic viscosity as defined by

Ewoldt et al. (2008), when applied to the LAOS response of the Giesekus model, will be

equal to the steady-shear viscosity at the same shear rate, i.e., the rate amplitude. This is

because, as shown in Fig. 7, the postyielding stress response is set by the flow curve. How-

ever, because the large-rate dynamic viscosity can only be accurately determined by Fou-

rier or Chebyshev coefficients at a single point (the point of maximum shear rate), the

utility of that approach is diminished when compared with the SPP method presented here.

D. Discussion on the SD method and Chebyshev extension as applied to

the examples given

What causes the fundamental differences between the designed and calculated

responses and the interpretations of r0 and r00, and the en’s and vn’s suggested by the

Chebyshev extension of the SD method? The problem lies in the interpretation of the r0

and r00 parameters. In the cases of the Bingham, the modified Bingham, and the Giesekus

models presented here, for large parts of the stress response waveforms, highlighted in

Fig. 8, r0 and r00 represent conflations of strain-related stresses (the elastic stretching) and

rate-related stresses (the viscous flow). It is this averaging over strain-dependent and

rate-dependent regions, where different mechanisms are operating, that causes the dis-

crepancies between the interpretations offered by the Chebyshev extension of the SD

method and the true nature of the model response. These discrepancies, in turn, are effec-

tively forced into r0 and r00 by the stringent symmetry assumption that defines them. Non-

linear responses in general (in the Lissajous-Bowditch representation), only possess

rotational symmetry of order 2 about the origin, making them (in a temporal representa-

tion) 1� (step) frieze groups [Rogers and Vlassopoulos (2010)]. The symmetry assump-

tions of the definitions of r0 and r00 [Eqs. (2) and (3)] are the same as those of linear

responses, which (in the Lissajous-Bowditch representation) possess, in addition to rota-

tional symmetry, two mirror planes (along the major and minor axes), which in a tempo-

ral representation makes them 2*1 (spinning sidle) frieze groups. This is the reason why

r0 and r00, as defined by Eqs. (2) and (3), can be used to determine G0 and G00 in the linear

regime [Ewoldt et al. (2008)]. One must therefore conclude that, in systems where the

stress response represents a sequence of physical processes, such as the yielding exam-

ples presented here, any interpretation of the decomposed variables r0 and r00, and any

subsequent analysis upon which it is based has the potential to conflate information from

elastic and viscous processes.

The arguments presented here in favor of approaches other than linear algebraic ones

to the analysis of yielding responses to LAOS can be generalized to cases where the total

stress response is the result of a sequence of physical processes. In the examples given

here, that sequence is of an elastic process followed by a viscous one. The same argu-

ments would also hold in the case where polymers are subjected to oscillatory shear that

induces elastoplastic deformation after a short interval of linear elastic extension. Gener-

ally, the arguments relating to the conflation of r0 and r00 and therefore of the misinterpre-

tations of the en’s and vn’s apply as long as there are different mechanisms responsible

for different parts of the oscillatory stress response.

17SEQUENCE OF PHYSICAL PROCESSES IN LAOS



E. A comment on the presentation methods of LAOS data

All currently used analysis techniques assume a spatial symmetry of the response. The

impact of such symmetry assumptions is that stress responses to LAOS need not be dis-

played as full Lissajous-Bowditch curves. A general stress response to LAOS exhibits a

minimum of rotational symmetry of order 2 about the origin in both the elastic and

viscous Lissajous-Bowditch representations [Rogers and Vlassopoulos (2010), stated in

Cho et al. (2005) in the form of Eqs. (2) and (3)]. It is therefore thought to be redundant

to show more than half of a waveform. Indeed, as was shown earlier, r0 and r00 them-

selves can be calculated from only one half of the period. The natural presentation in the

SPP formalism is to only show the positive-rate information. That is, one needs only to

display the stress response from �c0 to c0 (and not the symmetric part that goes from c0
to �c0) in the elastic representation and the positive-rate stress response in the viscous

representation.

Cho et al. (2005) and Ewoldt and McKinley (2010) displayed LAOS data as one-

dimensional closed traces imbedded in a three-dimensional space defined by the mutually

orthogonal strain, strain-rate, and stress axes. In this representation, the SPP framework

suggests that a time-dependent rotation of the axes should be implemented in order to

obtain the best viewing of the data. In the cases examined here, where purely elastic

responses give way to purely viscous responses, the three-dimensional space is best

viewed initially normal to the stress-strain plane, i.e., in the elastic Lissajous-Bowditch

representation. As the Bingham, modified Bingham, or Giesekus models yield in

response to increasing strain, the axes are rotated by an angle of �p=2 about the stress

axis (positive rotations are defined to be in the anticlockwise direction as per the right-

hand rule when viewing from the positive stress axis) so that the viewer is then normal to

FIG. 8. Three representative waveforms [in black with r0 in blue (a–c) and r00 in red (d–f)] of responses that are

best viewed as resulting from a sequence of physical processes: (a and d) The Bingham model, (b and e) the

modified Bingham model (see text) and (c and f) the Giesekus model (response to c0¼ 178, xk¼ 1). The por-

tions in the dotted boxes show the parts of r0 and r00 that conflate stresses from elastic and viscous mechanisms.
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the stress-rate plane and views the response in the viscous Lissajous-Bowditch represen-

tation. The time taken for the rotation should be dictated in some way by the relaxation

time of the model=material. In the case of the Bingham and modified Bingham models,

the rotation should be applied instantaneously once the yield conditions have been

exceeded as the model response changes instantly from elastic to viscous. In the case of

the Giesekus model, the rotation should take place over an interval of time shorter than

the relaxation time, k1. Rotations of þp=2, which return the space to the initial configura-

tion, should be applied when the stress falls below the (dynamic) yield stress. A visual

guide to the three-dimensional space and the rotation scheme is displayed in Fig. 9, where

the strain axis is shown in red, the strain-rate axis is blue, and the stress axis is black. The

elastic representation is shown as a capital “E” and the viscous representation is shown

as a capital “V.” Time is assumed to progress from left to right.

The required rotations of the three model responses are indicated in Fig. 10. Figure 10(a)

shows the Bingham model, Fig. 10(b) shows the modified Bingham, and Fig. 10(c) shows

the response of the Giesekus model to c0¼ 178, xk¼ 1. Projections onto the stress–strain

(the elastic representation), stress–rate (the viscous representation), and strain–rate planes are

also displayed. Under the SPP framework, one ought to view each of the three model

responses for the red sections of the waveforms in Fig. 10 in the elastic representation, i.e.,

normal to the stress–strain plane. For the blue sections of the waveforms, the data are best

viewed normal to the stress–rate plane in the viscous representation. Between these two

limiting responses, the space needs to be rotated as displayed in Fig. 9.

The rotation concept also allows for an alternative interpretation of linear viscoelastic

responses. In the linear regime, any stress response can be written as r0 sin xtþ dð Þ

FIG. 9. LAOS data can be displayed as one-dimensional closed traces in a three-dimensional space defined by

the strain (red), strain-rate (blue), and stress (black) axes. Rather than viewing these traces as fixed in time, the

SPP framework suggests rotating the space from elastic (E) to viscous (V) presentations (left to right) as a func-

tion of time.

FIG. 10. The three models used in this work (a—Bingham=b—modified Bingham=c—Giesekus response to

c0¼ 178, xk¼ 1) presented in the 3D space defined by the stress, strain, and shear rate axes. Projections onto

the elastic (stress–strain) and viscous (stress–rate) planes previously presented in Figs. 2, 3, and 8 are also dis-

played. Under the SPP framework, the best viewing of this data includes a rotation as the responses change

from elastic (red lines) to viscous (blue lines).
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[Ferry (1980)] where d is referred to as the phase angle between the stress and strain vec-

tors. An object in three dimensions can be rotated by an angle h about the positive z-axis

by the rotation matrix

Rz hð Þ ¼
cos h � sin h 0

sin h cos h 0

0 0 1

2

4

3

5: (9)

By applying such rotations, it can be shown that for any linear viscoelastic stress response

given by the column vector c tð Þ _c tð Þ r tð Þ½ 
T, there exists an angle of rotation h, such

that no area is enclosed by the curve. Visual proof of this is shown in Fig. 11 where three

different linear viscoelastic responses, corresponding to phase angles of d ¼ p=8, p=4,
and 3p=8 are rotated by various angles �h, showing that their two-dimensional projec-

tions appear as straight lines when h¼ d.

Formal proof proceeds by calculating the area, A0, of the projection of the curve onto

the stress–strain plane for an arbitrary rotation angle �h. We use Green’s theorem to

equate the area integral with a line integral and note A0 ¼
Þ

r tð Þdc ¼
Þ

r tð Þ _c tð Þdt, where
the form of _c tð Þ we take is the rotated rate vector _c0 tð Þ ¼ c tð Þ sin �hð Þ þ _c tð Þ cos �hð Þ.
Therefore

A0 ¼
þ

r tð Þ _c0 tð Þdt

¼
ð2p=x

0

sin xtþ dð Þ sin xtð Þ sin �hð Þ þ cos xtð Þ cos �hð Þ½ 
dt

¼ p

x
cos hð Þ sin dð Þ � sin hð Þ cos dð Þ½ 
;

(10)

which is identically equal to zero when h ¼ d:

FIG. 11. Three linear viscoelastic stress responses, characterized by d¼p=8 (top row), p=4 (middle row), and

3p=8 (bottom row) are rotated by angles �h as displayed at the top. No area is enclosed by the curves when the

angle of rotation is equal to the phase angle of the response, i.e. when h¼ d.
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The existence of a rotation angle where zero area is enclosed by an arbitrary linear

viscoelastic stress response naturally suggests a new measure of viscoelastic nonlinearity

which we discuss in the Appendix.

F. Comments on Fourier transformation as applied to LAOS responses

Because of the equivalence relation between the Chebyshev and Fourier coefficients

and the SD parameters as shown by Ewoldt et al. (2008) and reproduced here as Eqs. (1),

(4), and (6), the arguments previously applied to the interpretation of the Chebyshev

approach also apply to FT rheology. There is, however, a fundamental difference to the

way FT rheology is used compared with the Chebyshev approach. While the Chebyshev

approach describes the SD constructions r0 and r00, FT rheology decomposes the full

stress response. The use of FT rheology has, in many cases, been reduced to an examina-

tion of the relative intensity of the third harmonic. Furthermore, the relative intensity of

the third harmonic is given elevated status and equated with “nonlinearity” [Hyun and

Wilhelm (2009)]. This is certainly true when the only measureable higher harmonic is

the third, which may be true in the MAOS regime as defined by Hyun and Wilhelm

(2009). When it is clear that other harmonics are present in a response, they cannot be

neglected; an integration of all higher harmonics, including phase information, would

better represent a “degree of nonlinearity” (see Appendix).

Second, reconstructions do not necessarily constitute useful physical descriptions,

especially when the fundamental assumptions leading to the reconstruction are false, e.g.,

the strict symmetries exhibited by the basis states. It is possible to fit a sinusoid with fre-

quency equal to that of the imposed deformation to any periodic response. However,

when that periodic response represents a sequence of physical processes, it is a misinter-

pretation to suggest that this sinusoid somehow represents a “linear response” of the

model=material. In this vein, we agree with the interpretation suggested by McKinley

and co-workers [Ewoldt et al. (2008)] that the first harmonic represents some sort of

“average” measure over the entire cycle and contains information from both linear and

nonlinear processes.

The final issue we wish to raise relates to an a priori knowledge of the frequency at

which experimental noise occurs. In Figs. 5 and 7, the initial stress overshoot of the Gie-

sekus model to excitation of c0¼ 178, at x¼ 0.1 rad s�1 takes up a very small fraction of

the total wave. This means that many high-frequency contributions must be taken into

account in order to accurately reconstruct this particular waveform. Further, Rogers et al.

(2011) discussed the link between the often-used technique of linking individual harmon-

ics with specific physical processes and many real-world and model fluid responses when

they showed that if the material studied behaves like a power-law fluid, then infinitely

many higher harmonics must be included for a faithful reproduction. If one performs an

experiment with no prior knowledge of the upper bounds of the material response fre-

quency domain, and sets an arbitrary upper limit (say n¼ 15) on the number of higher

harmonics to be included in the reconstruction, then there exists a very real possibility of

misrepresenting the true stress response or missing features altogether. If, on the other

hand, the Fourier information is to be used by experimentalists to construct local meas-

ures, which we remind the reader can only be defined at a limited number of specific

locations such as c¼ 0 and c0, then the highest number of harmonics possible should be

used. While some such local measures can be defined by infinite sums of Fourier or Che-

byshev coefficients [Ewoldt et al. (2008)], viewing the stress response as being the result

of a sequence of physical processes provides a description of the full stress response at

all points, with physically meaningful interpretations.
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III. CONCLUDING REMARKS

The trend in recent years has been to use linear algebraic periodic techniques (be it the

Chebyshev series description of the SD parameters or FT rheology) to analyze stress

responses to LAOS simply because they are the result of a periodic excitation. The cur-

rently used methods of analysis proposed by, Ewoldt et al. (2008) [based on the work of

Cho et al. (2005)] and Wilhelm et al. (2002) both assume a linear algebraic approach; an

implicit assumption is made that the infinite number of basis states exhibit potentially

unrealistic symmetries and that the only analysis issue is to find their amplitude and pos-

sibly phase. In FT rheology, where the total stress response is described, the basis is

assumed to be the infinite set of sinusoids with different frequencies and each harmonic

has its own phase. In the Chebyshev series description of r0 and r00, the basis is taken as

the infinite set of Chebyshev functions of the first kind which have fixed phases of either

zero or p=2 depending on whether they are being used to describe r0 or r00. Both

approaches suffer the same crippling issue of a lack of physical interpretability of the infi-

nite basis sets they assume. The work presented here offers a solution to this problem by

assuming that only the same two fundamental material responses assumed in linear re-

gime analysis, elasticity and viscosity, exist but allowing them to vary with time through-

out an oscillation. We have shown that by making these more physically realistic

assumptions, we are able to fully describe, at all points in time, the nonlinear yielding

responses of three models. It has even been shown that the SPP approach provides the op-

portunity to completely determine the constitute equation of the simple Bingham model,

while the best that FT-rheology and the Chebyshev approach can do is to describe each

individual response curve with large numbers of physically meaningless parameters.

We have shown that the symmetry requirements placed on r0 and r00 mean that they

are more suited to analyzing linear regime oscillatory data than they are to nonlinear

responses. In the nonlinear yielding examples given here, r0 and r00 conflate information

from elastic processes and viscous processes. While we agree with the spirit of the SD

method, that by using the full material response the elastic and viscous contributions

(note that only two contributions are assumed) can be elucidated, we have shown that the

symmetry restrictions of the SD, as currently stated, are too strict. In order to relax the

symmetry requirements further, one is reduced to observing the full material response as

we have here.

Finally, we have proposed that nonlinear oscillatory yielding stress responses should

be viewed as being the results of periodic sequences, not linear combinations, of physical

processes. This means that basis states are not assumed to be exhibit particular strict sym-

metries but are allowed to wax and wane throughout an oscillation. In the Bingham,

modified Bingham, and Giesekus models presented here, the viscous response is not sym-

metric in the way assumed by the FT, SD, or Chebyshev approaches, but rather only

exists once the yield conditions have been exceeded. There is, therefore, an inherent

inability in all linear algebraic approaches, because of the assumption of the constancy of

the basis states, to describe such temporally varying responses. While these waveforms

can be described and reconstructed to arbitrary degrees of accuracy by both FT rheology

and the Chebyshev approach, we propose that by viewing the responses to LAOS as

being the results of sequences of physical processes, we are able to link all nonlinear os-

cillatory data to both the linear oscillatory regime and the steady shear flow curves. No

other analysis technique provides this link. This link is invertible, meaning that if the lin-

ear regime response or flow curve is not known, that an SPP analysis of nonlinear LAOS

responses can provide a way for at least partial elucidation within the experimental (fre-

quency and shear rate amplitude) parameters. By taking this more general physically—
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rather than mathematically minded approach—we can better determine the processes

which govern the behavior of the materials we study and obtain a greater and more com-

plete understanding.

APPENDIX

We wish to define a new nonlinear parameter here, the interpretation of which better

reflects the full nonlinear response to LAOS. Preliminary investigations suggest this new

parameter is at least as sensitive to nonlinearities as Fourier transformation, and makes

no assumptions about the continual presence, or form, of basis states.

We showed in Sec. II.5 that there exists an angle of rotation h¼ d such that when a lin-

ear viscoelastic response, given by sin(xtþ d), is rotated around the z-axis by �h, the 2D

projection encloses no area (where the variable d is the phase angle difference between

the stress and strain vectors and is ill-defined for nonsinusoidal, nonlinear responses).

This suggests that no such angle exists for nonlinear responses and that the best that can

be done is a minimum area when rotated by some angle. We therefore define a new visco-

elastic nonlinearity parameter as being the pair of numbers [A0
min, hc] given by the mini-

mum unsigned area enclosed by the projection of any normalized stress response onto

the normalized stress–strain plane under rotations of 0 � h � p=2 about the z-axis, which
we denote as A0

min, and the rotation angle, hc, at which this minimum is achieved. This

measure therefore gives a deviation from linear behavior (when A0
min> 0) and an angle,

which can be thought of as a generalized phase difference, which characterizes whether

the total stress response is predominantly elastic (hc<p=4) or viscous (hc> p=4). The
benefit of this approach over FT-rheology, where one might be tempted to use the phase

of the first harmonic, is that no assumption is made in this case with regards to the con-

stant presence of basis states. No assumptions are made about the form (sinusoidal, Che-

byshev, Legendre, Lebesgue, etc.) of the basis states either. This measure therefore better

reflects the average phase of the entire response, taking into account the waxing and wan-

ing of the fundamental elastic and viscous material states. If one uses normalized stress,

strain and rate inputs, the minimum unsigned area, A0
min can vary between 0 and 4

(though is typically on the order of 0.4), and the angle hc may vary between 0 and p=2. It
should be noted that in most cases, the angle hc will be close to, but not equal to, the

phase of the first harmonic. While the phase of the first harmonic is interpreted as repre-

senting the phase of the averaged response (which is itself assumed to be composed in

some way of a combination of linear and nonlinear effects), the phase of this new param-

eter represents the phase of the total integrated nonlinear response.

In general, the projections of nonlinear responses will not entirely be positively ori-

ented (where positive orientation is defined by the right-hand rule) nor will they be sim-

ple closed curves; they will contain alternating regions of positive and negative

orientation and will intersect themselves multiple times. As a result, the nonlinear param-

eter must be defined by the minimum unsigned projected area. The unsigned area is

obtained by subtracting the area of negatively oriented portions of the projected curves

from the area enclosed by positively oriented regions. In practice, this must be carried

out numerically.

This new measure combines the effects of all sources of nonlinearity, not simply those

at a specific frequency, which makes it akin, in the FT rheology framework, to the integral

of all higher harmonics, when the phases of individual harmonics are taken into account.

Because all the available waveform information is used, this new measure provides more

detail than the phase and intensity of the third harmonic, as used by Vittorias et al. (2007),

and more information than the Q parameter proposed by Hyun and Wilhelm (2009), which
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contains no phase information. The greatest benefit of this new parameter comes from the

interpretability of the both components. Unlike the normalized intensity and phase of the

third harmonic, the intensity and angle of the new parameter have direct and easily visual-

ized interpretations.

We note that the greatest weakness of this new parameter is that in the low-frequency

limit, purely viscous nonlinearities can ret urn a minimum unsigned area of zero at a rota-

tion angle of p=2. In this respect, the new parameter is not a general LAOS nonlinear pa-

rameter, but rather a viscoelastic nonlinearity parameter.

We show in Fig. 12 the unsigned area as a function of rotation angle for four normal-

ized responses; (a) a linear response described by sin xtþ 3p=8ð Þ, (b) the Bingham

model, (c) the modified Bingham, and (d) the Giesekus model when subjected to oscilla-

tory shear conditions previously discussed. We show for comparison the phase of the first

harmonic as vertical dashed lines for each response curve. We also show as insets in

Fig. 12 the projections of each response when rotated by an angle hc, such that a mini-

mum area is enclosed. From the positions of the minima plotted in Fig. 12, we can define

the nonlinear parameters for each of the responses as being (phase of the first harmonic

in parentheses)

Linear� ½0; 67:5� ¼ 3p=8 rad
 fd1 ¼ 67:50�g
Bingham� ½0:37; 81:85�
 fd1 ¼ 82:37�g
Modified Bingham� ½0:09; 82:80�
 fd1 ¼ 85:26�g
Giesekus� ½0:34; 83:42�
 fd1 ¼ 89:57�g

The information displayed in Fig. 12 can be used not only to calculate the new nonlinear-

ity parameter but also to calculate the perfect plastic dissipation ratio /, defined by

Ewoldt et al. (2010). The perfect plastic dissipation ratio is defined as being the ratio of

areas enclosed by an arbitrary response in the stress-strain plane and a perfectly plastic

response of the same stress and strain amplitudes. The ratio / can be obtained by divid-

ing the value of the unsigned integral at zero rotation by 4: /¼A0(0)=4.
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