000129319 001__ 129319
000129319 005__ 20241127124648.0
000129319 0247_ $$2doi$$a10.1002/fuce.201300166
000129319 0247_ $$2WOS$$aWOS:000334047200014
000129319 037__ $$aFZJ-2013-00835
000129319 041__ $$aEnglish
000129319 082__ $$a620
000129319 1001_ $$0P:(DE-Juel1)138846$$aWiethege, Christiane$$b0$$eCorresponding author
000129319 245__ $$aStart-up of HT-PEFC systems operating with diesel and kerosene for APU applications
000129319 260__ $$aWeinheim$$bWiley-VCH$$c2014
000129319 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1404906818_32149
000129319 3367_ $$2DataCite$$aOutput Types/Journal article
000129319 3367_ $$00$$2EndNote$$aJournal Article
000129319 3367_ $$2BibTeX$$aARTICLE
000129319 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000129319 3367_ $$2DRIVER$$aarticle
000129319 520__ $$aFuel-cell-based auxiliary power units offer power generation with reduced fuel consumption and low emissions. A very promising system is the combination of an autothermal reformer with a high-temperature polymer electrolyte fuel cell. A fast start-up procedure is a crucial requirement for the use of this system as an auxiliary power unit. This paper reports on the development of a suitable start-up strategy for a 10 kWel auxiliary power unit with a start-up burner. A commercially available diesel burner was tested as a start-up device. A dynamic MATLAB/Simulink model was developed to analyze different start-up strategies. With the currently available apparatus and start-up burner it takes 2,260 s before power generation can begin according to simulation results. The fuel processor alone would be ready for operation after 1,000 s. An optimization of the fuel cell stack with regard to its thermal mass would lead to a start-up time of 720 s. A reduction to 600 s is possible with a slight customization of the start-up burner.
000129319 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000129319 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b1
000129319 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b2
000129319 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000129319 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201300166$$n2$$p266-276$$tFuel cells$$v14$$x1615-6854$$y2014
000129319 8564_ $$uhttps://juser.fz-juelich.de/record/129319/files/FZJ-2013-00835.pdf$$yRestricted$$zPublished final document.
000129319 909CO $$ooai:juser.fz-juelich.de:129319$$pVDB
000129319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138846$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000129319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000129319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000129319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000129319 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000129319 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000129319 9141_ $$y2014
000129319 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000129319 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000129319 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000129319 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000129319 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000129319 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000129319 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000129319 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000129319 980__ $$ajournal
000129319 980__ $$aVDB
000129319 980__ $$aI:(DE-Juel1)IEK-3-20101013
000129319 980__ $$aUNRESTRICTED
000129319 981__ $$aI:(DE-Juel1)ICE-2-20101013