001     129319
005     20241127124648.0
024 7 _ |a 10.1002/fuce.201300166
|2 doi
024 7 _ |a WOS:000334047200014
|2 WOS
037 _ _ |a FZJ-2013-00835
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Wiethege, Christiane
|0 P:(DE-Juel1)138846
|b 0
|e Corresponding author
245 _ _ |a Start-up of HT-PEFC systems operating with diesel and kerosene for APU applications
260 _ _ |a Weinheim
|c 2014
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1404906818_32149
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Fuel-cell-based auxiliary power units offer power generation with reduced fuel consumption and low emissions. A very promising system is the combination of an autothermal reformer with a high-temperature polymer electrolyte fuel cell. A fast start-up procedure is a crucial requirement for the use of this system as an auxiliary power unit. This paper reports on the development of a suitable start-up strategy for a 10 kWel auxiliary power unit with a start-up burner. A commercially available diesel burner was tested as a start-up device. A dynamic MATLAB/Simulink model was developed to analyze different start-up strategies. With the currently available apparatus and start-up burner it takes 2,260 s before power generation can begin according to simulation results. The fuel processor alone would be ready for operation after 1,000 s. An optimization of the fuel cell stack with regard to its thermal mass would lead to a start-up time of 720 s. A reduction to 600 s is possible with a slight customization of the start-up burner.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|f POF II
|x 0
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 1
700 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
773 _ _ |a 10.1002/fuce.201300166
|0 PERI:(DE-600)2054621-X
|n 2
|p 266-276
|t Fuel cells
|v 14
|y 2014
|x 1615-6854
856 4 _ |u https://juser.fz-juelich.de/record/129319/files/FZJ-2013-00835.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:129319
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138846
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21