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Abstract

The depletion interaction between a probe sphere and a flat wall induced by fd–virus is

investigated by means of total internal reflection microscopy (TIRM). The viruses serve as

a model system for mono–disperse, rod–like colloids. We find that the experimental poten-

tials are well described by the first–order density approximation up to an fd–content of several

overlap concentrations. This is in accordance with higher order density theory as confirmed by

numerical calculations. Since the first order analytical description still holds for all measure-

ments, this exemplifies that higher order terms of the theory are unimportant for our system.

Comparing the potentials induced by wild–type fd to those induced by a more rigid fd variant,

it can be shown that the influence of the virus stiffness is beyond our experimental resolution

and plays only a negligible role for the measured depletion potentials.

Introduction

Depletion interactions between colloidal particles can govern a wide range of effects such as self-

organization and induced phase transitions some examples of which are the crystallization of pro-
∗To whom correspondence should be addressed
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teins1 and aggregation of colloids.2 These interactions are therefore crucial to understanding a

multitude of biologically and technologically relevant systems. Rod–like and spherical objects

provide a good model system for investigating these phenomena, since they are theoretically well

understood and can be grasped without the need of extensive simulations.3 Fd-virus in particular

represents an unsurpassed model for rigid and monodisperse rods4 with high aspect ratio. The

wild–type variant has a contour length of L=880 nm, a diameter D = 6.7 nm and a persistence

length of Lp = 2.8 µm.5 Because of a persistence length of about three times its own length, it

is commonly regarded as long stiff rod. However, recent force-extension on M13 bactriophage (a

virus virtually identical with wt–fd) and earlier laser tweezers experiments on wt-fd indicate that

the persistence length might be much smaller, i. e. Lp ≈ 0.7−1.2 µm.6,7 Furthermore fd-viruses

are highly uniform, which is owed to their biological origin. All viruses are almost identical due to

the fact that viruses clone themselves by exploiting cells of host organisms. In the case of fd those

are e-coli bacteria.8 Other forms of such biological particles are also available, for example the

tobacco mosaic virus, which is stiffer than fd, but has a much lower aspect ratio with L = 300 nm

and a diameter of D = 18 nm.9 In order to approximate the ideal of completely stiff slender rods

even closer while maintaining the aspect ratio, here we used a genetic mutant10 of fd-virus, namely

Y21M, in addition to wt–fd. These viruses have a persistence length of Lp=9.9 µm10 through the

altering of a protein in the virus shell.

The greater stiffness of the mutant has already been confirmed qualitatively by determining the

nematic-isotropic phase transition, which occurs at lower rod densities for Y21M as compared to

wt–fd. Quantitative data for the Y21M persistence length were obtained from the analysis of the

viruses’ twisting and bending motion as observed by video microscopy.10 Apart from the increased

persistence length, Lp, Y21M has the same properties as wt–fd.

The high degree of uniformity of fd in combination with TIRM as a measurement technique

provides several experimental advantages . The force resolution of TIRM is in the fN–regime,

unmatched by most other methods, p.a. AFM.11 Further, since TIRM is a scattering technique it

is next to non-invasive, which reduces the risk of data biasing by the measurement itself. Finally
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the absence of polydispersity facilitates data analysis significantly12 .

TIRM measurements of depletion potentials induced by boehmite rods13 and fd-virus14 have

been reported earlier. In both cases satisfactory agreement between the theoretical low density pre-

diction and the experimental data was observed. Polymeric depletants, e.g. polyethyleneoxide15

and spherical deplentant agents, such as PNIPAM particles where also characterized by means of

TIRM.16,17 Those examples show that TIRM is a most feasible method for measuring depletion

potentials close to a wall. Lin et al.18 have reported video microscopy experiments on depletion

interactions between equally sized spheres induced by wt–fd. For virus concentrations larger than

five times the overlapp concentration c∗ these authors find depletion potentials with contact val-

ues, that were three times smaller than those predicted by the first order density approximation.

Without analyzing higher order density contributions, this discrepancy was attributed to the finite

flexibility of the virus. In this article we examine the effect of flexibility at low fd-concentrations

by comparing experimental data from wild–type fd and its stiffer mutant. We do not attempt to

extract numbers for the persistence length of the different types of viruses. We rather compare the

depletion potential they cause, to identify possible variations due to different degrees of flexibility.

Experimental

Setup, measurement principle and data evaluation

The TIR microscope was home built from standard microscopy components (Olympus), which

are mounted on a X-95 rail system (Linos). The setup is sketched in Figure 1. It consists of an

infinity corrected 40x Olympus SLCPlanFl objective with a focal length of f = 6.5 – 8.3 mm and

a numerical aperture NA=0.55, followed by a dichroic mirror to couple in the 532 nm tweezers

laser. A beam splitter equally distributes the light from the sample cell to a camera ( Photometrics

Cascade 1 K) and a photomultiplier tube (PMT) (Hamamatsu H7421-40). In front of the PMT a

pinhole of 800 µm is used as spatial filter which, in combination with a band pass filter (λ = 633

nm), increases the signal to noise ratio to S/N > 100.
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The sample cell is a quartz glass flow cell (QS137) from Hellma with a volume of 520 µl. Since

it is completely made of glass, contaminations of the sample can be excluded. For exchanging

liquids during a measurement series the cell is connected to a glass syringe with a valve by highly

chemically resistive tubing (Tygon 2075 from Saint Gobain).

Figure 1: TIRM-setup and principle

The illumination source is a 15 mW HeNe-Laser ( λill = 632.8 nm) mounted on a goniometer,

driven by a stepper motor, which allows the angle of incidence αi to be set with high accuracy and

reproducibility. A prism of BK7 glass from Edmond optics is attached to the cell to enable total

reflection conditions and the creation of an evanescent wave. A thin film of immersion oil index

matches possible gaps between prism and cell. An angle αi = 65.29◦ is chosen for the experiments,

which yields a penetration depth of the evanescent field intensity β−1= 150 nm.
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In the course of an experiment a spherical probe particle is observed, which floats at an average

elevation in the range of 100 nm above the reflecting interface and which is illuminated by the

evanescent field. In a typical experimental situation the interaction potential between the particle

and the wall can be regarded as the superposition of an electrostatic repulsion and a gravitational

attraction contribution. To keep the particle in the field of view of the microscope, it is laterally

trapped by the optical tweezers. The particle is confined only in two dimensions parallel to the

interface, due to the low numerical aperture of the objective. The resulting light pressure is an

additional contribution to the particle’s potential. Driven by Brownian motion, the particle changes

elevations h, randomly, thereby sampling the potential well it’s in. A change in elevation directly

converts into a change in scattering intensity due to the evanescent nature of the illumination as

suggested by Eq. 1. For the given experimental parameters, i. e. low penetration depth and p–

polarization of the incident beam, the illumination profile can be sufficiently well described by an

exponential19,20

I(h) = I0 exp(−βh) (1)

with

β =
4π

λill

√
(n1 sinαi)2−n2

2. (2)

Here, the refractive index n1 = 1.51 is that of the glass cell, while n2 is the refractive index of

the liquid, usually 1.33 for aqueous solutions. The intensity I0 signifies the scattered intensity at

zero elevation and is usually determined by adding enough salt (NaCl) to the solution to screen

all electrostatic interactions and thereby allowing the particle to sediment. The knowledge of I0 is

required to enable normalization of elevations to absolute scale.

Taking advantage of the fact that the particle performs its motion according to Boltzmann

statistics, the probability density, p(h), of finding the particle at an elevation h can be written as,

p(h) = Aexp
(
−φtot(h)

kBT

)
(3)
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where φtot is the total sphere–wall interaction potential. Following the analysis of Prieve21 it is

presumed that the probability of observing a given intensity is equal to the probability to finding

the particle at the corresponding elevation, i. e. p(h)dh = p(I)dI. Together with Eq. 1 this leads

to,

p(h) =−β p(I)I(h). (4)

The probability density p(I) is determined experimentally, assuming that the histogram of

measured intensities N(I), converges to p(I) for small enough bins and a sufficiently large number

of events. Dividing the resulting probability density of heights p(h) by p(h0) we obtain,

∆φ(h) = ln
(

NmaxImax

N(I)I

)
. (5)

Here Nmax is the number of counts in the histogram maximum, Imax is the corresponding intensity,

∆φ(h) = φ(h)−φ(h0) and φ(h0) is an arbitrarily defined potential minimum value located at h0.

Up to this point no specification of the sphere–wall potential’s functional form has been made.

The only constraint of the method is, that the measured probe particle has to be in thermodynamic

equilibrium.

The accuracy of a potential measurements is dependent on several experimental factors. There

are systematic uncertainties such as finding I0, finding the maximum of the histogram, imperfec-

tion of probing spheres, variation of the composition of the solution. Moreover simple statistical

errors such as the noise of the PMT, noise of the illumination laser and the tweezer laser contribute

to the total error. Even taking this into account TIRM is a very sensitive, if not the most sensi-

tive measurement technique available at the moment, to probe potentials of colloidal particle. A

conservative estimate of the errors yields an energy resolution of 0.1 kT and a spacial resolution

of about 5 nm (the statistical error on the spatial resoltion is only 1 nm). With no viruses present

a potential is correctly described by the superposition of an electrostatic repulsion in the Debye–

Hückel approximation, a gravitational part and a contribution due to the light pressure of the optical
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tweezers, as φre f (h) = Aexp(−κh)+FG,apph, where we defined an effective force, which drives

the particle to the wall as FG,app = mg+ P
c . Here A is the amplitude of the electrostatic repulsion,

κ−1 is the Debye screening length, m is the buoyancy corrected particle mass, g is the acceleration

of gravity, P is the tweezers-power absorbed or reflected by the particle, and c is the speed of light.

In the presence of the virus, the resulting depletion potential has to be added such that the total

potential is than expressed as φtot(h) = φre f (h)+φdep(h) with,

φdep(h)
kT

=


crodNAπ

3Mrod
L2

rodRsphere

(
1− h

Lrod

)3
for h≤ Lrod

0 for h > Lrod

(6)

where we used the first order density approximation to describe the depletion potential.3 The rod

concentration is given by crod in units of mass per volume, NA is Avogadro’s number, Mrod and Lrod

are the virus’ molar mass and length, respectively, and Rsphere is the radius of the probe sphere.

Fitting the model function of 6 to a measured potential profile requires the introduction of an

additional constant φ̃dep(h) = φdep(h)− φ0. This is necessary, since it is not possible to measure

absolute potentials, as can be seen from 5. There the value φ(h0) is always arbitrary. In the

present case, the parameter φ0 represents an experimental offset, which is used to ensure that

the experimental depletion potentials go to zero at h → Lrod . Were it possible to measure up

to separation distances larger than 880 nm, in that range φ0 would be the constant but arbitrary

difference between the actual and the reference potential.

Concerning the expression for the depletion it can be seen, it does not contain any parameter

reflecting a finite flexibility of the rod, since it was devised for rigid particles. The simplest way to

account for deviations from this model would be to introduce an effective quantity in the elevation

independent pre–factor of Eq. 6. For the quantitative analysis of our experimental data we adhered

to the following protocol. In the first step we determined the values of the parameters A, FG,app and

κ by non linear least squares fitting the expression for φre f to the data, which were obtained from

a situation where no virus was present in the system. These values were then kept fixed during the

fitting to the data measured at finite virus concentrations. Thus, according to the modified version
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φ̃dep(h) of Eq. 6, φ0 should be the only adjustable parameter. However, to allow for possible

discrepancies between the data and the model function, we also allowed the virus concentration to

float freely in the fitting procedure.

Sample preparation

Both fd–virus variants were grown in our group, following standard procedures described else-

where.8,22 The viruses were then transferred to a 2 mMol TRIS-HCl buffer (pH = 8.2) with 15

% ethanol by centrifuging them at 108,800 G for 8 hours five times, exchanging the solvent each

time. The buffer was prepared with highly purified water with a resistivity of (ρ =18 MΩcm) and a

total organic carbon content of less than 2 ppb which was mixed with ethanol (Aldrich 99.6 vol%)

of high purity. The ethanol was added to the pure buffer before setting the pH to suppress bacteria

growth during the experiments. The concentrations of the fd stock solutions were determined by

UV-Vis-Spectroscopy with an accuracy better than 1 % using Lambert-Beer’s law at λext = 269 nm

with αext = 3.84 cm2/mg.22 For the measurements the stock solution was diluted to the required

concentrations. The glass cells were thoroughly cleaned by immersion in a mixture of 1:1 H2O2

(30 vol%) and H2SO4 (99 vol%) for over one hour. Afterwards the cells were rinsed with ultra

pure water (ρ =18 MΩcm) and blown dry with dried N2. This procedure delivered very clean

surfaces of the sample cells free of any residual contamination. Syringes and tubing were cleaned

by sonicating them successively in acetone, ethanol and pure water for approximately half an hour,

each step.

TIRM measurements

As a first step in all experiments a very small amount of polystyrene spheres (Thermo Scientific)

was mixed with the TRIS-buffer also used for the fd viruses. This sphere solution was inserted into

the cell with a glass syringe. After having the cell filled, a suitable sphere was trapped with the

optical tweezers. On this sphere a measurement with the PMT was performed, taking 500000 in-

tensity values with a sampling rate of 500 Hz. The power of the tweezers was adjusted beforehand

8



to a level at which the particle was safely trapped, but the apparent weight force was low enough,

to allow the sphere to sample a broad range of elevations, i. e. FG,app ≈ 50 fN.

During the exchange of the solvent with the virus suspensions of different concentrations the

tweezers power was increased to a level of Ftweezer ≈ 1 pN, where the solvent could safely be

exchanged via the syringe without losing the particle. The cell was gently flushed with about 10 ml

of the new solution to make sure that there is no unwanted dilution or mixing. This procedure was

repeated until the potentials at all desired concentrations were measured. Once the measurement

series had been completed the intensity scattered by the sticking sphere I0 was recorded. For

this purpose a 0.1 M NaCl solution was pumped into the cell to completely screen electrostatic

interactions and thereby allow the particle to sediment.

Numerical calculation

To validate the use of the first order density approximation for the analysis of our data, we per-

formed numerical calculations of the depletion potentials according to Mao et al.23 The results are

displayed in Figure 2 where we plot depletion potentials induced by perfect rods versus elevations

for different rod concentrations. The symbols were calculated with Eq. 6 using Lrod = 880 nm,

Rsphere = 1.5 µm, Mrod = 1.64×107 g/mol. With these parameter the rods’ overlap concentration

c∗ = 6Mrod/πLrodNA = 0.076 mg/ml. The full lines represent second order density calculations,

which have to be performed by multidimensional numerical integration.

Third order contributions which are also discussed by Mao et al. have no significant influence

at concentrations below several tens of c∗ and are negligible compared to first and second order

contributions. The curves in Figure 2 show that up to ten times the overlap concentration there is

only a discrepancy of a few percent between first and second order calculations. This shows that

the first order approximation yields sufficiently accurate results in the concentration range we were

exploring experimentally, i. e. c≤ 0.25 mg/ml.
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Figure 2: Numerical calculation of depletion interactions acting between a flat wall and a sphere
with Rsphere = 1.5 µm, induced by rods with Lrod = 880 nm at various rod concentrations.

Results and Discussion

Measurements of the depletion potentials induced by wild type fd-virus on a R = 1.5 µm probe

sphere are shown in Figure 3. The symbols represent experimental data and the full lines are non–

linear least squares fits, which were obtained as described in the section on data interpretation.

The fit of the reference potential φre f to the data measured in the absence of fd is obtained for an

apparent weight force of FG,app = 51 fN and an amplitude of the electrostatic repulsion of A=559

kT.

It is obvious from Figure 3 that perfect agreement between experimental data and the model

function is achieved without changing the effective virus concentration from the fd–content which

was determined spectroscopically. This is a strong indication that the finite flexibility of wt–fd does

not have a significant effect on the induced depletion potential. To exclude the possibility that this

finding might be a coincidental artifact of the data analysis procedure, we performed measurements

using the Y21M as the rod species, which is a mutant of fd–virus with a persistence length that

is about 4−5 times higher than that of the wt–fd. The resulting potentials are shown in Figure 4,

where experimental data are displayed together with the best fitting model curves. In this case the

best fit of φre f to the experimental data measured in the absence of the virus is produced by an

10



Figure 3: Measured potentials between a flat glass wall and a polystyrene sphere with R=1.5 µm
for various concentrations of wild type fd–virus. Symbols represent measured data while solid
lines show the fits based on φtot(h).

apparent weight force FG,app = 84 fN and an amplitude of the electrostatic repulsion of A=213 kT.

Also here we did not find any significant deviation of the fitted effective virus concentration from

the preset value.

Minor deviations between the absolute potential values of the two sets of experiments are at-

tributed to several reasons. First, different spheres will experience different gravitational forces,

caused by variations of the spheres’ radii and/or mass densities. Second, the amplitude of the elec-

trostatic repulsion varies among different spheres, because they may have different radii and/or

surface charge densities. Third, the Debye screening length may change slightly in the course

of an experiment due to CO2 adsorption into the solvent. Finally, the amplitude of the deple-

tion potential is proportional to the sphere radius and might thus vary between two series of

experiments. To visualize these effects, we calculated the depletion potentials by subtracting

the reference potential from the experimental total potentials obtained in the presence of the

virus. The resulting data were normalized to the nominal contact value of the depletion poten-

tial φcontact(h)/kT = c f itπNaRsphereL2
rod/3Mrod as shown in Figure 5. In this representation the

depletion potentials from both types of virus fall nicely on top of each other in the range of eleva-

tions 70 nm < h < 300 nm. Only one of the curves has outliers at large separation distances. This
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Figure 4: Measured potentials between a flat glass wall and a polystyrene sphere with R=1.5 µm
for various concentrations of Y21M–virus. Symbols represent measured data while solid lines
show the fits based on φtot(h).

is certainly caused by a non–identified artifact, and not by an intrinsic property of the depletant

particles. Outside the specified range of elevations, ∆φ ≥ 3kBT for the lowest virus concentration

and ∆φ ≥ 10kBT for crod = 0.25 mg/mL. Accordingly, the statistics of data sampling is reduced

for h < 70 nm and h < 300 nm and the subtraction of the reference potential will yield unreliable

potential values.

Although the normalized depletion potentials shown in Figure 5 fall on top of each other within

experimental accuracy, there is still one weak point in comparing the data this way, because the

experiments were performed using different spheres. We therefore run one showcase experiment,

in which we first determined the reference potential, then we replaced the buffer by a wt–type

fd–solution with a concentration of c = 0.24 mg/mL, measured the total potential, replaced the

wt–virus by Y21M and measured the total potential again. Finally, we flushed the cell with 0.1

Mol/l NaCl solution to make the sphere sediment and measured I0. By this procedure, we made

sure, that we measured the two total potentials under identical conditions. After subtraction of the

reference potential we obtained the two depletion potentials shown in Figure 6, together with the

zero order density approximation. In addition, error bars are included in this figure, which were left

out in the other figures for clarity reasons. It is apparent, that the errors are minor around the most
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Figure 5: Depletion potentials normalized to their contact value φcontact for different Y21M and
wilde–type concentration (R = 1.5 µm spheres). The dashed line gives the theoretical prediction.
All data curves nicely fall on top each other with a small variation around the theory curve

probable distance, even with a very conservative error estimate as it was done here. In the elevation

range, where the subtraction yields statistically reliable results, we observe next to no difference

between the three curves. Comparing the data points to the theoretical prediction a slight deviation

is visible. This may have different possible reasons. As before non perfect referencing might

influence the pure depletion potential. Furthermore data points at higher separation distances are

less reliable due to decreased statistics. Nevertheless we may safely conclude that the different

flexibility of wt–fd and Y21M has no measurable effect on the on the depletion potential these

rods induce between a sphere and a flat wall as far as measured here. Otherwise there should be

a discernible discrepancy between the two measurements, irrespective of whether they agree with

the prediction or not. This observation is in line with an estimate of the depletion potential contact

value, based on the bent rod model.6 With the commonly quoted value of the wt–fd persistence

length, Lp ≈ 2.5 µm, this model yields a contact value which is at maximum five percent smaller

than that of a perfectly stiff rod at fixed contour length.
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Figure 6: Direct comparision between the two virus variants. Measurements performed on one
and the same sphere in one spot, keeping all experimental influences constant. There is no visi-
ble difference between the two fd-species in terms of depletion interaction. Here the theoretical
prediction for the set concentration is given as a dashed line.

Conclusion

We performed TIRM–measurements of the depletion potential between spherical probe particles

and a wall, which are induced by rod-shaped co–solutes. As depletants we used two different types

of mono-disperse virus particles, namely wild–type fd–virus and a mutant, Y21M. Both rods have

the same molar mass and rod length, but the mutant has a persistence length which is by a factor

four to five larger than that of the wild type virus. The scope of this contribution was to investigate

the effect of the rod’s flexibility on the depletion potential it exerts. Numerical calculations and

measurements prove that the analytical first order density treatment according to Mao et al. is

sufficient to describe the depletion interaction correctly up to a rod content of about 3c∗. For the

two virus species probed it has been shown that flexibility doesn’t have a measurable impact on the

depletion interaction. This indicates that wild type fd-virus is a suitable model system for stiff rods,

despite the debate about the actual value of its persistence length. In the present study we could

investigate only two degrees of flexibility. A thorough investigation with different rods showing a

broader variety of stiffness is desirable. It would be especially interesting to determine the ratio

of contour length to persistence length at which an influence of the flexibility on the depletion
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potential sets in. These investigations will become possible in the near future when a broader

range of fd–mutants will be available.24
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