001     13070
005     20240708132808.0
024 7 _ |2 DOI
|a 10.1007/s11666-010-9577-x
024 7 _ |2 WOS
|a WOS:000285421000002
037 _ _ |a PreJuSER-13070
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
100 1 _ |a Mauer, G.
|b 0
|u FZJ
|0 P:(DE-Juel1)129633
245 _ _ |a Improving Powder Injection in Plasma Spraying by Optical Diagnostics of the Plasma and Particle Characterization
260 _ _ |a Boston, Mass.
|b Springer
|c 2011
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Thermal Spray Technology
|x 1059-9630
|0 12482
|y 1
|v 20
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Powder injection parameters such as gas flow, injection angle, and injector position strongly influence the particle beam and thus coating properties. The interaction of the injection conditions on particle properties based on DPV-2000 measurements using the single-cathode F4 torch is presented. Furthermore, the investigation of the plasma plume by emission computer tomography is described when operating the three-cathode TriplexPro (TM) torch. By this imaging technology, the three-dimensional shape of the radiating plasma jet is reproduced based on images achieved from three CCD cameras rotating around the plume axis. It is shown how the formation of the plasma jet changes with plasma parameters and how this knowledge can be used to optimize particle injection.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a computer tomography
653 2 0 |2 Author
|a diagnostics
653 2 0 |2 Author
|a DPV-2000
653 2 0 |2 Author
|a plasma spraying
653 2 0 |2 Author
|a powder injection
653 2 0 |2 Author
|a TriplexPro (TM)
700 1 _ |a Vaßen, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)129670
700 1 _ |a Stöver, D.
|b 2
|u FZJ
|0 P:(DE-Juel1)129666
700 1 _ |a Kirner, S.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Marqués, J.-L.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Zimmermann, S.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Forster, G.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Schein, J.
|b 7
|0 P:(DE-HGF)0
773 _ _ |a 10.1007/s11666-010-9577-x
|g Vol. 20
|q 20
|0 PERI:(DE-600)2047715-6
|t Journal of thermal spray technology
|v 20
|y 2011
|x 1059-9630
856 7 _ |u http://dx.doi.org/10.1007/s11666-010-9577-x
909 C O |o oai:juser.fz-juelich.de:13070
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|g IEK
|0 I:(DE-Juel1)IEK-1-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)124879
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21