001     13095
005     20200402205938.0
024 7 _ |2 pmid
|a pmid:20823334
024 7 _ |2 pmc
|a pmc:PMC2935441
024 7 _ |2 DOI
|a 10.1093/bioinformatics/btq394
024 7 _ |2 WOS
|a WOS:000281714100035
037 _ _ |a PreJuSER-13095
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Biochemical Research Methods
084 _ _ |2 WoS
|a Biotechnology & Applied Microbiology
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Mathematical & Computational Biology
084 _ _ |2 WoS
|a Statistics & Probability
100 1 _ |a Qi, Y.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Semi-Supervised Multi-Task Learning for Predicting Interactions between HIV-1 and Human Proteins
260 _ _ |a Oxford
|b Oxford University Press
|c 2010
300 _ _ |a 1645 - 1652
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Bioinformatics
|x 1367-4803
|0 13881
|y 18
|v 26
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Protein-protein interactions (PPIs) are critical for virtually every biological function. Recently, researchers suggested to use supervised learning for the task of classifying pairs of proteins as interacting or not. However, its performance is largely restricted by the availability of truly interacting proteins (labeled). Meanwhile, there exists a considerable amount of protein pairs where an association appears between two partners, but not enough experimental evidence to support it as a direct interaction (partially labeled).We propose a semi-supervised multi-task framework for predicting PPIs from not only labeled, but also partially labeled reference sets. The basic idea is to perform multi-task learning on a supervised classification task and a semi-supervised auxiliary task. The supervised classifier trains a multi-layer perceptron network for PPI predictions from labeled examples. The semi-supervised auxiliary task shares network layers of the supervised classifier and trains with partially labeled examples. Semi-supervision could be utilized in multiple ways. We tried three approaches in this article, (i) classification (to distinguish partial positives with negatives); (ii) ranking (to rate partial positive more likely than negatives); (iii) embedding (to make data clusters get similar labels). We applied this framework to improve the identification of interacting pairs between HIV-1 and human proteins. Our method improved upon the state-of-the-art method for this task indicating the benefits of semi-supervised multi-task learning using auxiliary information.http://www.cs.cmu.edu/~qyj/HIVsemi.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Artificial Intelligence
650 _ 2 |2 MeSH
|a Computational Biology: methods
650 _ 2 |2 MeSH
|a Data Interpretation, Statistical
650 _ 2 |2 MeSH
|a HIV-1: physiology
650 _ 2 |2 MeSH
|a Human Immunodeficiency Virus Proteins: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Models, Statistical
650 _ 2 |2 MeSH
|a Protein Interaction Mapping: methods
650 _ 2 |2 MeSH
|a Proteins: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Human Immunodeficiency Virus Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Proteins
650 _ 7 |a J
|2 WoSType
700 1 _ |a Tastan, O.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Carbonell, J.G.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Klein-Seetharaman, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB44599
700 1 _ |a Weston, J.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1093/bioinformatics/btq394
|g Vol. 26, p. 1645 - 1652
|p 1645 - 1652
|q 26<1645 - 1652
|0 PERI:(DE-600)1468345-3
|t Bioinformatics
|v 26
|y 2010
|x 1367-4803
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935441
909 C O |o oai:juser.fz-juelich.de:13095
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISB-2
|l Molekulare Biophysik
|d 31.12.2010
|g ISB
|0 I:(DE-Juel1)ISB-2-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)124922
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21