000013127 001__ 13127
000013127 005__ 20240712100845.0
000013127 0247_ $$2DOI$$a10.5194/acp-10-11623-2010
000013127 0247_ $$2WOS$$aWOS:000285334900021
000013127 0247_ $$2Handle$$a2128/10036
000013127 037__ $$aPreJuSER-13127
000013127 041__ $$aeng
000013127 082__ $$a550
000013127 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000013127 1001_ $$0P:(DE-HGF)0$$aWerner, A.$$b0
000013127 245__ $$aQuantifying transport into the Arctic lowermost stratosphere
000013127 260__ $$aKatlenburg-Lindau$$bEGU$$c2010
000013127 300__ $$a11623 - 11639
000013127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013127 3367_ $$2DataCite$$aOutput Types/Journal article
000013127 3367_ $$00$$2EndNote$$aJournal Article
000013127 3367_ $$2BibTeX$$aARTICLE
000013127 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013127 3367_ $$2DRIVER$$aarticle
000013127 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v10$$x1680-7316
000013127 500__ $$aThe EUPLEX campaign was funded by the European Union and the ENVISAT Arctic Validation campaign was supported by the European Space Agency and the German BMBF. Furhtermore, the authors would like to thank the crew and pilots of the M55 Geophysica and all colleagues who made the campaigns a success.
000013127 520__ $$aIn the Arctic winter 2003, in-situ measurements of the long-lived trace gases N2O, CFC-11 (CCl3F), H-1211 (CBrClF2), CH4, O-3 and H2O have been performed on board the high-altitude aircraft M55 Geophysica. The data are presented and used to study transport into the lower-most stratosphere (LMS). The LMS can be regarded as a mixture of fractions of air originating in (i) the troposphere, (ii) the extra-vortex stratosphere above 400 K and (iii) the Arctic vortex above 400 K. These fractions are determined using a simple mass balance calculation. The analysis exhibits a strong tropospheric influence of 50% +/- 15% or more in the lowest 20 K of the high-latitude LMS. Above this region the LMS is dominated by air masses having descended from above 400 K. Below the Arctic vortex region at potential temperatures above 360 K, air in the LMS is a mixture of extra-vortex stratospheric and vortex air masses. The vortex fraction increases from about 40% +/- 15% at 360 K to 100% at 400 K for equivalent latitudes >70 degrees N. This influence of air masses descending through the bottom of the polar vortex increases over the course of the winter. By the end of winter a significant fraction of 30% +/- 10% vortex air in the LMS is found even at an equivalent latitude of 40 degrees N. Since the chemical and dynamical history of vortex air is distinct from that of mid-latitude stratospheric air masses, this study implies that the composition of the mid-to high-latitude LMS during late winter and spring is significantly influenced by the Arctic vortex.
000013127 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000013127 588__ $$aDataset connected to Web of Science
000013127 650_7 $$2WoSType$$aJ
000013127 7001_ $$0P:(DE-HGF)0$$aVolk, C.M.$$b1
000013127 7001_ $$0P:(DE-HGF)0$$aIwanova, E.$$b2
000013127 7001_ $$0P:(DE-HGF)0$$aWetter, T.$$b3
000013127 7001_ $$0P:(DE-Juel1)VDB1410$$aSchiller, C.$$b4$$uFZJ
000013127 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b5
000013127 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b6$$uFZJ
000013127 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-10-11623-2010$$gVol. 10, p. 11623 - 11639$$p11623 - 11639$$q10<11623 - 11639$$tAtmospheric chemistry and physics$$v10$$x1680-7316$$y2010
000013127 8567_ $$uhttp://dx.doi.org/10.5194/acp-10-11623-2010
000013127 8564_ $$uhttps://juser.fz-juelich.de/record/13127/files/acp-10-11623-2010.pdf$$yOpenAccess
000013127 8564_ $$uhttps://juser.fz-juelich.de/record/13127/files/acp-10-11623-2010.gif?subformat=icon$$xicon$$yOpenAccess
000013127 8564_ $$uhttps://juser.fz-juelich.de/record/13127/files/acp-10-11623-2010.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000013127 8564_ $$uhttps://juser.fz-juelich.de/record/13127/files/acp-10-11623-2010.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000013127 8564_ $$uhttps://juser.fz-juelich.de/record/13127/files/acp-10-11623-2010.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000013127 909CO $$ooai:juser.fz-juelich.de:13127$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000013127 9131_ $$0G:(DE-Juel1)FUEK491$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000013127 9141_ $$y2010
000013127 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000013127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000013127 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013127 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x0
000013127 970__ $$aVDB:(DE-Juel1)124976
000013127 9801_ $$aUNRESTRICTED
000013127 9801_ $$aFullTexts
000013127 980__ $$aVDB
000013127 980__ $$aConvertedRecord
000013127 980__ $$ajournal
000013127 980__ $$aI:(DE-Juel1)IEK-7-20101013
000013127 980__ $$aUNRESTRICTED
000013127 981__ $$aI:(DE-Juel1)ICE-4-20101013