000013130 001__ 13130
000013130 005__ 20240712100854.0
000013130 0247_ $$2DOI$$a10.1029/2010JD014234
000013130 0247_ $$2WOS$$aWOS:000288087500002
000013130 0247_ $$2ISSN$$a0022-1406
000013130 0247_ $$2ISSN$$a0148-0227
000013130 0247_ $$2Handle$$a2128/20618
000013130 0247_ $$2altmetric$$aaltmetric:21805356
000013130 037__ $$aPreJuSER-13130
000013130 041__ $$aeng
000013130 082__ $$a550
000013130 082__ $$a550
000013130 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000013130 1001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b0$$uFZJ
000013130 245__ $$aImpact of stratospheric water vapor enhancements caused by CH4 and H2O increase on polar ozone loss
000013130 260__ $$aWashington, DC$$aWashington, DC$$bUnion$$bUnion$$c2011
000013130 300__ $$aD 05301
000013130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013130 3367_ $$2DataCite$$aOutput Types/Journal article
000013130 3367_ $$00$$2EndNote$$aJournal Article
000013130 3367_ $$2BibTeX$$aARTICLE
000013130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013130 3367_ $$2DRIVER$$aarticle
000013130 440_0 $$03369$$aJournal of Geophysical Research$$v116$$x0022-1406
000013130 500__ $$3POF3_Assignment on 2016-02-29
000013130 500__ $$aThe authors thank Rolf Muller for very fruitful discussions and three anonymous reviewers for comments that resulted in significant improvements to the original manuscript. The study was funded by the European Commission as part of the project "A European Network for Atmospheric Hydrogen observations and studies (EUROHYDROS)" under contract 036916. Simulations were performed on the Julich Multiprocessor (JUMP) and were supported by the John von Neumann Institute for Computing (NIC).
000013130 520__ $$aPossible causes of a future increase in stratospheric H2O are increasing tropospheric methane levels and a rise in tropospheric H-2 due to leakages from a possible increased integration of hydrogen into the energy supply system. Here we quantify the direct chemical impact of potential future stratospheric H2O increases on Arctic ozone loss using the cold Arctic winter 2004/2005 as the basis for our study. We present simulations with the three-dimensional chemistry transport model CLaMS using enhanced stratospheric H2O values. Previous studies emphasized that increasing H2O concentrations cause stratospheric cooling, and some have suggested that this could significantly increase halogen-induced polar ozone loss. The impact of both increased stratospheric H2O values and decreased temperatures on simulated ozone depletion is investigated. Assuming an average increase of water vapor in the lower polar stratosphere of approximate to 0.58 ppmv (averaged over equivalent latitudes >= 65 degrees N, from 400-550 K potential temperature and from December to March) and in addition decreased temperatures (-0.2 K) yields at most 6.8 DU (approximate to 11 %) more accumulated ozone loss in mid-March for the Arctic polar winter 2004/2005 compared to the ozone loss for undisturbed conditions. The assumed H2O enhancement in future decades is in the range of current model predictions. Considering in addition the decrease of the future chlorine loading (-40 %) of enhanced H2O values (see above) yields at most 3.4 DU (10 %) of accumulated ozone loss in springtime compared to current H2O values. The impact of a potential future hydrogen economy alone (assuming an averaged increase of 0.18 ppmv H2O in the lower stratosphere) on springtime accumulated ozone loss is found to be negligible (at most 2.5 DU (4 %)) in this study.
000013130 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000013130 588__ $$aDataset connected to Web of Science
000013130 650_7 $$2WoSType$$aJ
000013130 7001_ $$0P:(DE-Juel1)VDB14612$$aFeck, T.$$b1$$uFZJ
000013130 7001_ $$0P:(DE-Juel1)129122$$aGrooss, J.-U.$$b2$$uFZJ
000013130 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2010JD014234$$gVol. 116, p. D 05301$$pD 05301$$q116<D 05301$$tJournal of geophysical research / Atmospheres$$v116$$x0022-1406$$y2011
000013130 8567_ $$uhttp://dx.doi.org/10.1029/2010JD014234
000013130 8564_ $$uhttps://juser.fz-juelich.de/record/13130/files/2010JD014234.pdf$$yOpenAccess
000013130 8564_ $$uhttps://juser.fz-juelich.de/record/13130/files/2010JD014234.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000013130 909CO $$ooai:juser.fz-juelich.de:13130$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000013130 9141_ $$y2011
000013130 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000013130 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013130 9131_ $$0G:(DE-Juel1)FUEK491$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000013130 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000013130 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x0
000013130 970__ $$aVDB:(DE-Juel1)124979
000013130 9801_ $$aFullTexts
000013130 980__ $$aVDB
000013130 980__ $$aConvertedRecord
000013130 980__ $$ajournal
000013130 980__ $$aI:(DE-Juel1)IEK-7-20101013
000013130 980__ $$aUNRESTRICTED
000013130 981__ $$aI:(DE-Juel1)ICE-4-20101013