000131882 001__ 131882
000131882 005__ 20210129211318.0
000131882 0247_ $$2doi$$a10.3389/fpls.2012.00294
000131882 0247_ $$2Handle$$a2128/4999
000131882 0247_ $$2WOS$$aWOS:000208837900288
000131882 0247_ $$2altmetric$$aaltmetric:1148397
000131882 0247_ $$2pmid$$apmid:23293646
000131882 037__ $$aFZJ-2013-01142
000131882 041__ $$aEnglish
000131882 082__ $$a580
000131882 1001_ $$0P:(DE-HGF)0$$aFriedel, Swetlana$$b0$$eCorresponding author
000131882 245__ $$aReverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk
000131882 260__ $$aLausanne$$bFrontiers Media83580$$c2012
000131882 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s131882
000131882 3367_ $$2DataCite$$aOutput Types/Journal article
000131882 3367_ $$00$$2EndNote$$aJournal Article
000131882 3367_ $$2BibTeX$$aARTICLE
000131882 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000131882 3367_ $$2DRIVER$$aarticle
000131882 520__ $$aUnderstanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein–protein or TF-gene networks.
000131882 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000131882 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000131882 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b1
000131882 7001_ $$0P:(DE-HGF)0$$avon Wirén, Nicolaus$$b2
000131882 7001_ $$0P:(DE-HGF)0$$aSreenivasulu, Nese$$b3
000131882 773__ $$0PERI:(DE-600)2687947-5$$a10.3389/fpls.2012.00294$$gVol. 3$$n294$$p1-16$$tFrontiers in Plant Physiology$$v3$$x1664-462X
000131882 8564_ $$yPublished under CreativeCommons License$$zPublished final document.
000131882 8564_ $$uhttps://juser.fz-juelich.de/record/131882/files/FZJ-131882.pdf$$yOpenAccess$$zPublished final document.
000131882 8564_ $$uhttps://juser.fz-juelich.de/record/131882/files/FZJ-131882.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000131882 8564_ $$uhttps://juser.fz-juelich.de/record/131882/files/FZJ-131882.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000131882 8564_ $$uhttps://juser.fz-juelich.de/record/131882/files/FZJ-131882.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000131882 909__ $$ooai:juser.fz-juelich.de:131882$$pVDB
000131882 909__ $$ooai:juser.fz-juelich.de:131882$$pOA
000131882 909CO $$ooai:juser.fz-juelich.de:131882$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000131882 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000131882 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000131882 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000131882 9141_ $$y2012
000131882 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000131882 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000131882 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000131882 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000131882 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000131882 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000131882 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000131882 980__ $$ajournal
000131882 980__ $$aUNRESTRICTED
000131882 980__ $$aJUWEL
000131882 980__ $$aFullTexts
000131882 980__ $$aI:(DE-Juel1)IBG-2-20101118
000131882 980__ $$aVDB
000131882 9801_ $$aFullTexts