001     131882
005     20210129211318.0
024 7 _ |a 10.3389/fpls.2012.00294
|2 doi
024 7 _ |a 2128/4999
|2 Handle
024 7 _ |a WOS:000208837900288
|2 WOS
024 7 _ |a altmetric:1148397
|2 altmetric
024 7 _ |a pmid:23293646
|2 pmid
037 _ _ |a FZJ-2013-01142
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Friedel, Swetlana
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk
260 _ _ |a Lausanne
|c 2012
|b Frontiers Media83580
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 131882
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein–protein or TF-gene networks.
536 _ _ |a 242 - Sustainable Bioproduction (POF2-242)
|0 G:(DE-HGF)POF2-242
|c POF2-242
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 1
700 1 _ |a von Wirén, Nicolaus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sreenivasulu, Nese
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.3389/fpls.2012.00294
|g Vol. 3
|0 PERI:(DE-600)2687947-5
|n 294
|p 1-16
|t Frontiers in Plant Physiology
|v 3
|x 1664-462X
856 4 _ |y Published under CreativeCommons License
|z Published final document.
856 4 _ |y OpenAccess
|z Published final document.
|u https://juser.fz-juelich.de/record/131882/files/FZJ-131882.pdf
856 4 _ |u https://juser.fz-juelich.de/record/131882/files/FZJ-131882.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/131882/files/FZJ-131882.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/131882/files/FZJ-131882.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:131882
909 _ _ |p OA
|o oai:juser.fz-juelich.de:131882
909 C O |o oai:juser.fz-juelich.de:131882
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145719
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-242
|2 G:(DE-HGF)POF2-200
|v Sustainable Bioproduction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21