001     131935
005     20210129211324.0
024 7 _ |a 10.1186/1869-0238-4-1
|2 doi
024 7 _ |a 1869-0238
|2 ISSN
024 7 _ |a 1867-4828
|2 ISSN
024 7 _ |a 2128/5005
|2 Handle
024 7 _ |a altmetric:1288080
|2 altmetric
037 _ _ |a FZJ-2013-01190
082 _ _ |a 004
100 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 0
|e Corresponding author
245 _ _ |a A data infrastructure reference model with applications: towards realization of a ScienceTube vision with a data replication service
260 _ _ |a London
|c 2013
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 131935
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The wide variety of scientific user communities work with data since many years and thus have already a wide variety of data infrastructures in production today. The aim of this paper is thus not to create one new general data architecture that would fail to be adopted by each and any individual user community. Instead this contribution aims to design a reference model with abstract entities that is able to federate existing concrete infrastructures under one umbrella. A reference model is an abstract framework for understanding significant entities and relationships between them and thus helps to understand existing data infrastructures when comparing them in terms of functionality, services, and boundary conditions. A derived architecture from such a reference model then can be used to create a federated architecture that builds on the existing infrastructures that could align to a major common vision. This common vision is named as ‘ScienceTube’ as part of this contribution that determines the high-level goal that the reference model aims to support. This paper will describe how a well-focused use case around data replication and its related activities in the EUDAT project [4] aim to provide a first step towards this vision. Concrete stakeholder requirements arising from scientific end users such as those of the European Strategy Forum on Research Infrastructure (ESFRI) projects underpin this contribution with clear evidence that the EUDAT activities are bottom-up thus providing real solutions towards the so often only described ‘high-level big data challenges’. The followed federated approach taking advantage of community and data centers (with large computational resources) further describes how data replication services enable data-intensive computing of terabytes or even petabytes of data emerging from ESFRI projects.
536 _ _ |a 412 - Grid Technologies and Infrastructures (POF2-412)
|0 G:(DE-HGF)POF2-412
|c POF2-412
|f POF II
|x 0
536 _ _ |a EUDAT - EUropean DATa (283304)
|0 G:(EU-Grant)283304
|c 283304
|f FP7-INFRASTRUCTURES-2011-2
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Wittenburg, Peter
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Reetz, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a van de Sanden, Mark
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rybicki, Jedrzej
|0 P:(DE-Juel1)144343
|b 4
700 1 _ |a von St. Vieth, Benedikt
|0 P:(DE-Juel1)128756
|b 5
700 1 _ |a Fiameni, Giuseppe
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mariani, Giacomo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Michelini, Alberto
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Cacciari, Claudio
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Elbers, Willem
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Broeder, Daan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Verkerk, Robert
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Erastova, Elena
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lautenschlaeger, Michael
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Budig, Reinhard
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Thielmann, Hannes
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Coveney, Peter
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Zasada, Stefan
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Haidar, Ali
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Büchner, Otto
|0 P:(DE-Juel1)132073
|b 20
700 1 _ |a Manzano, Cristina
|0 P:(DE-Juel1)132183
|b 21
700 1 _ |a Memon, Ahmed
|0 P:(DE-Juel1)132191
|b 22
700 1 _ |a Memon, Mohammad Shahbaz
|0 P:(DE-Juel1)132190
|b 23
700 1 _ |a Helin, Heikki
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Suhonen, Jari
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Lecarpentier, Damien
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Koski, Kimmo
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Lippert, Thomas
|0 P:(DE-Juel1)132179
|b 28
773 _ _ |a 10.1186/1869-0238-4-1
|g Vol. 4, no. 1, p. 1 -
|0 PERI:(DE-600)2541863-4
|n 1
|p 1 -
|t Journal of internet services and applications
|v 4
|y 2013
|x 1869-0238
856 4 _ |u http://www.jisajournal.com/content/4/1/1
856 4 _ |u https://juser.fz-juelich.de/record/131935/files/FZJ-2013-01190.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/131935/files/FZJ-2013-01190.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/131935/files/FZJ-2013-01190.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/131935/files/FZJ-2013-01190.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:131935
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144343
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128756
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)132073
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)132183
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)132191
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)132190
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)132179
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-412
|2 G:(DE-HGF)POF2-400
|v Grid Technologies and Infrastructures
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21