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A multiscale model for a colloid-polymer mixture is developed. The colloids are described as point
particles interacting with each other and with the polymers with strongly repulsive potentials, while
polymers interact with each other with a softer potential. The fluid in the suspension is taken into
account by the multiparticle collision dynamics method (MPC). Considering a slit geometry where
the suspension is confined between parallel repulsive walls, different possibilities for the hydrody-
namic boundary conditions (b.c.) at the walls (slip versus stick) are treated. Quenching experiments
are considered, where the system volume is suddenly reduced (keeping the density of the solvent
fluid constant, while the colloid and polymer particle numbers are kept constant) and thus an ini-
tially homogeneous system is quenched deeply into the miscibility gap, where it is unstable. For
various relative concentrations of colloids and polymers, the time evolution of the growing colloid-
rich and polymer-rich domains are studied by molecular dynamics simulation, taking hydrodynamic
effects mediated by the solvent into account via MPC. It is found that the domain size £,(f) grows
with time 7 as £4(f) oc 1"/ for stick and (at late stages) as £4(¢) o< ”* for slip b.c., while break-up of
percolating structures can cause a transient “arrest” of growth. While these findings apply for films
that are 5—10 colloid diameters wide, for ultrathin films (1.5 colloid diameters wide) a regime with
£4(t) o< 12 is also identified for rather shallow quenches. © 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4789267]

. INTRODUCTION

When flexible polymers' are added to a suspension of
non-aggregating spherical colloidal particles, the polymers
may create an entropic attraction (“depletion forces”>?) be-
tween the colloids. Here, we assume that the colloidal parti-
cles are suspended in a fluid that acts as a good solvent for the
polymers (or as a Theta solvent, so the polymers assume ideal,
random-walk-like conformations'). The colloids also have a
purely repulsive (almost hard-sphere like*) interaction at
very short distances. Such systems are model systems for the
study of collective phenomena in condensed matter, particu-
larly of phase transitions, for several reasons: (i) The inter-
action range can be tuned by choosing the molecular weight
of the polymers, and hence their size (on average, the poly-
mers form soft spherical coils which may overlap each other
with little energy penalty), while the strength of the interac-
tion can be controlled by their concentration in the solution.
(i1) The colloid particles radii are in the um range, allow-
ing direct observation of their cooperative structure forma-
tion (e.g., via confocal microscopy techniques); for instance,
interfaces between coexisting fluid phases’ can be visual-
ized on the single particle level. The dynamics of fluctua-
tions is orders of magnitude slower than that of molecular sys-
tems and therefore can often be followed in real time.”-310-11
(iii) Simple theoretical models can be formulated to describe
these systems (e.g., Refs. 2 and 12), which are very well
suited for simple approximate theories'* !4 and for computer
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simulations.'>% In fact, for a suitable size ratio ¢ = R,/R. (R,
being the radius of the soft sphere representing the polymer,
R, the radius of the hard sphere representing the colloidal par-
ticle), one predicts that a vapor-liquid type phase separation
occurs,'>!* and this has been confirmed experimentally,* 26
and both experiments?’ and simulations'®~?> have confirmed
the Ising-like critical behavior of such systems.

Since both the interface between the coexisting polymer-
rich phase (which would correspond to the “vapor” at a vapor-
liquid transition of a simple fluid) and colloid-rich phase,
and wetting layers at solid walls are easily observable,”-%!!
colloid-polymer (cp) mixtures are also well suited to inves-
tigate the interplay of finite-size, surface effects, and inter-
facial phenomena of confined fluids. Many computer simu-
lations exploring the static equilibrium aspects of such phe-
nomena are already available'232% (see Ref. 24 for a review
and further references). We recall that one can argue®* that
for colloid-polymer mixtures it is a good approximation of
reality to consider confinement by flat (hard) walls, since the
corrugation and roughness of a solid wall on the atomic scale
does not play any role for um-size colloids, unlike the prob-
lem of confinement of small molecular fluids in pores.”® The
suggestion has also been made®*?* that by coating a wall with
a polymer brush (where grafting density and chain length of
the macromolecules are suitable control parameters) an ef-
fective potential is created that selectively repels the colloids,
since at a low enough grafting density the polymers in the
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suspension may interpenetrate the polymers in the brush, and
thus tune the contact angle? at which interfaces between un-
mixed phases meet the wall. Model calculations> indicate
that in this way wetting properties of walls could be varied all
the way from “complete wetting” to “complete drying.”?°=>!

Of course, for many aspects of confined multi-component
fluids not only the equilibrium phase behavior matters, but
also the dynamics of phase separation processes.*’=¢ Such
kinetic aspects are not only relevant for various applications
(micro- and nanofluidic devices,’~*" oil recovery from porous
rocks,*’ separation processes through porous membranes,”!
etc.), but are challenging out-of-equilibrium statistical me-
chanical processes.*>#® Hence, simulation studies of phase
separation in thin films still is an active area of research.*>46
Some previous work exists performing simulation studies
with molecular dynamics (MD) methods on various models
of confined molecular fluids,*”~*° but typically in these stud-
ies neither the precise wettability conditions of the confining
walls were known, nor could hydrodynamic boundary condi-
tions (b.c.) be varied.

In the present article, we reconsider the dynamics of
phase separation processes for colloid-polymer mixtures un-
der confinement, exploring the fact that for suitable models
of such systems both bulk properties'> and wetting at walls?’
have been well characterized. At this point, we note that the
original Asakura-Oosawa (AO) model,” that was widely stud-
ied in early simulations,'** is not suitable for this purpose,
since polymers are strictly treated as ideal gas particles hav-
ing no mutual interactions, an aspect inappropriate for a MD
simulation.”®2 Therefore, an extended version of the AO
model was introduced,'>3 that we henceforth shall call the
“continuous Asakura Oosawa” (CAO) model, where poly-
mers interact with a soft, spherically symmetric, simplified
model potential (see Sec. II below). As is well-known, invok-
ing known properties for polymers in solution,® one could de-
rive such an effective potential,>* but such an approach would
complicate matters unnecessarily, since such a (more accu-
rate) “true” effective potential must depend on solvent quality,
polymer concentration in the solution, etc. Being interested in
the qualitative aspects of a generic model, we continue to use
the model proposed by Zausch et al.'> Also the colloid-colloid
(cc) and colloid-polymer interaction is not taken hard-sphere
like, as in the original AO model, but replaced by continuous
potentials of the Weeks-Chandler-Andersen (WCA) type.>
As is well-known,>¢ the idea that the colloid-colloid inter-
action can be precisely represented by a hard sphere model is
a myth rather than reality.

However, even when one aims only at a qualitative de-
scription of a generic model, describing the dynamics of this
model'? simply by carrying out MD simulations using the
interactions mentioned above, one misses an important physi-
cal ingredient: the fluid solvent creates (long range) hydrody-
namic interactions among all the colloid particles and poly-
mers. As is well-known for mixtures of small molecules as
well as for polymer blends, hydrodynamic interactions have
a pronounced effect on the dynamics of domain coarsening
in phase-separation processes.’>~® Experiments on polymer
mixtures show that hydrodynamic interactions also matter for
surface effects on spinodal decomposition.’®3” Experiments

J. Chem. Phys. 138, 054901 (2013)

on the phase-separation kinetics of colloid-polymer mixtures
in the bulk®%% have also given clear evidence for the im-
portance of hydrodynamic interactions, and the experimental
exploration of phase separation kinetics for these systems in
confined geometry has begun only very recently®>®! yielding
many interesting details which deserve further investigation.
We wish to contribute to the understanding of this problem by
computer simulation. However, since the size of the solvent
molecules is in the nm range, while the size of the colloids is
in the um range, it is impossible to perform a full scale molec-
ular simulation of interacting solvent molecules plus colloids
and polymers.

This problem can be circumvented, however, by treating
the solvent fluid in a coarse-grained manner by the multipar-
ticle collision dynamics method (MPC).®*7? In this method,
the viscosity of the solvent fluid can be tuned to a desired
value, while there are no static correlations of the effective
particles which effect the momentum transport: This is ap-
propriate, since on the um scale of the colloids the struc-
tural correlations of the fluid molecules in the solvent are
negligible.

The above description has qualitatively summarized the
main physical ingredients of the multiscale simulation model
that shall be studied in the present work. Section II now de-
scribes the model more precisely, and summarizes what is
known about its static properties, and discusses an efficient
simulation strategy. Section III reports our results, both on do-
main morphologies and on the observed domain growth laws.
A discussion of related work and the theoretical background
on the growth laws will be given whenever appropriate. Sec-
tion IV summarizes our findings.

Il. MODEL, STATIC EQUILIBRIUM PROPERTIES,
SIMULATION STRATEGY

A. A variant of the Asakura-Oosawa model
with continuous potentials

We use an extension of the AO model for colloid-polymer
mixtures where all interactions are described by continuous
potentials. Hence, MD methods based on numerical inte-
gration of Newton’s equations of motion can be straightfor-
wardly applied, using the forces computed as derivatives of
the pairwise potentials between particles. These potentials for
colloid-colloid pairs and for colloid-polymer pairs are taken
of the WCAS? form, i.e., truncated and shifted Lennard-Jones

potentials
o\ 12 e\
() - () 1]

r<r.= 21/60aﬁ

Uph. ,(r) = (1)

0, else.

Here, r is the distance between the particles and oS de-
scribes cc or cp pairs. For the polymer-polymer interaction,
we choose instead'?

3 4 5
8, [1 —10(z) +15(2) —6(2) ] ,
2
r<r.= 21/6app )

0, else.

UPP(r) =
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The parameters for the amplitudes €44 and radii o4 are cho-
sen to be the same as in the previous work, 2 namely,

0ce =10, 0,5 =09, o0,,=038 3)

and

e =10, &, =10, &, =0.0625. (4)

Hence, the radius of the polymers is about 20% smaller
than the colloid radius. We recall that a vapor-liquid type
phase separation in the original AO model occurs only if
g = R,/R. exceeds a value of about ¢ = 0.25.%1314:20 The
choice ¢, = ¢, = 1.0 sets the scale for the temperature (we
also take Boltzmann’s constant kg = 1), and 0. = 1.0 is our
unit of length. The choice ¢,, = 1/16 is clearly arbitrary (more
realistic would be a value near ¢, = 1/4)>* but was chosen for
the sake of computational efficiency.'?

When we consider the confinement between two paral-
lel walls, we choose a rectangular box geometry L, x L,
x L, with L, = L, = L and periodic boundary conditions in x-
and y-directions, while two walls are placed at z,, = £L,/2.
We also choose a WCA potential to describe the effect of the
walls, with « = (c, p), for the wall at z,, = —L_./2 it reads

explicitly as
. oo \ 12 or \O
4810 (zféuv ) - (Z*ugw ) + 1|

Zw <2 < zy +2502,

Ugan(@) = )

0 else,

and similarly for the wall at z,, = +L,/2. We choose
el =& =1and o = 0.5, o)) = 0.4. For this choice, com-
plete wetting of the walls by the colloid-rich phase is expected
for a wide range of conditions.? In the following, the distance
between the walls will be denoted as D(= L,).

In order to compare the present model to the origi-
nal AO model, one needs to introduce effective diameters
dg(a = ¢, p) such that the packing fractions 7. and 5, of col-
loids and polymers correspond to each other, with

n* = py(d%)’7/6, 6)

P being the particle number density of species «. It has been
shown in Ref. 12 that for the present choice of energy pa-
rameters dg; = 1.015570% is an accurate approximation. The
polymer density then is controlled by an appropriate choice
of the polymer chemical potential w, or, equivalently, the so-
called “polymer reservoir packing fraction”?3 12714

n, = exp(up/kpT )(dly) ' /6. @)

B. Static phase behavior of the model

As has been amply documented in the literature, the
static equilibrium phase diagram of such models is most
effectively obtained from grand-canonical Monte Carlo
simulations,’>>"73 using cluster moves'*?° to sample 7. as
function of the colloid chemical potential w at fixed ), over
a wide enough range to cross the coexistence curve. Close to
phase coexistence with f& near jt¢oex, the probability distribu-
tion P,y r(n.) exhibits two maxima that correspond to the co-
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FIG. 1. Free energy function AF(n.)/kgT plotted vs. n. for a quasi-two-
dimensional system, choosing linear dimensions L, = 20, L, = 60 and D
= 1.5, for three choices of 17;, as indicated. In all these cases, u was ad-
justed to feeoex (Which depends on n;, of course'®2%). The curves for the
two smaller values of 7, where moved upward by arbitrary amounts, for
better visibility. Note that the choice Ly = 3L, has advantages for the es-
timation of the interfacial tension, because then the two interfaces (of area
A = LD) are well separated along the y-axis, and hence do not interact with
each other.

existing polymer-rich and colloid-rich phases'*?’ (V = L*D
is the volume of the system). Note that for the actual compu-
tation of this probability distribution one uses methods such
as successive umbrella sarnpling,74 and (coex then is found
from the “equal weight rule”,”? i.e., the areas underneath the
two peaks describing the coexisting phases are equal. From
such a calculation, one can extract the effective free energy
function F'/kpT = —1In P,y7(n.) taken for t = pcoex. An
example relevant for the present study is given in Fig. 1.
Here, the wall separation was chosen so small that in the z-
direction no two colloids (nor a colloid-polymer pair) would
fit into the system anymore, when they have the same x, y-
coordinates, and hence in this case of extreme confinement to
an ultrathin slit the configuration is quasi-two-dimensional.
Such data are needed to obtain an estimate for the interfa-
cial tension y, which can be extracted from the free energy
excess AF/kgT in the flat horizontal part in the center of the
distribution as’”

y =(DL)"'AF/(2kgT). ®)

Note that a factor 1/kgT has been absorbed in y as well,
and a factor 1/2 occurs because there are two interfaces and
the normalization of AF must be such that AF = 0 in the
minimum. This interfacial tension is a central driving force
for the domain coarsening in the latest stages of phase sep-
aration kinetics,’23¢ and hence a calculation as shown in
Fig. 1, which yields both the compositions 1Y, n¢ of the
coexisting vapor-like and liquid-like phases of the unmixed
colloid-polymer mixture from the positions of the minima,
and y from the maximum in between, is a tedious but
necessary prelude to a study of phase separation kinetics.
From Fig. 1, we see that even for 7, as large as 1), ~

the maximum in the center is very small, so that under
such conditions the system is still near its critical point, and
Eq. (8) would require the use of very large linear dimen-
sions, which is very difficult. For 17; = 5.078, however, it is
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FIG. 2. Phase diagram of the CAO model, comparing the system in the bulk
(taken from Ref. 12 shown by crosses) and in the thin film geometry, confined
by two planar walls a distance D apart, for D = 5 and D = 10 (as indicated in
the figure). Several linear dimensions of Ly = L, = 6.735, Ly = L, = 10 and
L, = 8, Ly = 20 were used to exclude noticeable finite-size effects. Symbols
indicate the colloid packing fraction in the polymer-rich phase (left branches)
and in the colloid-rich phase (right branches).

clear that y is appreciably different from zero, so one is then
far away from criticality, and hence the correlation length
of volume fraction fluctuations in equilibrium in any of the
pure phases is small, and the data should not be affected by
finite-size effects due to the finite values of the lateral linear
dimensions.

This example illustrates how we obtain the phase di-
agrams in the plane of our control variables n), and 7.
(Fig. 2). The data of Fig. 2 were all taken from the locations
of the corresponding minima of AF(n,.), similar as illustrated
in Fig. 1. Of course, the two branches of the coexistence curve
(the polymer-rich phase, left branch, corresponds to the vapor
phase of a simple fluid, the colloid-rich phase, right branch,
to the liquid phase) are expected to merge at the critical point.
However, a study of the critical region would require a finite-
size scaling analysis,’”>7® and this is out of the scope of the
present study. In Fig. 2, only such data are included for which
lateral finite-size effects are still negligibly small (on the scale
of the figure). Of course, this calculation does not only yield
n. for both coexisting phases, but the corresponding values
of the polymer volume fraction as well. With this informa-
tion the phase diagram in the plane of density variables (1,
n.) can be constructed (Fig. 3). For a phase diagram where
the ordinate is an intensive thermodynamic variable (such as
1> Fig. 2, which is related to u,) the tie lines connecting
the two coexisting phases must be horizontal and hence the
critical point is an extremum (in our case a minimum) of the
coexistence curve (Fig. 2). However, the tie lines in Fig. 3
have nontrivial angles with the coordinate axes; no particular
symmetry exists for phase diagrams when both variables are
densities of extensive variables, of course. With the present
simulation methodology particle numbers N, and N, of poly-
mers and colloids of the order of a few thousands suffice to
yield essentially the phase diagram that would result in the
thermodynamic limit; but for the simulations of phase separa-
tion kinetics we shall need particle numbers in the range from
several hundred thousands to a million.

J. Chem. Phys. 138, 054901 (2013)
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FIG. 3. Phase diagram of the confined CAO model in the plane of variables
polymer packing fraction 7, (ordinate) versus colloid packing fraction 1,
(abscissa), for D = 5 (a) and D = 10 (b). Crosses show the corresponding
bulk data (taken from Ref. 12). The broken straight lines indicate the tie lines
connecting coexisting phases. Arrows indicate the quenches (performed via
reduction of the volume at constant particle numbers N, and N, of colloids
and polymers, respectively, for different ratios N./N,) that will be discussed
in Sec. III.

C. Simulation strategy to simulate quenching
experiments and incorporating hydrodynamic
interactions

We have also indicated by arrows the volume quenches
that we consider in Sec. III to prepare initially unstable homo-
geneous states inside of the coexistence region (which means
above the coexistence curve in Fig. 3). Reducing the volume
at constant particle number corresponds in Fig. 3 to a straight
line passing through the origin, the slope of the straight line
being given by the ratio of the particle numbers, N,/N.. Exper-
imentally such a quench could be performed by moving the
confining walls with a piston against each other until the de-
sired distance is reached, keeping the solvent density constant
via an outlet covered by a semipermeable membrane, which is
impenetrable for both colloids and polymers only. Of course,
also other types of quenches are conceivable (one could keep
the volume and the number of colloids N, as well as the num-
ber of solvent molecules constant, and add polymers to the
solution, producing an initially unstable homogenous state by
stirring the suspension), but are out of consideration here.

In the simulation, the quench is actually performed by a
sudden reduction of the linear dimension L at constant D, by
rescaling the particle coordinates. Of course, initially some
particles will strongly overlap, leading to numerical instabili-
ties of the MD algorithm during the very first time steps due
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to the huge forces that drive the particles apart. This problem
requires special treatment, restricting the maximum value of
the force during the first few time steps artificially. Since the
solvent particles act as a very efficient thermostat, this prob-
lem automatically disappears after a few time steps. Since an
instantaneous volume quench is an idealization (in an experi-
ment, a piston can only be moved with a finite velocity), and
we are interested in the dynamics of the system only on time
scales that are many orders of magnitude larger than a single
time step, this technical difficulty does not matter at all. Note
that we keep the solvent density constant, by simply deleting
the appropriate number of solvent particles. As a MD algo-
rithm, the well-known velocity Verlet code was used.’*>? In
the MD runs, the masses of polymers and colloids are set to
m. = m, = 1 (thus, the time unit 7yp = O ee(melec)? =1 as
well). Of course, in reality m. >> m,, but the present choice is
made because it is computationally more efficient.

We set the MPC cell size to a = 0.50.. = 0.5. Hence,
there are typically many polymers (they are allowed to over-
lap) in a MPC cell, but only a single colloid. This choice al-
lows us to study hydrodynamic effects already on rather small
scales of a few cell sizes.

The stochastic rotation dynamics®” version of the MPC
algorithm is adopted, where the fluid dynamics proceeds in
two steps, a streaming and collision step. In the streaming
step, the particles move ballistically during the time 7.y,
denoted as collision time. In the collision step, MPC par-
ticles are sorted into cubic collision cells of side length a.
The interaction between the particles within such a cell is
achieved by the rotation of their relative velocities with re-
spect to the center-of-mass velocity of a cell around a ran-
domly oriented axis by an angle «. The orientation of the axis
is uniformly chosen and independent for every cell and col-
lision step. Thereby, mass and momentum are conserved on
the collision cell level. The discretization of space leads to
a violation of Galilean invariance, hence, a random shift of
the collision lattice is applied.%> The coupling between the
solvent and colloid and polymer particles is established in
the collision step, where these particles are included in the
MPC collision.®*¢7-9%.72 Here, their momenta are taken into
account in the calculation of a cell’s center-of-mass velocity.
Since m. = m,, colloids and polymers are treated as identical.
Of course, on the scale of nanoseconds to microseconds col-
loids and polymers have a very different dynamics; however,
being interested in larger times only, the Stokes-Einstein re-
lation implies diffusive dynamics for both particle types, con-
trolled by solvent viscosity and particle radii. The solvent
number density controls the compressibility of the MPC sol-
vent. A high value of this parameter, therefore, approximates
better an almost incompressible real solvent than a low value,
but, of course, the computational effort is increased. Here, a
solvent number density of p{ = 10 per cell was chosen which
leads to p; = 80 per unit volume, and the mass given to a
solvent particle was m; = 0.025 (leading to a solvent mass of
2 per unit volume). We use the cell-level canonical Maxwell-
Boltzmann-statistics thermostat,”® which has a high perfor-
mance and acts very strongly which is an important ingredient
in practice to stabilize the system directly after the quench.
The coupling between the embedded particles (colloids and

J. Chem. Phys. 138, 054901 (2013)
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FIG. 4. Shear viscosity n of the pure solvent as a function of the mean free
path X, estimated from a study of Poiseuille flow between walls (open circles)
or inside of a cylinder (open diamonds), implementing stick boundary condi-
tions at the walls.”” The curve shows the corresponding prediction from ki-
netic theory®3-% for this case.”” The full symbols highlight the choice made
for the present simulations of phase separation kinetics, including also the
estimates of the viscosities in the pure coexisting phases.

polymers) and the solvent is performed by simply including
the center of mass of the colloids and polymers in the collision
step of the MPC algorithm.

Choosing then a collision time step T, = 46 = 0.008,
8t = 0.002 being the step of the MD integrator, and the
rotation angle o = 90", one obtains a mean free path A
= Teonv/ kT /(msa?) ~ 0.1 and the viscosity of the pure sol-
vent n = vps ~ 5.4 (v is the kinematic viscosity in units of
VkgTa?/m).”" Figure 4 shows a plot of the solvent viscos-
ity as function of A, including also the estimates of the vis-
cosities that result for the two coexisting bulk colloid-rich
and polymer-rich phases. These estimates were obtained from
studying Poiseuille flow velocity profiles across the slit when
a uniform force parallel to the walls is added to the particles,
for the case of stick boundary conditions at the walls. Unlike
recent studies of phase separation of hexadecane and carbon
dioxide,*"® where a strong dynamic asymmetry reminiscent
of “viscoelastic phase separation”’’ is possible, we find that
the viscosities of the two coexisting phases are rather similar,
despite the strong asymmetry in their static correlations.'?

An interesting issue is to convert our dimensionless num-
bers, such as a shear viscosity n & 5i/mkgT /a’ of our sol-
vent, Fig. 4, to real systems. Of course, in real systems the
colloid radius R, may vary typically from 0.2 um to 1.0 pm,
and hence also the characteristic times Ty of the diffusive
motion of the colloidal particles, defined as Tz = RC2 /6D
= R2n/(kgT), vary from about 61/Pa~760n/Pa at T = 300
K, when the Stokes-Einstein relation is invoked. Assuming a
viscosity of the solvent of 1073 Pas, as is typical for a low-
molecular weight organic solvent, this translates into times
from 0.006 s to 0.76 s. On the other hand, in our simulation we
have chosen units such that the colloid diameter o, = 1, &,
= kgT = 1, and the colloid mass m. = 1, and hence the time
scale of a molecular dynamics step Typ = Occ(e/Ecc)'/?
= 1. When we restore here physical units using m,
= polw/6, where p ~ 2 x 10% kg/m’ is the mass density
(e.g., for silica particles), we find that typ corresponds to
5x 10™* sand 107% s for o, &~ 10 mand 2 x 1077 m,
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FIG. 5. Snapshot of the colloids and polymers during the demixing process
visualizing the three different length scales: the point-like solvent particles
(shown in blue), the colloids and polymers (shown in yellow and black re-
spectively) as well as the length scale of the colloid-rich and polymer-rich
domains. The snapshot corresponds to an ultrathin film of thickness D = 1.5
at n;, = 5.078. For a clearer view on the large domains, a layer containing
many solvent particles was removed from the top. Solvent particles inside
the colloids and polymers are also not visible.

respectively. Hence, we obtain characteristic times of the or-
der of g = 1031yp for the above range of colloid radii. On
the other hand, the MPC viscosity n ~ 5/mkzT /a* leads
to a characteristic time tp = nRS’n /(kpT) =~ typ. Hence, we
obtain a speed-up of the motion of a colloidal particle by three
orders of magnitude in comparison with the real system. Of
course, this choice of a significantly smaller viscosity n (in
comparison with the real system) is dictated by the need of an
efficient simulation algorithm.

Since we expect a complex behavior describing the lin-
ear dimension £4(¢) of the growing domains, with £,4(f) > o .
in the later stages of the phase separation resulting from the
quenches indicated in Fig. 3, we need to simulate systems
with very large linear dimensions L parallel to the walls,
to avoid finite-size effects. We have chosen L = 256 for
D =5 and D = 10 (and occasionally even L = 512 for D
= 1.5) throughout. In order to provide a visual impression
of such a phase separating system on the particle level, Fig.
5 shows a typical snapshot. To carry out such a simulation
of a very large system over several orders of magnitude in
time (more than 10* MD time units), a fast code implemen-
tation for the massively parallel supercomputer HERMIT®?
was developed, running the code on up to 4096 processors of
this CRAY XE6 machine in parallel (more details about the
performance and parallelization model are given in the Ap-
pendix).

J. Chem. Phys. 138, 054901 (2013)

‘We end this section with a comment on the hydrodynamic
boundary conditions that the solvent particles experience at
the walls. As is well-known,®*~70 via appropriate rules for the
momentum change when solvent particles are reflected at the
walls one can straightforwardly implement perfect slip or per-
fect stick boundary conditions. In the slip case, hydrodynamic
interactions between the growing domains are not screened,
while in the stick case backflow of particles near the walls
is drastically reduced. Hence, we expect that on large length-
scales hydrodynamic interactions are progressively screened
out the smaller the wall distance D. Note that the slip bound-
ary condition is simply obtained by specular reflection of the
solvent particles at the walls, while the stick boundary con-
dition results from “bounce back” reflections. Also partial
slip could be realized®' but has not been implemented here.
It is also possible to switch off the hydrodynamic interac-
tions completely. Instead of the explicit solvent particles of
the MPC method, in each MPC cell a momentum drawn from
a Maxwell-Boltzmann distribution with zero mean and vari-
ance o2 = m;MkgT (M is the number of particles per cel)®? is
used. In this way, thermal fluctuations via this thermostat are
still included.

lll. SIMULATION RESULTS ON PHASE
SEPARATION KINETICS

A. Extracting characteristic lengths £4(t)
describing domain growth

In quenching simulations of binary fluids confined into
thin films, it is known from previous studies of related
models*’™ that during the early stages of the time evolu-
tion after the quench, a complicated interplay between phase
separation in the z-direction across the film (due to the possi-
ble formation of precursors of wetting or drying layers) and
the coarsening of domains that extend over large distances
in the lateral (x, y)-directions occurs. In the present study, the
stages of this lateral coarsening is our main focus. For this rea-
son, the regions near the walls (in the case of thin films with
D =5 and D = 10) are excluded from the analysis, in order
to eliminate the effect of these wetting or drying layers. For
instance, for the wall distance D = 10, seven slices with a
width of 0.5 in the range z € [—1.75, 4+1.75] were used. In
each slice, a quasi-two-dimensional pair correlation function
is calculated taking only x- and y-components of the parti-
cle positions into account. The seven resulting pair correla-
tion functions are then averaged. For D = 5, only three such
slices of width 0.5 were used. Figure 6 shows typical data
for this radial pair correlation function for the middle quench
shown in Fig. 3(a), which is performed for n,/n. ~ 2.3 and
thus almost passes the critical point. Note that for this choice
the quench leads to a state where both colloids and polymers
are in the middle of the miscibility gap, which would be at 7,
= (1! + nf)/2and n, = (0}, + n)/2 since the two end points
of the tie line in Fig. 3 are (n2,n%) and (n{, n%). This is
the analog of the “critical quench” in models such as the
kinetic Ising model*>3® or the symmetric binary Lennard-
Jones mixture,*® where quenches through the critical point
(in the bulk) automatically ensure equal amounts of both
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FIG. 6. Radial pair distribution function g(r, 7) of the colloids in lat-
eral direction (r = /x2+ y2) for D = 5 at a quench to the state with
(n?, ny,) = (0.0234,0.775) and (nf, nf,) = (0.350, 0.0239). Three times af-
ter the quench are shown, as indicated. Arrows indicate the choice of r(7),
see text. These data refer to the choice of stick boundary conditions.

coexisting phases throughout the phase separation process.
We see in Fig. 6 the typical oscillations of g(r) at small dis-
tances, resulting from the structure that is formed by rather
dense packing of (almost) hard particles. However, while in
equilibrium these oscillations decay rather fast and g(r) = 1
when r exceeds a few colloid diameters, we see here a large-
scale structure developing. g(r, #) develops a shallow mini-
mum at r = ryin () where g(rmin(?), ) < 1, and this minimum
position moves outward to larger and larger r as t — oo. Due
to the features of this shallow minimum and statistical noise
in the data, it would require a very large computational effort
to locate the minimum precisely; however, it is much easier
to obtain the location of the second intersection of g(r, £) with
the horizontal line at unity, and hence we take this intersection
as a measure of the domain size,

glr=ra@),t)=1, £4@t) =2.5ra(). ©))

Here, the factor 2.5 is introduced because then £,(f) approx-
imately coincides with £,,(f) = 2m/q,,(f) extracted from the
peak of the structure factor. It also would be possible to
consider a two-dimensional Fourier transformation S(g) of
the colloid-colloid correlations and locate the position g,,(f)
where the (circularly averaged) structure factor S(g) has its
maximum.*>-3% However, since S(g) is not self-averaging,’
such data typically are much more noisy than £,(¢) as defined
in Eq. (9),%77-8 and hence shall not be reported here.

B. Growth behavior for films of several colloidal
diameters in width

Being interested in the influence of hydrodynamic in-
teractions on phase separation, we start by presenting a se-
ries of typical snapshots of the time evolution of the domain
configuration (Fig. 7), for cases where slip or stick bound-
ary conditions were used, and for the case where hydrody-
namic interactions were completely switched off (by the use
of a cell-wise momentum drawn from a Maxwell-Boltzmann
distribution, see Sec. II). As expected, right after the quench
(t = 12) hydrodynamic interactions have no effect, the sys-
tem is still essentially homogenous, apart from small-scale

J. Chem. Phys. 138, 054901 (2013)

FIG. 7. Snapshots of the demixing process, showing times ¢ = 12 (a), 1200
(b), 12000 (c) and 29000 (d) MD time units after the quench. Only xy-
coordinates of the polymer positions of a 256 x 256 x 5 system are shown
as black dots (the colloids are shown in yellow). The data are for the “criti-
cal quench” as characterized in Fig. 6, and refer to slip boundary conditions
(left), stick boundary conditions (middle) and switched-off hydrodynamics
(right).

packing fraction inhomogeneities. At the time ¢ = 1200, in
all three cases the typical irregular percolating seaweed-like
structure has formed, familiar from many studies of kinetic
Ising models, time-dependent Ginzburg-Landau models or
symmetric binary mixtures.*>=%4%78 But already at these in-
termediate times it is obvious that the model without hydro-
dynamics evolves much slower. Of course, this conclusion
is fully expected from the general knowledge about hydro-
dynamic effects in fluids and fluid mixtures,** and for spin-
odal decomposition in the bulk a regime where £,(f) grows
linearly with time® in favorable cases is reached rapidly.®¢
This linear growth law has also been demonstrated experi-
mentally for colloid-polymer mixtures.’®> Different growth
laws were predicted by Dhont,%” but apply at best at in-
termediate stages. Also when a phase-separating thin film
is embedded in a bulk (three-dimensional) fluid, hydrody-
namic effects are well documented.®® However, for confined
films*»47 and in the strictly two-dimensional case’® 8%
the domain growth laws in the presence of hydrodynamic
interactions have remained controversial. Without hydrody-
namic interactions, one expects on the basis of the Lifshitz-
Slyozov evaporation-condensation mechanism, where large
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FIG. 8. Domain size £,4(¢) vs. time ¢, for the “critical quench” of Figs. 6 and 7
in the film of thickness D = 5, and the three choices of dynamics: slip bound-
ary conditions, stick boundary conditions, and switched-off hydrodynamics.
Straight lines illustrate growth exponents of 1/3 and 2/3, respectively, on this
log-log plot.

droplets grow on the expense of smaller ones, a growth law
L4(t) o '3, irrespective of dimensionality.>=%8 In a fluid,
Stokes diffusion of droplets and their coagulation®”-°! implies
£4(f) o< 113 in d = 3 as well, while £4(r) o 2 in d = 2. The
latter law has also been proposed in Ref. 92. However, it has
been pointed out’®* that both in d = 2 and d = 3 the ultimate
growth law should be ruled by a growth exponent of 2/3,

if L4(t) > i = 1*/(pY). (10)

Here, the “inertial length” ¢;, needs to be exceeded (here, p
is the total fluid density). This growth law should apply when
the inertial term in the Navier-Stokes equation describing the
fluid hydrodynamics dominates over the viscous part.3* 9%
So far, there exists no experimental evidence for Eq. (10) yet,
to the best of our knowledge. But the possibility has also been
raised that different measures of the structural inhomogeneity
in d = 2 evolve with different growth exponents® invalidating
the idea that phase separation kinetics in d = 2 is ruled by a
simple scaling description with a universal growth exponent.
In any case, Fig. 7 shows that for the system studied here full
hydrodynamic interactions produce a much faster growth, and
in the late stages also a change from the interconnected mor-
phology of the domains to almost circular domains occurs.

When we analyze now the growth laws resulting for
the system shown in Fig. 7 for £,4(¢) vs. t (Fig. 8), we see
that both the case without hydrodynamics and with stick
boundary conditions shows a very slow, transient growth for
£4(r) < 10, while for £,(t) > 10 the effective exponent is
close to 1/3. This finding could be interpreted as the Lifshitz-
Slyozov mechanism to apply in both cases, but the diffusion
of the particles from the smaller domains to the larger ones is
somewhat speed up, in a fluid in which hydrodynamic interac-
tions are screened at large distances due to the stick boundary
conditions at the walls. Most interesting, of course, is the be-
havior for the slip boundary condition, where the growth ex-
ponent 2/3 indeed can be observed for about a decade in time
(10° <t < 10*), before a crossover to a slower growth (*1/2)
occurs. This crossover goes along with the crossover of the
morphology from interconnected almost percolating struc-
tures to well-separated domains.

24(1) o 123,
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FIG. 9. Two-dimensional velocity autocorrelation functions plotted versus
collision time steps T = 0.008 on a log-log plot, for various wall distances
D and boundary conditions, as indicated. Full symbols mark negative values,
i.e., an anticorrelation of the velocity over time.

These interpretations are supported by a direct study
of velocity autocorrelation functions of the fluid particles
for stick or slip boundary conditions in very thin films
(Fig. 9). Indeed, for the slip case we observe the long time tail,
C;’(v) oc t~!, characteristic for a fluid in d = 2. With stick
boundary conditions, the velocity correlations at late time are
progressively screened as D becomes smaller. Note that the
data of Fig. 9 were taken in a pure fluid system in equilibrium,
no colloids or polymers being present. The differences be-
tween the autocorrelations become pronounced on time scales
of order 1007 or larger. For the solvent viscosity under con-
sideration with a mean free path of A ~ 0.1, this corresponds
to a length scale of the order of 10 which is the length where
the domain growth laws start to exhibit significant differences
between the stick and slip case (Fig. 8).

It remains to comment why in the case where hydrody-
namic interactions are completely switched off the 1/3 growth
exponent sets in only after a very long transient regime in Fig.
8. In order to test this behavior, we have repeated a simulation
of this case where the density of fluid particles was taken an
order of magnitude smaller, which reduces the fluid velocity
and thereby accelerates the demixing process: then’’ indeed
the £(f) o t'3 growth law is observed earlier. Thus, the inter-
pretation for the slow crossover seen in Fig. 8 simply is that
for the case without hydrodynamics the friction due to the
high-density solvent particles slows down the diffusive mo-
tion of the colloids and polymers.

Both for film thickness D = 5 and D = 10, we observe
for times ¢ up to about + = 10> MD time units slow tran-
sients, which show up with a rather pronounced curvature of
the function £4(7) vs. ¢ in the log-log plot. It is then a natu-
ral question to ask to what extent this behavior might corre-
late with the formation of colloid-rich precursors of wetting
layers at the walls during these stages, as observed in simula-
tions of phase separation of molecular systems under similar
conditions.*™

To answer this question, we show in Fig. 10 snapshots
of the early stages of quench 1 (see Fig. 3(b)), where side
views of a slice of thickness § = 8 of the film are shown
for six times as indicated. Figure 10(b) shows additionally
the top view (xy-plane) of the domain structure at MD time
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FIG. 10. Early stages of the demixing process for quench 1 in the system
with wall distance D = 10 and slip boundary condition. (a) Side view on
a center slice of width 8 for several times: (from top to bottom) 228, 540,
936, 1224, 1512, 6306. Here, colloids are represented as black dots, while
the polymers are not shown. (b) Top view of the system at time r = 1512
where at the left only the colloids are shown as black dots and at the right
only the polymers are shown as black dots.

t = 1512 for both the colloids (left) and polymers (right). In-
deed, for times ¢ > 1000 one can distinguish well-separated
polymer-rich and colloid-rich domains, and in the side views
there is a clear evidence that the interfaces separating these
domains are not just running straight from one wall to the
other, but exhibit a curved meniscus, such that colloids get
enriched at the walls. This is expected, since for a bulk sys-
tem (D — oo) for the chosen complete wetting conditions, the
walls would be coated by colloid-rich wetting layers through-
out (which cannot happen in the considered very thin films,
of course). However, this surface enrichment of colloids at
the walls is responsible for the fact that there is a clear major-
ity of the polymer-rich phase in the central slice near z = 0 for
the “critical” quench considered here. The colloid-rich phase
in the central slice looks like an assembly of many discon-
nected droplets, while the polymer-rich phase clearly perco-
lates. This partial phase separation between polymers and col-
loids in the z-direction builds up gradually at times ¢ < 1000
after the quench, and is one reason for the slow transient for
the lateral domain growth. Similar observations have been
made for other quenches.

Having identified physical reasons for the slow transient
seen in the variation of £,(¢) in Fig. 9, we discuss a phe-
nomenological analysis®® which allows one to better identify
the asymptotic growth law. This method is based on the con-
cept of an offset length /;, which is subtracted from £,(¢) to
define the new length scale ¢’ = £,(t) — ;. This offset length
is not an arbitrary fit parameter, but defined such that the ef-
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FIG. 11. Reduced average domains size ¢'(f) = €4(1) — £, for the system
with wall distance D = 5 for all three b.c. (compare with Fig. 9).

fective time-dependent exponent o,

_dlnd'(n) 1
o= dlnt (an
is essentially independent of ¢ for large . It turns out that for
our model this condition is roughly fulfilled (we note that es-
timation of o, by numerical differentiation of data as shown
in Fig. 16 involves appreciable statistical errors) if [; = 2.5 is
chosen. This value is still a microscopic length of the order
of the range over which the correlation function in Fig. 6 still
exhibits the typical packing oscillations. Note that the same
value applies irrespective of the presence of hydrodynamic in-
teractions and the choice of boundary conditions. Therefore,
we consider this choice of /; as reasonable. Figure 11 shows
that now the simple diffusive growth (no hydrodynamic inter-
actions) is compatible with the relation £'(¢) o< /3 over three
orders of magnitude in time. For the case where hydrody-
namic interactions are present, we have a slightly larger ef-
fective exponent in the case of stick b.c., while for the case
of slip b.c. the two crossovers are still present, as in the orig-
inal data (Fig. 9). We recall that the £/(¢) oc £** law can only
be found when £,(f) exceeds the inertial length, so that a sin-
gle exponent for £4(¢) or £/(¢) over the whole range of times
cannot be expected and that the slow-down from ¢ &~ 5000
on is due to the change in pattern morphology. We also note
that the behavior for films with such mesoscopic thickness as
D =5 or D = 10 may be complicated, since the system is in a
sense in-between dimensionality d = 2 and d = 3 with respect
to the correlations.

Figure 12 illustrates the effect of variation of relative con-
centration of the polymer-rich and colloid-rich phases. As
shown by the snapshots, both for 25:75 and for 75:25 rela-
tive concentrations one has a droplet morphology, with either
a colloid-rich droplets phase on a polymer-rich background,
or vice versa. Although the viscosities of the pure polymer-
rich and colloid-rich phases are not completely identical, the
curves £4(7) vs. t almost coincide. Despite the presence of hy-
drodynamic interactions in the case of slip boundary condi-
tions, the growth law is the same as that of a system with
symmetric composition (50:50) but with stick rather than slip
boundary conditions.
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FIG. 12. (a) Domain size £4(¢) vs. time ¢, for two off-critical quenches
with relative concentration 75:25 (L) and 25:75 (R) of the polymer-rich and
colloid-rich phases, studied with slip boundary conditions for wall distance
D = 10. For comparison, the system with 50:50 concentrations (but studied
with stick rather than slip boundary conditions) is included, to show that all
these systems evolve with a growth exponent of about 1/3 (indicated by the
straight line). (b) Corresponding snapshots for the two quenches (L,R), as
described in part (a) and indicated also in Fig. 3(a), for time t = 4000 and ¢
= 16000.

Next, we consider the effects of film thickness on the
growth behavior. For D = 10 several quenches varying the rel-
ative concentrations of both phases were made (as indicated
already in Fig. 3(b)). Since for this larger value of D more
pronounced wetting layers of the colloids form at both walls,
the nominally critical quench (at symmetric 50:50 composi-
tion) actually leads to a droplet morphology of the colloid-
rich phase already during the early stages (Fig. 13(a), de-
noted as quench 1). For a significantly higher colloid fraction
(quench 2 in Figs. 3(b) and 13(a)), the colloid-rich phase stays
percolating throughout the time evolution, but now it is the
polymer-rich phase which shows a transition from an inter-
connected morphology to droplets (Fig. 13(a), middle part).
It turns out that in the time evolution of £,(¢) this leads to a
transient “arrest” of the growth, exemplified by a sharp kink
in the £,(7) vs. t log-log-plot. As a caveat, however, we men-
tion that these data (Fig. 13(c)) refer to a single realization of
the system only; one might expect that taking averages over
many independent time realizations, this break up of the inter-
connected structure will not occur at precisely the same time
in the different samples, and so the kink will be smoothed
out. For a somewhat smaller colloid fraction (quench 3 in
Figs. 3(b) and 13(a)), the interconnected character of the
structure persists, and then the time evolution of the growth at
late times is well compatible with the %3 law (Fig. 13(c)). It
turns out that for the quantification of the morphology of the
patterns it is useful to consider the Euler characteristic.”®°
For this purpose, a mapping on the two-dimensional Ising
model is performed, introducing (virtual) subsystems of size
4 x 4, in which the average order parameter is computed,
and put to one if it exceeds ('(¢) + n‘(¢))/2 and equal to
zero if it is smaller (for either kind of particles, colloids or
polymers).'%* In this way, every configuration of a slice paral-
lel to the walls can be reduced to an arrangement of droplets
and holes. Every droplet contributes with x = 1, every hole
with x = —1, and a bicontinuous structure leads to y = 0.
For each configuration, the average Euler characteristic can
be computed in this way. The Euler characteristic for both
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FIG. 13. (a) Snapshots at time = 1500 (upper row) and at time t = 6700
(lower row) for the three quenches 1, 2, 3 shown in Fig. 3(b). Only the poly-
mers are shown, as black dots. (b) Average Euler characteristic of colloids
X (1), upper part, and of polymers, x ,(¢), lower part, plotted vs. time, for the
three quenches 1, 2, 3 shown in Figs. 3(b) and 13(a). All runs have been made
with slip boundary conditions. (c) Domain size £,4(¢) on a log-log plot versus
time, for the three quenches of Figs. 3(b) and 13(a). Straight lines illustrate
the growth law exponents 2/3 and 1/3, as indicated. System sizes were 256
X 256 x 10 throughout.

colloids x.(#) and polymers  ,(¢) is shown in Fig. 13(b), and
these data confirm that it is quench 3 that has both y .(#) and
X p(t) near zero for large ¢. At time ¢ > 700 the hole-droplet
symmetry between the colloid-rich phase and the polymer-
rich phase becomes visible in the Euler characteristic, indicat-
ing that the subsystems used for the mapping onto the Ising
model are distinctively smaller than the average domain size.
From this time on, the order parameter peaks in the probabil-
ity distribution function of each subsystem are clearly distin-
guishable and hence, allow for a precise decision whether this
subsystem is mapped to the value 1 or 0, respectively.

C. Ultrathin quasi-two-dimensional films

Most illuminating is the study of an extremely thin film of
thickness D = 1.5, which yields insight into the strictly two-
dimensional behavior of the model. We choose here a par-
ticularly large lateral dimension, 512 x 512 x 1.5, to safely
exclude finite-size effects. Motivated by Fig. 1, we perform
both a quench at n}, = 4.062 (which corresponds to the crit-
ical region, the interfacial tension is very small, y =~ 0.1)
and at nj, = 5.078 (where y ~ 0.5). Using slip boundaries, in
both cases the evolution towards rather large domains can be
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FIG. 14. Comparison of the time evolution of the domain patterns for
n; = 4.062 (upper row) and n; = 5.078 (lower row), for the 512 x 512
x 1.5 system, and slip boundary conditions.

followed (focusing again on a “critical quench” only). How-
ever, for 17; = 4.062 the domain boundaries are extremely
rugged, corresponding to diffuse interfaces (Fig. 14), while
for n}, = 5.078 the domains are much more compact and the
interfaces are sharp. Figure 15 shows that in the case where
hydrodynamic interactions are present (using slip boundary
conditions at the walls), one finds a relation £4(¢) o '/? for
1, = 4 but £y(1) o 3 for n", = 5. This difference can be at-
tributed to the fact that for n; = 4.062 the inertial length ¢;,
= n’/(py) is very large, due to the smallness of y(~0.1).
Hence, all data fall in the regime where £,(f) < ¢, and

102 . L L L L
+ MBST slip
o MBST stick
= NOHI

10" 102 10®  10* 10
(@) t

102 4 - MBSTslp
« MBST stick
= NOHI

10" 10°  10® 10* 10°
(b) t

FIG. 15. Average domain size £4(f) vs. ¢ for the 512 x 512 x 1.5 system and
the choice n;, = 4.062 (a) and n;, = 5.078 (b). In each case, slip boundary
conditions lead to the fast growth with a growth exponent 1/2 (a) or 2/3 (b),
while for both the stick boundary condition and in the case of switched-off
hydrodynamics, the effective growth exponent exceeds 1/4 only slightly, as
indicated by the straight lines.
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FIG. 16. Reduced average domain size ¢’ = I; — {; with £, = 2.5 for a
system with D = 1.5 and 17; =4.062 (a) and 17; = 5.078 (b). The insets
show the effective exponent «; (see Eq. (11)) as a function of inverse reduced
domain size ¢/(¢). Horizontal dotted lines are located at 1/2 and 1/3 (a) and
2/3 and 1/3 (b) serving as a guide to the eye.

therefore £,(1) o 12 is expected indeed (see Eq. (10)). For
1, = 5.078, where y is about 5 times larger, it seems that the
crossover from £4(f) o 12 to £4(¢) o ¥ falls within the “win-
dow” of observable domain sizes.

Omitting all prefactors of order unity in the estimate
Lin = 1n*/(py), the values n ~ 5.5, p ~ 2 and y ~ 0.5 in
our units translate into ¢;, ~ 60, i.e., a value still below the
lateral size of our simulation box. Restoring physical units,
y ~ (.5 corresponds to an ultra-low surface tension of about
2% 107° J/mz, while ¢;, is only 6 x 10~5 m. As noted above,
we use an unphysically small solvent viscosity, which is, how-
ever, necessary to speed up the simulation. This disparity of
scales for the viscosity makes the experimental observation of
the regime £(¢) > ¢;, difficult.

At first sight, it is somewhat disturbing that in the case
of stick boundary conditions (for this small value of D this
means that hydrodynamic effects are suppressed to a large
extent) and when hydrodynamics is switched off the appar-
ent growth exponent is almost as low as 1/4. However, we
recall that in the kinetic Ising models a very slow approach to
the Lifshitz-Slyozov growth exponent 1/3 was also observed,
as £4(t) — 00.%% Originally, it was suggested”® that one en-
counters strong corrections to scaling, so the effective growth
exponent is ner = 1/3 — const/€,(f). Alternatively, it has been
suggested86 to analyze the transformed variable ¢'(f) = €,4(f)
— L4(tp) instead of £,4(¢) vs. t. In Subsection III B, we have
seen that such an analysis is indeed useful for the present
model as well, and for films of thickness D = 5 an offset
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length of [, = 2.5 was obtained. Applying this analysis for
the present quasi-two-dimensional case of D = 1.5, we also
find that [, = 2.5 is again the proper choice.

Figure 16 is the counterpart of Fig. 15, when we plot £/(¢)
rather than £,4(f): Indeed, we now get rid off the problem that
the diffusive growth (without hydrodynamic interactions) is
characterized by an effective exponent close to 1/4. Instead, a
clear evidence in favor of the Lifshitz-Slyozov exponent 1/3
is obtained. Slip b.c., on the other hand, yield a rather clear
evidence for £'(f) oc 12 in the case of shallow quenches (Fig.
16(a)) and £'(¢) oc *” for deep quenches (Fig. 16(b)). Thus,
the behavior observed in our model is in accord with the the-
oretical expectations.

IV. CONCLUSIONS

We have considered the kinetics of phase separation in
colloid-polymer mixtures confined between parallel impene-
trable walls. Given the fact that colloidal particles are in the
pm size range, we have considered distances D between the
walls of such slit pores in the range from 1.5 to 10 colloid
diameters. The equilibrium phase behavior of these systems
has been investigated separately by appropriate Monte Carlo
computer simulations (Figs. 1-3), since the knowledge of col-
loid and polymer packing fractions in the coexisting phase is
an important ingredient both for the set up of the simulation
of a volume quenching experiment and for the interpretation
of the subsequent domain growth. In such a quench, the pack-
ing fractions of both species are enhanced by the same factor,
thus, bringing the system from the one-phase region into the
two-phase region (Fig. 3), keeping the density of the molecu-
lar solvent in this suspension constant.

Since the domain linear dimensions of interest are in the
size range from 10 to 100 colloid diameters (cf. Figs. 7, 8, 12,
and 13), systems with large lateral linear dimensions (up to
L = 512 choosing the colloid diameter as unit of length) had
to be used. On the other hand, in order to account for the effect
of the solvent on the dynamics, using a physically reasonable
choice of solvent viscosity (Fig. 4), we needed to apply the
MPC method with a large number (namely, 80) fluid particles
per unit length (10 particles per MPC cell). Our largest system
thus contained more than 52 x 10° solvent particles (typical
numbers of colloids and polymers then were N. = 236 859,
N, =1019022). Hence, it is clear that such a multiscale sim-
ulation requires a huge computational effort, which was only
possible due to the use of a massively parallel and highly ef-
ficient supercomputer.

A main interest of this study was to test the impor-
tance of hydrodynamic mechanisms on the kinetics of phase
separation under confinement. As extreme limiting cases,
we have assumed perfect slip boundary conditions or per-
fect stick boundary conditions at the confining walls, as
far as the solvent fluid is concerned. Note that we assume
such hydrodynamic boundary conditions in a completely phe-
nomenological way, and discuss neither the problem how
to realize them experimentally for the considered system,
nor to derive them theoretically.”*~'%> For comparison, we
also consider the case where all hydrodynamic effects are
switched off (artificially), so that the collisions of colloids

J. Chem. Phys. 138, 054901 (2013)

and polymers with the fluid particles act only as a Maxwell-
Boltzmann thermostat. Then these fluid particles have no
velocity autocorrelations at all, while these correlations are
fully developed in the perfect slip case (Fig. 9), and for stick
boundary conditions are progressively screened out at large
times.

The characteristic domain size £,4(¢) in the xy-directions
parallel to the walls is extracted from the radial pair distri-
bution function in planar slices in the center of the slit pore
(Fig. 4), and correlated with the connectivity (or lack thereof)
of the domain pattern seen in the corresponding “snapshots”
of the system configurations. The typical growth laws that
reflect hydrodynamic effects in d = 2 dimensions, namely,
L4(6) o< 1'% or £4() o P (Fig. 15) are only found when
perfect slip boundary conditions are used. Stick boundary
conditions as well as simulations where hydrodynamic ef-
fects are switched off are both compatible with a Lifshitz-
Slyozov type law £(r) oc ¢, Fig. 8. The latter relation is
also found for “off-critical” quenches, when either polymers
or colloids assume a clear droplet morphology during the
growth (Figs. 12 and 13), even if slip boundary conditions are
used.

In the first few decades of time after the quench, the
growth of the lateral length scale £,(f) is accompanied by the
build-up of concentration inhomogeneities in the z-direction
perpendicular to the walls, i.e., a precursor effect to the growth
of colloid-rich wetting layers. This process causes a slow tran-
sient in the growth laws for lateral growth.

We like to stress that there are still some aspects of our
findings which are not fully understood. For example, one
would have expected that in the off-critical case with per-
fect slip the two-dimensional droplet diffusion plus coagu-
lation mechanism (leading to #"?) would appear, but this is
not the case. In addition, for very thin films (D = 1.5) when
stick boundary conditions are used one expects the Lifshitz-
Slyozov mechanism to be present, but the small effective ex-
ponents in Fig. 15 indicate an unexpectedly slow approach to-
wards the asymptotic regime. This problem is removed when
the transformation from £4(¢) to £'(t) = £4(t) — £, with £
= 2.5 is made, but the interpretation of ¢ in this case is not
fully clear.

In conclusion, we hope that our study stimulates some
experimental work on this model system. While experiments
on phase-separation kinetics of colloid-polymer mixtures in
d = 3 dimensions are hampered by gravity effects,®>*% and
therefore “clean” conditions are only established if one car-
ries out these experiments in the space laboratory,” the grav-
ity effect should be negligible for thin films where the z-axis is
oriented along the direction of the gravitational force. Conse-
quently, our simulations indicated that colloid-polymer mix-
tures confined between planar smooth walls, which realize
slip boundary conditions (or at least partial slip) should be
a suitable model system in which the existence of the r*3
domain growth law could be tested experimentally. To our
knowledge, no experimental evidence in favor of this growth
law has yet been found in any other system, and therefore
a study of this problem is rather desirable. Complementary
theoretical studies applying analytical methods would also be
welcome.
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APPENDIX: REMARKS ON PARALLELIZATION AND
PERFORMANCE OF THE MPC ALGORITHM

At this point a few remarks on the parallelization tech-
nique and on the performance of the MPC algorithm are
given. The system is divided into subsystems where each of
these subdomains has to communicate at the borders with the
neighboring subsystems. This is achieved by adding “halo”
layers to the borders which contain all the necessary infor-
mation from the neighboring domain to perform the velocity
Verlet integration step. The communication is performed via
MPI. The collision step of the solvent is implemented fol-
lowing Ref. 103. When a MPC cell is shared by multiple
processes, the necessary information (positions and veloci-
ties) is sent in a serial manner in x-direction, y-direction, and
z-direction. After the collision is performed, the resulting ve-
locities (positions are not needed anymore) are sent back in
the opposite order. This technique allows for a proper treat-
ment of corners and is simple to implement. In comparison to
standard molecular dynamics simulations, where no explicit
solvent particles are present, the combined MD and MPC al-
gorithm exhibits nearly the same performance when simula-
tions are performed in the late stages of phase separation of
an asymmetric binary mixture (in our case only about 10%
slower). This comes simply from the fact that the performance
of the velocity Verlet step of molecular dynamics algorithms
depends strongly on how dense the system is in each sub-
domain. The most dense subdomain (here, the polymer-rich
phase has a significantly higher density in comparison to the
colloid-rich phase) sets the performance of the simulation. In
addition to this load imbalance, the performance of the MD
force calculation depends on the size of the underlying MD
cell system, which simply gets too large when the simula-
tion box is divided into very small subsystems. Both of these
performance issues of the MD part of the simulation are not
present in case of the solvent. The solvent particles are ho-
mogeneously distributed in the simulation box so that each
process has approximately the same computational effort for
the collision and streaming steps of the solvent particles. Fur-
thermore, there exist no force calculation which depends on
the MD cell system size for the solvent, so that small sub-
systems (minimum is one MPC cell) are in principle possi-
ble. The homogeneity of solvent-related calculations hides the
performance drop down of the MD part of the simulation at
late stages and hence, explains why in our special case up to
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52 x 10° additional solvent particles come at a very small
performance loss.
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