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Dislocations in quasicrystals, as a direct result of the lack of translational symmetry in these

materials, possess various salient features. The Burgers vector of a dislocation in an icosahedral

quasicrystal is a 6-dimensional vector, which reflects the fact that the dislocation, besides the

phonon-type strain field analogous to dislocations in ordinary crystals, is associated inseparably

with a further type of defect, the phasons. Phasons are critically involved in the formation and

motion of dislocations in quasicrystals and govern the macroscopic plastic behaviour of these

materials. In this article the properties of dislocations in icosahedral quasicrystals are

comprehensively reviewed, starting from a continuum-mechanical description, via core-structure

simulation, to their full experimental characterization. The experimental results presented address

the icosahedral phases in the well explored systems Al–Pd–Mn and Zn–Mg–Dy.

Introduction

Quasicrystals (QCs) are materials possessing long range order

but no translational symmetry. Their structures have symmetry

axes that were, at the time, ‘‘forbidden’’ by crystallographic

dogmata dating back to ancient studies e.g. by Kepler.1 It was

generally believed that crystal structures including rotational axes

of fivefold and higher than sixfold symmetry cannot exist. The

first quasicrystalline phase was discovered by Shechtman in 1982

and the first record percepted by the scientific community

appeared in 1984.2 It reported on a metastable phase with an

icosahedral-symmetric structure in a rapidly solidified Al–Mn

alloy. The icosahedral symmetry group contains fivefold axes,

so the discovery was in direct conflict with the prevailing opinion.

Accordingly, Shechtman’s discovery led to an avalanche of

scientific activity and triggered the development of QCs as a

new field in materials science.

Today a variety of quasicrystalline materials in several alloy

systems is known. Highly perfect and stable icosahedral QCs

exist e.g. in the systems Al–Cu–Fe, Al–Pd–Mn and Zn–Mg–RE

(where RE stands for different rare-earth elements). Fig. 1a is

a high-resolution transmission electron (TEM) micrograph of

icosahedral Zn–Mg–Dy imaged along a fivefold direction.

Clearly, the overall fivefold symmetry and local pentagonal

features on various length scales are seen. The structure can be

regarded as being organized in the form of five sets of lattice

planes, mutually rotated by angles of 36 degrees. Within a set

of lattice planes two basic interplanar distances, a long and a

short one, related by the irrational number of the golden mean

t E 1.61803� � � are seen. Fig. 1b is a corresponding electron

diffraction pattern. It has discrete and sharp reflections, which

clearly demonstrate the presence of long range order, and it

has tenfold symmetry, corresponding to the fivefold symmetry

of the direct-space structure.z The icosahedral structure includes
six fivefold, fifteen twofold and ten threefold axes, which are

arranged as in a regular icosahedron. Fig. 1c is a corresponding

stereographic projection of the icosahedral group along a two-

fold axis. The symbols represent the rotational symmetry of the

corresponding axes. Besides the icosahedral phases, octagonal,

Institut für Mikrostrukturforschung, Forschungszentrum Jülich GmbH,
52425 Jülich, Germany. E-mail: m.feuerbacher@fz-juelich.de
w Part of a themed issue on Quasicrystals in honour of the 2011 Nobel
Prize in Chemistry winner, Professor Dan Shechtman.

Michael Feuerbacher

Michael Feuerbacher is a
research scientist at the Peter
Grünberg Institute of the
Forschungszentrum Jülich,
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decagonal, and dodecagonal QCs, including eightfold, tenfold,

and twelvefold rotational axes, respectively, were discovered

to date.

Dislocations in QCs were firstly discussed in a treatment of

the hydrodynamics of QCs by Levine et al.3 as early as 1985,

only a few months after the report of QC discovery. The first

experimental observation of dislocations was reported by

Hiraga and Hirabayashi4 in 1987. By means of high resolution

TEM, these authors demonstrated the existence of dislocations

in an Al–Mn–Si QC and analyzed the in-plane Burgers vector

by circuiting the core. Further early experimental work was

carried out by Wang et al.5 on icosahedral Al–Mn QCs and by

Zhang and Urban6 on decagonal Al–Cu–Co.

The subject of this paper is a review of dislocations in QCs.

After an introduction of the basic concepts of defects in QCs

(Section 2), we will discuss dislocation structure simulations

(Section 3) and dislocation analysis by means of TEM (Section 4).

Experimental results for icosahedral Al–Pd–Mn will be pre-

sented and discussed, for which a respectable body of work is

present in the literature (Section 5). Phasons, which are

pivotally related to dislocations in QCs, will be discussed in

reciprocal and real space (Section 6). In Section 7, finally, we

will discuss dislocations in Zn–Mg–Dy, another well investi-

gated icosahedral structure.

Another group of QCs that has been extensively investi-

gated with respect to the plastic properties and dislocation

structures are the decagonal phases in the system Al–Ni–Co.

Decagonal phases possess a highly anisotropic structure that

can be understood as a periodic stacking of quasiperiodic

planes, which leads to a distinct anisotropy of the plastic

properties and the dislocation microstructure. The existence

range of decagonal Al–Ni–Co extends over a wide range of

compositions, which is also reflected in the plastic properties.

As a result, the plasticity of decagonal structures is highly

complex and requires a careful distinction of cases regarding

deformation geometry and sample composition. This would

exceed the scope of the present paper and hence we limit this

review to dislocations in icosahedral structures and for the

decagonal case refer to existing comprehensive treatments in

the literature.7,8

Defects in quasicrystals

Defects in QCs were firstly discussed by Levine et al.3 The

authors treated the hydrodynamics of 2- and 3-dimensional

icosahedral lattices in a density wave-approach and identified

dislocations as stable structural defects in QCs. Indexing of a

dislocation Burgers vector, unlike the case in ordinary crystals,

was found to require more indices than real-space dimensions.

The number of indices corresponds to the number of indepen-

dent hydrodynamic variables, which in turn corresponds to the

number of relatively incommensurate lengths. The authors

write: ‘‘The Burgers vector lattice is a 2 � d dimensional lattice

which is distinct from the d-dimensional real-space lattice of

atomic positions’’. The Burgers vector lattice represents the

entirety of vectors containing the possible Burgers vector in a

given structure. In the icosahedral case, d = 3, and hence the

Burgers vector is 6-dimensional.

Socolar et al.9 demonstrated that the hydrodynamic degrees

of freedom in a QC can be parameterized by two vectors,

uJ and u>. In full analogy to the case of periodic crystals,

uniform shifts in uJ correspond to a translation of the system

and spatial variations in uJ give rise to propagating phonons.

Statically this corresponds to the occurrence of continuous

deviations from the ideal atomic positions, for example

smooth curvatures in atomic rows. We will refer to this as

phonon-type displacement. Variations in u>, on the other

hand, lead to discrete alterations of the atomic positions,

which in high resolution electron micrographs are seen as jags

or shifts in atomic rows. Mathematically the variable u> is

analogous to the phason degree of freedom in incommensurate

crystals and is therefore referred to as phason displacement.

A dislocation in a QC is associated with spatial variations

both in uJ and u>and its Burgers vector is a net measure of

these displacements about any circuit enclosing the dislocation

core. We define two components of the Burgers vector,

bjj ¼
I
c

dujj and b? ¼
I
c

du?; ð1Þ

where the integration is carried out on a closed path around

the dislocation core. The parallel component bJ describes the

continuous phonon-type displacements associated with the

dislocation, and is therefore also referred to as the phonon

component. The perpendicular component b> is specific to

QCs and describes the phason strain associated with the

dislocation. It is therefore also referred to as the phason

component. In icosahedral QCs, both bJ and b> are 3-dimensional

vectors. Each Burgers vector necessarily corresponds to non-

zero uJ and u>, so that dislocations in QCs, unlike those in

periodic crystals, cannot be interpreted in terms of insertions

or removals of halfplanes in physical space.

Fig. 1 High-resolution transmission electron micrograph of icosahedral Zn–Mg–Dy imaged along a fivefold direction (a) and the corresponding

electron diffraction pattern (b). Stereographic projection of the icosahedral group along a twofold axis (c).
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A density wave approach is highly powerful for the general

discussion of elasticity and basic defect structures in QCs.

If it comes to the description of the atomic structures of

QC materials, however, the so-called higher dimensional

crystallography10,11 has gained the highest practical relevance.

In these terms, the real-space atom distribution is constructed

on the basis of a periodic higher-dimensional hyperlattice.

Since the hyperlattice is periodic it can be represented in closed

form by a higher-dimensional unit cell.

The higher-dimensional unit cell, which defines a hyper-

crystal coordinate system, is, analogous to the case of ordinary

crystals, translated in the higher-dimensional space to form a

hyperlattice. For the construction of the QC lattice in physical

space a second, orthonormal coordinate system is introduced,

which is rotated with respect to the first. The second system is

subdivided into two subspaces. The first subspace represents

the real, physical space. It is also referred to as parallel space

and contains vectors xJ. The second subspace, spanned by

the remaining hyperspace directions, is referred to as perpendi-

cular space and contains vectors x>. The geometry is visua-

lized in Fig. 2a for the case of a 1-dimensional QC, which is

constructed on the basis of a 2-dimensional hyperlattice. The

edges of the higher-dimensional unit cell (dotted) define the

hypercrystal coordinate system. The second coordinate system

(grey) is rotated with respect to the first and spans the

subspaces EJ and E>. The rotation angle between the two

coordinate systems corresponds to the number of the golden

mean

t ¼
ffiffiffi
5
p
þ 1

2
:

Since t is an irrational number, besides the origin no further

hyperlattice point falls into the subspace EJ.

For the construction of icosahedral QCs, the hyperlattice is

6-dimensional and physical and perpendicular space each is

3-dimensional. The relative orientation of the coordinate

systems is chosen such that the projections of the six axes of

the hypercrystal system are oriented along the six fivefold axes

of an icosahedron. This ensures that the structure in physical

space has icosahedral symmetry. It also has the consequence

that the rotation matrix describing the relation between the

two coordinate systems has irrational entries involving the

golden mean t.12

The higher-dimensional unit cell is decorated by a basis of

atomic hypersurfaces. These are 3-dimensional objects that

have only extensions in perpendicular space. The atomic

positions of the QC are determined by the intersection points

of the atomic hypersurfaces with physical space EJ. In the

1-dimensional case of Fig. 2a, the hypersurfaces are lines and

the atom positions (open circles), defined by the intersection

points with physical space, form a linear quasiperiodic

arrangement. The atom positions are separated by long and

short distances, which are nonperiodically but deterministi-

cally arranged throughout the construction. The length ratio

of the long and short distances is determined by the rotation

angle a= arctan(t�1) between the two coordinate systems and

equals t.
This construction method, which is referred to as the

‘‘intersection procedure’’, can by adequate definition of the

hypersurfaces also specify the site occupation by different

atomic species. An example is shown in Fig. 2b. For the

construction of the atomic structure of icosahedral

Al–Pd–Mn13,14 a face centred 6-dimensional unit cell decorated

with 3-dimensional hypersurfaces is used. On the three hyper-

lattice positions n0, n1, and bc1, three different hypersurfaces

are placed, two of which consist of concentric spheres assigned

to different elements. The figure shows the plane spanned

by the hyperlattice directions [100000] and [01111%1], which

contains the fivefold physical-space direction A5J. The inter-

sections of the hypersurfaces with A5J determine the physical-

space atomic positions along that specific direction, and the

radius at which the hypersurfaces are intersected determines

the individual atomic species. In this structure model, spherical

hypersurfaces are used, which is a very convenient approxi-

mation allowing for fast calculation of the atom positions.

However, such ‘‘spherical models’’ have the drawback that

occasionally unphysical short distances occur in physical

space. More elaborated models, as constructed for icosahedral

Al–Pd–Fe,15 employ icosahedral symmetric hypersurfaces

(e.g. truncated triacontahedra) and avoid such artefacts.

Note that the arrangement of atom sites in physical space

constructed by the intersection procedure depends on the

choice of origin. Physical space can be translated along

perpendicular space, which will lead to different but similar

atomic arrangements in the QC. The resulting QCs can be

subdivided into different local isomorphism classes. Two QCs

are in the same local isomorphism class (LI class) if every finite

atom arrangement in each is found in the other. If two QCs are

in the same LI class, this means that they cannot be distin-

guished by measurements on any finite length scale. Therefore

they are physically indistinguishable, have the same diffraction

properties and, in particular, have the same free energy.9

The hyperlattice is more than a mathematical construction

procedure for ideal QC structures – it also defines displace-

ments, defects and strain fields in QCs. In the hydrodynamic

description we have introduced two displacements, uJ and u>.

These can, in a hyperlattice approach, be interpreted as

Fig. 2 Construction of an ideal 1-dimensional QC by the intersection

procedure (a) and hyperlattice unit cell employed in the structure

model of icosahedral Al–Pd–Mn (b). Construction of a 1-dimensional

QC in the presence of linear phason strain (c) and construction of the

diffraction pattern (d) corresponding to the ideal QC in (a).
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components of a higher-dimensional displacement field U,

where the component uJ describes the displacement field in

parallel space, and u> describes the displacement field in

perpendicular space. The presence of hyperlattice displacements

translates, via the intersection procedure, to displacements in

the real-space structure of the QC. Displacements uJ obviously

directly describe continuous displacements in the QC structure,

which can take arbitrarily small values. Displacements u>, on

the other hand, have only components along perpendicular-

space directions, in which the atomic hypersurfaces are also

extended. This means that some of the hypersurfaces, which in

the ideal lattice intersect physical space, in the presence of u> do

not intersect anymore. As a result atom positions disappear in

the QC. On the other hand, hyperlattice points situated such

that their appertaining hypersurfaces in the ideal lattice did not

intersect physical space, may do so in the presence of u>, which

leads to the appearance of new atomic positions in the QC. By

construction this can lead only to the appearance of atoms on

clearly defined positions, and hence the resulting physical-space

displacements are discrete. Fig. 2c exemplifies this for a strained

2-dimensional hyperlattice. The hyperlattice positions are

displaced along the E> direction, and the strength of the

displacement linearly increases along E> (dashed line). This type

of hyperlattice displacement field is referred to as linear phason

strain. As a result, the same atomic distances as in the ideal case

occur in physical space, but at some positions their order has

changed, and hence some atoms occupy different positions

(arrows, cf. Fig. 2a). These changes can be seen as small discrete

atomic jumps, which are referred to as phason jumps.

The closeness condition16 ensures that the atomic hypersurfaces

are constructed such that under any displacement u>, the number

of disappearing and appearing atoms is equal, that is, the number

of atoms in the QC is conserved. A further condition demands

that a locally varying hyperlattice strain field only depends on

the physical-space coordinate xJ. If it were dependent on x>,

the atomic arrangement in the resulting QC would depend

on the placement of the hypercrystal origin along perpendicular

space, which has to be considered unphysical. Hence we write

U = uJ(xJ) + u>(xJ). (2)

Dislocations can be introduced into the QC by introducing a

hyperdislocation into the hyperlattice by means of a general-

ized Volterra process.17–19 Since the hyperlattice is periodic,

the Volterra process can be understood as insertion or removal

of a hyper-halfplane. In the icosahedral case this halfplane is a

5-dimensional object, terminated by a 4-dimensional hyper-

dislocation line. The Burgers vector B of the hyperdislocation

is 6-dimensional and can be decomposed into the components

bJ and b> as

B = bJ + b>, (3)

which are, as described above, referred to as phonon and

phason component of the Burgers vector respectively. By

construction B is a hyperlattice translation vector, and as a

result the phonon and phason components both are always

nonzero. The strain accommodation parameter (SAC)

z ¼ b?j j
bjj
�� ��

was introduced20 in order to specify how the strain of a given

dislocation is distributed into phonon and phason parts.

Burgers vectors of different direction in the hyperlattice can

lead to parallel physical-space Burgers vectors of different

length and different SAC. This is schematically shown for a

2-dimensional hyperlattice, which is represented by a single

hyperspace unit cell in Fig. 3 (cf. dotted box in Fig. 2a). If the

Burgers vector B (black) corresponds to the lattice vector

along [0 1], its phason and phonon components, b>and bJ,

correspond to the projections on E> and E>, respectively,

and the SAC is z = t. The length of bJ is related to the

b-hyperlattice constant as bJ = b sin a. Now consider Burgers

vector B0 (dark grey) corresponding to the lattice vector along

[1 0]. The SAC is now z= t�1 and the length of b0jj is related to

the a-hyperlattice constant as b0jj ¼ a cos a. Assuming, without

loss of generality, a square hyperlattice, i.e. a = b, then

jb0jjj=jbjjj ¼ t. The phonon component of the second Burgers

vector is thus parallel and longer by a factor of t than that of

the first. Analogously we find that for Burgers vector B00 (light

grey), which forms the diagonal of the hyperlattice unit cell,

the phonon component is again longer by a factor of t, and the

SAC is z = t�3. Burgers vectors in hyperspace along different

hyperlattice directions thus lead to a series of parallel Burgers

vectors in physical space. The phonon components of the

Burgers vectors in the series are related by factors of t and

are opposed to the corresponding series of phason components.

The SAC is given by a sequence tn, where n are odd numbers,

and for subsequent members of the series n differs by 2.

Dislocation simulation

The first simulations of dislocations were carried out by Levine

et al.3 and later on by Socolar et al.9 by adding a suitable phase

in a density-wave simulation. In these works, dislocations are

identified as stable topological line defects (point defects in the

2-dimensional density wave simulations) if and only if they

possess nonzero components both in uJ and u>. If a disloca-

tion has only components in uJ the atomic arrangement at a

large distance from the core cannot approach the LI class of

the undefected QC due to the atom arrangements at the

beginning and the end of a large Burgers circuit. They would

only match with an arrangement of the same LI class unless uJ
would correspond to an exact translation vector which, how-

ever, does not exist in a quasiperiodic structure. To approach

the LI class of the undefected QC at large distances from the

core, as demanded for a true line defect, atom rearrangements

Fig. 3 Burgers vectors of different direction in the hyperlattice can

lead to parallel physical-space Burgers vectors of different length and

different SAC. Schematic representation for the case of a 2-dimensional

hyperlattice (see text).
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corresponding to a nonzero component u> are required.

Accordingly, in the density wave images it is seen that the

dislocation is a localized defect which includes curvature at the

core as well as the presence of jags.

Bohsung and Trebin constructed a dislocation in a Penrose

lattice.17 They demonstrated that a Volterra process in physical

space does not lead to a true dislocation but to a line of vertices

along the cut, not belonging to the LI-class of the initial Penrose

lattice. In order to construct a true dislocation, a generalized

Volterra process in hyperspace, in the case of the Penrose lattice a

5-dimensional space, is carried out: a 4-dimensional hyperplane is

removed, the remaining lips are connected and the core area is

relaxed by an isotropic strain field. The corresponding Penrose

lattice in physical space then contains a localized dislocation. It is

associated with phasons surrounding the core, and the Burgers

vector is 5-dimensional. A similar construction of a dislocation in

a Penrose lattice was later carried out by Edagawa et al.21

Dislocations in icosahedral Al–Pd–Mn, constructed by Yang

et al.19 via a generalized Volterra process are shown in Fig. 4.

The simulation employs the structure model of Al–Pd–Mn,14

which was solved on the basis of experimental X-ray and

neutron scattering data by higher-dimensional crystallography

(see Fig. 2d). Elastic displacement fields taking into account the

symmetry of the icosahedral structure,22,23 solved for phason

and phonon components were used. Therefore the dislocation

simulation can be considered to be a realistic model directly

comparable with experimental high-resolution TEM images.

The simulation is carried out by a generalized Volterra

process in 6-dimensional hyperspace and subsequent applica-

tion of the intersection procedure. A 4-dimensional hyperline

L, which is the direct sum of the desired line direction in

physical space and the perpendicular space24 is chosen, and a

6 dimensional body, defined by L and two hyperlips is

removed. The distance between the hyperlips is given by the

6-dimensional Burgers vector, which is chosen as a hyper-

lattice translation vector. Therefore, upon closure of the gap,

the hyperlips match perfectly. The gap is closed by applying

the specific calculated strain fields.

For Fig. 4 the 6-dimensional Burgers vector B=a0 [%1 1 1 0 0 %1]

was chosen (indexing according to Cahn et al.,12 a0 is the

lattice parameter of the 6D hyperlattice). This is one of the

experimentally observed Burgers vectors (see Section 5) and is

parallel to a twofold physical-space direction. The line direc-

tion was chosen along a fivefold physical-space direction and

placed through the origin of the physical-space coordinate

system. The so-constructed hyperspace dislocation is then

transferred to physical space by the intersection procedure.

The result is shown in Fig. 4a.

The dislocation is a true 1-dimensional line defect. The core

is located in the centre of the figure, and at a distance from the

core the structure is essentially indistinguishable from the ideal

structure. At the core, the lattice planes are curved as a result

of the phason component, and around the dislocation we find

jags in lattice planes, which is a result of the phonon compo-

nent of the strain field. These features can be seen best in a

grazing view, e.g. in the perspective representation Fig. 4c,

along the direction of the arrow. The physical space com-

ponent of the Burgers vector is a0 [%1/1 2/%1 1/0] and has a

length of 0.296 nm corresponding to a SAC of t3, where

a0 ¼ a0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ tÞ

p
and a0 = 0.645 nm.

Neglecting the phason component of the Burgers vector,

i.e. setting B = bJ leads to the dislocation shown in Fig. 4b.

This procedure, which corresponds exactly to the direct per-

formance of a Volterra process in physical space, results in a

dislocation terminating a planar fault, i.e. not in a true line

defect. Lattice-plane curvature is present at the dislocation

core, but there are no jags. This can be seen most easily in the

perspective representation of Fig. 4d. In a later part of this

paper we will come across an experimental situation that

corresponds to this defect (Section 6).

Dislocation simulations on the basis of a realistic structure

model were also carried out by Gratias et al.25 These authors

used a more elaborated polyhedral structure model of icosa-

hedral AlPd–Mn, carried out a generalized Volterra process in

hyperspace, and used an isotropic strain field for relaxation of

the hyperlips.

Burgers vector analysis in the TEM

Imaging and analysis of dislocations in QCs can be carried

out by Bragg-contrast imaging or high-resolution TEM.

Fig. 4 Dislocation core-structure simulations in icosahedral Al–Pd–Mn. Strain field including phonon and phason components (a) and including

phonon components only (b) and corresponding grazing-angle views along the arrows (c) and (d).
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Bragg-contrast imaging is usually carried out at medium

resolution in the TEM, say at magnifications of 20 000 to

50 000, and is a diffraction-contrast technique.26 A bright-field

image is formed by electrons passing the specimen without

being diffracted, contrasting with local areas in the specimen

fulfilling the Bragg condition, hence diffracting electrons and

appearing dark. This technique can be employed to image

dislocations by choosing the imaging conditions such that only

in dislocation strain fields the Bragg condition is fulfilled, so

that dislocations appear as dark lines on a bright background.

For an interpretable situation, the specimen orientation is

chosen such that only one set of lattice planes fulfils the Bragg

condition, i.e. the diffraction pattern shows only one beam

besides the direct beam of undiffracted electrons. This is

referred to as a two-beam condition.

Consider, in a column approximation assuming kinematic

diffraction,27 a crystalline specimen illuminated by an incoming

parallel electron beam with wave vector k0. In the column

approximation we consider only the electrons diffracted by

atoms in a narrow column along the incoming beam of wave

vector k. Atom n at position rn in the column contributes to the

diffracted beamwith a wave of amplitudeAp,np exp(i(k� k0))rn.

The total scattering amplitude is given by the sum over all

atoms in the column as

Ap /
X

column

expðiðk� k0ÞÞrn

�����
�����:

In periodic specimens, the diffraction condition k � k0 = g

holds, i.e. the electrons only diffract if the scattering vector

equals a reciprocal lattice vector g. When the column contains

a defect, some atom positions are translated to positions r+ u.

The scattering amplitude is then subjected to an additional

phase shift exp(�igu). If a defect is present but the lattice

vector and displacements are arranged such that the condition

gu = 0 is fulfilled no defect contrast is visible. This is referred

to as the contrast-extinction condition of the defect and can, if

g is known, be employed to determine the displacements u.

In QCs the situation can be described analogously if we

replace g by G = gJ + g> and u by U = uJ + u> (eqn (2)),

where G and U are higher-dimensional vectors describing a

reciprocal hyperlattice vector and the hyperlattice strain vector

corresponding to the defect, respectively. The contrast of

a defect in a QC is then invisible if the extinction condition

GU = 0 is fulfilled.

For the description of dislocations in a crystal we assume

that the main component of their strain field is described by

the vector b. In QCs, analogously, the dislocation is described

by the hyperlattice Burgers vector B = bJ + b> (eqn (3)). The

extinction condition for dislocations in a QC can then be

written as

GB = 0, (4)

which expands to

gJbJ + g>b> = 0. (5)

This condition can be fulfilled in two different ways:28 either

both parts are individually zero, or they compensate each

other.

Consider the case that a dislocation is extinct when imaged

using the reflection gJ. Then gJbJ + g>b> = 0 holds. Now

assume that imaging with a second reflection g0jj ¼ tgjj in the

same systematic row also leads to extinction. Then the second

extinction condition g0jjbjj þ g0?b? ¼ 0 also holds. Due to the

one-to-one correspondence of the reciprocal lattice vectors

in the perpendicular and physical subspaces, scaling the

physical-space component by t is connected12 to scaling the

perpendicular-space component by �1/t. Therefore the extinc-
tion condition for g2J can be rewritten as t gJbJ� t�1g>b>=0.

The two extinction conditions can only simultaneously be

fulfilled if

gJbJ = 0 and g>b> = 0.

If we find extinction for more than one reflection in a

systematic row we can hence conclude that both terms in

eqn (5) individually equal zero. This is referred to as the strong

extinction condition (SEC).

The second case, where the two terms in eqn (5) compensate, i.e.

gJbJ = �g>b>,

for a given Burgers vector can only be fulfilled by a specific

reflection in a systematic row. This is referred to as the weak

extinction condition (WEC).28

For the experimental Burgers vector analysis in an icosa-

hedral QC, one has to find two SECs and one WEC. With the

two SECs, the direction of the Burgers vector in physical space

is determined in complete analogy with the procedure for

ordinary crystals.27 The additional WEC provides information

on the length ratio of the physical-space and perpendicular-

space components, i.e. it determines the direction of the

6-dimensional Burgers vector in hyperspace. Obviously the

existence of the WEC is a salient effect of QCs, where

the phonon strain field is exactly cancelled by the phason

strain field.

Since the contrast-extinction techniques described are based

on orthogonality conditions, they only allow for the determi-

nation of Burgers vector directions. If the Burgers vector

length is also to be determined, further solutions of the scalar

product eqn (4) of the form

GB = n (6)

have to be taken into account. This can be done by analyzing

multiple dislocation contrast, e.g. double contrast for

n = 2,29 or by means of convergent beam electron diffraction

(CBED).

In CBED instead of a parallel illumination, a converging

electron beam is used. For dislocation analysis, the lens is

defocused, i.e. the beam crossover is placed slightly above or

below the sample such that a small sample volume is illumi-

nated. The reflections in the diffraction pattern are then

enlarged to disks, the size of which is proportional to the

opening angle of the illuminating beam. The sample is oriented

such that the cone contains a set of beams fulfilling a specific

Bragg condition. In the diffraction pattern, the set of diffracted

beams forms a bright excess line, which is oriented parallel to

the trace of the set of lattice planes in Bragg orientation. The

excess line corresponds to a dark deficiency line in the direct disk.
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Since the crossover of the illuminating cone is placed outside

the sample each beam direction belongs to a different position in

the sample plane. Therefore, the diffraction disk provides a map

of Bragg-plane orientations. If a defect is localized within the

illuminated volume, the location of the areas where the Bragg

condition is fulfilled can be slightly shifted, which is visible in the

deficiency and excess lines: the lines are distorted and display

splittings, which can be employed for quantitative defect char-

acterization. Dislocations in QCs can be analysed by counting

the number of splitting nodes n according to the Cherns–Preston

rule,30 which was generalized for QCs by Wang and Dai31 as

gJbJ + g>b> = n.

Determination of all components of the Burgers vector in an

icosahedral QC requires analysis of six linearly independent

lines.

A typical CBED pattern is shown in Fig. 5. The direct disk

(left) contains two deficiency lines (black arrows), which show

threefold and twofold splitting. These splittings can also be

observed in the corresponding excess lines (grey arrows).

High-resolution TEM can be employed for real-space

analysis of Burgers vectors. This requires a dislocation imaged

in end-on orientation and only allows for the determination of

the edge components, which are perpendicular to the direction

of view. The approach was further developed by Yang et al.,32

who imaged dislocations by means of high-resolution TEM

and characterized the image by means of a Fourier back-

transform or lattice-fringe analysis33 using selected reflections

Gi. For Fourier back-transforms the relation GiB = ni holds,

where ni is the apparent number of inserted fringes using the

reflection Gi. It is a particular feature of QCs that, using

reflections of a single systematic row, the inserted fringes can

occur on different sides of the dislocation core. This is due to

the presence of the perpendicular space components of G and

B, and was interpreted by Bonneville et al.34 as lattice dis-

tances of different thickness, balanced against each other for

the thickness corresponding to the actual Burgers vector,

which scale with different spatial frequencies. Inserted fringes

on different sides of the dislocation core correspond to different

signs of ni according to a consistent sign criterion.32

For a full determination of the Burgers vector in an

icosahedral QC, analysis of fringe patterns corresponding to

six linear independent reflections is required. In a single

HRTEM image, however, only four independent Gi are avail-

able. Therefore, at least two images of the dislocation, taken at

different specimen orientation are required. In both images the

dislocation should be imaged as close as possible to an end-on

orientation in order to obtain HRTEM images of sufficient

quality to identify unambiguously the number of inserted

fringes in the back transform. This is possible in icosahedral

QCs due to their high structural symmetry. Dislocations with a

line direction along a threefold or pseudo-twofold axis are

tilted with respect to the next zone axis that can be used

for HRTEM imaging by only about 11 degrees (see Fig. 1c).

At a typical sample thickness of 5 nm this tilt leads to a

smearing out of the core image over about 1 nm, which is

acceptable if an area of about 10 nm �10 nm around the core

is analysed.

An example32 is shown in Fig. 6. The HRTEM image

imaged along a pseudo-twofold zone axis (a) is back trans-

formed using a reflection g (b) and a reflection tg (c), which are

in the same systematic row but differ in length by a factor of t.
The corresponding fringe patterns show 2 and�1 inserted fringes,
respectively. The full analysis leads to the 6-dimensional

Burgers vector a0 [%3 2 2 0 0 %3], which has a twofold physical-

space direction and a SAC of t7.

Experimental dislocation analysis – icosahedral

Al–Pd–Mn

Fig. 7 displays a typical microstructure of a deformed icosa-

hedral Al–Mn–Pd QC in a two-beam Bragg contrast image.

The single quasicrystalline sample was uniaxially deformed at

760 1C up to a plastic strain of 6%. The dislocation density

amounts to about 1010 cm�2. The dislocation arrangement is

homogeneous and diverse line directions occur, which corre-

sponds to the high structural isotropy of the material.

For icosahedral Al–Pd–Mn, detailed analyses of micro-

structure, dislocation density and Burgers vectors were carried

out.20,35,36 TEM analysis involving CBED in a great number

of samples deformed at 760 and 800 1C and undeformed

reference samples revealed that 90% of the dislocations have

Fig. 5 Convergent-beam electron diffraction pattern displaying

three- and twofold line splittings in the deficiency lines (black arrows)

and excess lines (grey arrows) due to the presence of a dislocation in

the illuminated specimen volume.

Fig. 6 Burgers vector determination by HRTEM: micrograph along

a pseudo-twofold zone axis (a), back transformed using reflection g (b)

and reflection tg (c). The back transformed image displays 2 and �1
inserted fringes, respectively.
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a Burgers vector parallel to a twofold QC lattice direction.

Less frequently fivefold (5%) and threefold (3%) and other

(2%) Burgers vectors are found. All fivefold, threefold and

pseudo-twofold Burgers vectors observed are not lattice vectors

in hyperspace, i.e. the corresponding dislocations are hyperspace-

partials. Later studies, employing contrast extinction and

multiple-contrast techniques25,37 and low-temperature defor-

mation studies38 are consistent with the results presented.

Mompiou et al.38 found pairs of dislocations, with fivefold

[1/0 0/1 0/0] Burgers vectors. These correspond to [100000]

hyperspace dislocations, which are not translations of the

6-dimensional face-centred lattice but only of the primitive

cubic sub-lattice. In complete analogy with the situation in

crystalline face-centred ordered intermetallics the authors

identified these dislocations as superpartials.

For a given physical-space Burgers vector direction, several

Burgers vector lengths are experimentally observed, which

correspond to different 6-dimensional Burgers vectors. They

are characterized by different strain accommodation para-

meters z, which take different values that can be expressed as

powers of t. In Table 1 the twofold Burgers vectors experi-

mentally observed20,35,39,40 are listed.

For all dislocations with Burgers vector parallel to a twofold

quasilattice direction (referred to as twofold Burgers vectors),

the exponent n of the SAC is an odd integer (see Section 2 and

Fig. 3). The SAC is always much larger than one, which

indicates that for the dislocations it is more favourable to

accommodate the displacement field through phason strain

than by phonon strain.

The length scale in perpendicular space is fixed by the

extension of the hypersurfaces. Therefore, the physical meaning

of the phonon component of the Burgers vectors is judged by

comparison of the length of b> with the latter. In icosahedral

Al–Pd–Mn, the hypersurface extensions were determined to range

between 0.3 nm and 1.0 nm.14 All values of b> experimentally

observed surpass this size, most by a considerable factor. This

indicates that the dislocations should be accompanied by a

large number of phasons, which is in accordance with the

experimental results (see below).

Dislocations with different SAC are found at different

densities in the material. Dislocations with an SAC of t5 most

frequently occur and the other types follow a distribution

curve which drops rapidly for higher and lower values. The

distribution curve depends on the degree of plastic deforma-

tion of the sample. Fig. 8 shows the normalized frequency of

occurrence Nz of twofold Burgers vectors with a certain strain

accommodation parameter for undeformed material (reference)

and samples plastically deformed at 760 1C between 0.24%

and 10.9%. The maximum of all distribution curves remains at

t5, i.e. for all deformations Burgers vectors with a parallel-

space length of 0.183 occur most frequently. However, the

shape of the curve changes, and the center of weight clearly

shifts to higher average SAC with increasing plastic deforma-

tion. The average character of the dislocations thus changes

with increasing strain towards a larger phason component.

A similar result for samples deformed at 800 1C study was

obtained by Rosenfeld et al.35 These authors also demon-

strated that the Burgers vector distribution does not depend

on the deformation temperature.

It has been demonstrated by Wang et al.41 and Wollgarten

et al.42 that the change of average dislocation character towards

Fig. 7 TEM micrograph of a uniaxially deformed Al–Pd–Mn single

QC. The image is a composite of two overlapping micrographs to

enlarge the field of view.

Table 1 Twofold Burgers vectors of dislocations in icosahedral
Al–Pd–Mn. a0 = 0.645 nm is the lattice parameter of the 6D
hyperlattice, a0 ¼ a0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ tÞ

p

z B bJ |bJ|/nm |b>|/nm

t3 a0 h%11100%1i a0 h%1/1 2/%1 1/0i 0.296 1.254
t5 a0 h%21100%2i a0 h%2/1 3/%2 1/%1i 0.183 2.030
t7 a0 h%32200%3i a0 h%3/2 5/%3 2/%1i 0.113 3.281
t9 a0 h%53300%5i a0 h%5/3 8/%5 3/%2i 0.070 5.321

Fig. 8 Normalized frequency of occurrence Nz of twofold Burgers

vectors with a certain strain accommodation parameter for unde-

formed material (reference) and samples plastically deformed at 760 1C

between 0.24% and 10.9%.
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higher phason components can arise due to dislocation reac-

tions taking place during the deformation process. The

authors demonstrate that reactions transferring dislocations

with low SAC to dislocations with higher SAC at constant

physical-space orientation are in all cases energetically favour-

able. For example, a reaction transferring a twofold disloca-

tion of type t3 into two twofold dislocations of type t5 and t7 is
found, which can account for the distribution change in Fig. 8.

It is notable that in this reaction, for the initial dislocation a

fraction of about 5% of the total energy is stored in the phason

component, while for the product dislocations a value of about

30–40% is found.

The Burgers vector results compare well to findings in the

icosahedral phase of the system Al–Cu–Fe. Dislocations of

type t3 with twofold a0 h%11100%1i Burgers vectors43–45 as well as
threefold and fivefold Burgers vectors were identified.46 Since

in these studies only individual dislocations were charac-

terized, no conclusions on the relative frequencies of occur-

rence of different types of Burgers vector can be drawn.

In the early microstructural studies,20,35,47 the mode of

dislocation motion was interpreted in terms of glide. This is

not due to factual opinion but to historical reasons. In crystal-

line materials for the vast majority of cases dislocations are

known to move by pure glide, while only in a few exceptions

climb is found. Therefore it was initially obvious and natural

to discuss QC plasticity in terms of glide. Accordingly, apparent

glide planes were determined as the plane spanned by the

dislocation line direction and the Burgers vector. First indica-

tions calling these analyses into question were found by Wang

et al.,48 who analyzed planar faults, trailed by dislocations,

and found that the fault normals were parallel to their

displacement vectors. A dedicated study by Caillard et al.49

involving a fringe-contrast analysis later unambiguously

established that dislocations in icosahedral Al–Pd–Mn at high

temperatures move by pure climb, i.e. the Burgers vector is

perpendicular to the plane of dislocation motion. This was

later confirmed in several studies34,37 and also interpreted in

terms of tiling models. It was shown25 that glide motion of

dislocations in a tiling creates heavily distorted zones that

cannot be retiled with the tiles available. On the other hand

climb motion only leads to the removal or insertion of

‘‘worms’’ (the tiling equivalent to a crystal lattice plane), which

does not involve new tiles and can be interpreted in terms of

phason defects. In low-temperature deformation experiments

under high-pressure confinement38 pure climb dislocation

movement was demonstrated at 300 1C.

Nevertheless, there are still open questions concerning the

mode of dislocation motion in icosahedral QCs. First, in

icosahedral Al–Pd–Mn high-impact deformation experiments48

revealed Burgers vectors in the plane of dislocation motion

indicating glide motion under these particular conditions of

high strain rate and low-deformation temperature, and glide

was also found in low-temperature deformation experiments in

a shear cell.50 Second, in icosahedral Zn–Mg–Dy quasicrystals,

glide is identified as the prominent deformation mode. This will

be discussed in more detail in Section 7.

In summary, under regular controlled deformation conditions in

icosahedral Al–Pd–Mn, dislocations most frequently have twofold

Burgers vectors with a physical-space length of 0.183 nm.

The dislocations move by climb on twofold, threefold and

fivefold planes.34 In in-situ experiments37,51 straight disloca-

tion segments along twofold and pseudo-twofold directions

are found. This indicates structural anisotropy, which was

interpreted in terms of Peierls-valley models52,53 and cluster

friction.20 The cluster-friction model accounts for the char-

acteristic features of high-temperature QC plasticity, and can

in a constitutive-equation formulation54 also quantitatively

account for the experimentally observed work softening and

dislocation density evolution.55

Phasons

In the previous section we have seen that the average phason

component of dislocations in deformed icosahedral Al–Pd–Mn

increases with increasing plastic strain. This indicates that

phason defects are involved in the deformation process. It is

therefore useful to investigate the role of phasons in QC

plasticity.

Phasons in reciprocal space

In a linear approximation phason-type displacement fields

Dx> can be described by56

Dx? ¼ �MT
? � xk (7)

where x> is the physical space coordinate, M> is a 3 � 3

matrix, the so-called phason matrix, and the superscript T

denotes transposition of the matrix. The displacement fields

described by (7) lead to deviations DgJ of the positions of

diffraction spots in reciprocal space according to57

DgJ = M>�g>, (8)

where g> is the perpendicular-space component of the reci-

procal lattice vector. In order to understand the consequences

of (8) for electron diffraction patterns of phason strained QCs,

let us consider the construction of the QC reciprocal lattice by

means of higher-dimensional crystallography.

In a kinematic approximation the diffraction pattern can be

calculated as the Fourier transform of the direct hypercrystal,

i.e. the direct hyperlattice and its decoration. The transforma-

tion of the direct hyperlattice leads to a reciprocal hyperlattice,

which is convoluted with the transformation of the atomic

hypersurfaces. In the simplest form of the intersection pro-

cedure, we use a box function for the description of the

hypersurfaces. Its Fourier transform is then a sinc function,

i.e. of the form sin(x)/x. Therefore, the reciprocal hypercrystal

consists of a higher-dimensional lattice, where each lattice

point is decorated by a sinc function. This is schematically

represented for the 1-dimensional case in Fig. 2d. The QC

diffraction pattern is constructed in analogy to the direct

crystal: a second rotated coordinate system, defining reci-

procal physical space and reciprocal perpendicular space is

introduced, and the intersections of the Fourier transformed

hypersurfaces, which have an extension only in reciprocal

perpendicular space, with reciprocal physical space defines

the QC reciprocal lattice points. Note that, since the sinc

function extends infinitely, this procedure yields an infinitely

dense occupation of reciprocal lattice points. This is obviously
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in agreement with the fact that a QC in direct space has an

infinitely large periodicity.

Experimentally, nevertheless a discrete diffraction pattern is

obtained, since the intensity of the reflections is weighted by

the function value of the Fourier transformed hypersurfaces at

the intersection. The envelope of the sinc function, here

sin(q>)/q>, decreases as 1/|q>|2, where qJ and q> are the

respective coordinates in reciprocal space. Therefore, the

reciprocal lattice points, corresponding to a small q> exhibit

a reflection with a high intensity, while those corresponding to

very a high q>, which is obviously the case for the majority of

reciprocal lattice points, exhibit reflection intensities so low

that they cannot be recorded within normal laboratory time-

scales. Fig. 2d shows the construction of the diffraction pattern

corresponding to the 1-dimensional QC of Fig. 2a. The radius

of the circles representing the reflections corresponds to the

respective intensity.

With these considerations and eqn (8) we understand that

the presence of phason strain causes characteristic reflection

shifts in electron diffraction patterns. The reflections with the

smallest intensities correspond to the highest g> and thus

suffer the strongest shifts. The shifts can be detected as

deviations from the perfect alignment along straight systematic

rows, for example by inspecting electron diffraction patterns at

grazing view. A zig-zagged arrangement of spots occurs, which

can be regarded as fingerprint behaviour of phason strain.

Fig. 9 depicts sections of a diffraction pattern of icosahedral

Al–Pd–Mn in grazing view. Fig. 9a and b show systematic

rows of an undeformed reference sample and a sample

deformed by 0.25% at 760 1C, respectively. In the undeformed

reference sample, all reflections are perfectly aligned along the

systematic row (dotted line). In the deformed sample, on the

other hand, clear deviations from the systematic rows are seen,

forming a zig–zagged arrangement of reflections. Obviously

the spots with the lowest intensities suffer the strongest shifts,

which, as described above, is a distinguishing feature revealing

the presence of phason strain in the material. The arrows

indicate the ideal position in (a) and the deviated position in

(b) of a weaker spot.

The deviation DgJ of the reflections can be measured

quantitatively by comparison with a calculated ideal diffraction

pattern. The results for a single systematic row are depicted in

Fig. 10. In the leftmost panel the magnitude of the measured

spots shifts |DgJ| in an undeformed reference sample are plotted

against the magnitude of their perpendicular-space reciprocal

vector |g>|. The shifts are very small, which corresponds with

the visual inspection (Fig. 9a). The middle panel shows the

same for reflections in a sample deformed by 0.25%. The shifts

are significantly larger than in the reference sample, and their

amount linearly depends on |g>|. If the same shifts are plotted

against the magnitude of their physical-space reciprocal vector

|gJ| (rightmost panel), no linear dependence but a rather

unsystematic behaviour is found. These results show that

indeed linear phason strain is present in the deformed sample,

and the calculation of the phason matrix is possible according

to eqn (8). A typical result for a phason matrix is

M? ¼ 10�3 �
6:9 �1:0 �0:8
�0:5 1:2 �1:1
M31 M32 M33

0
@

1
A

Note that it is generally impossible to determine the full matrix

by this method, since the diffraction patterns only allow for the

detection of the shifts perpendicular to the direction of view.

According to the choice of the coordinate system, which is

defined by the parallel orientation of the foil normal and the

(0/0 0/0 0/2) direction, it is impossible to determine the third

row of the matrices M>. Measurements in different sample

areas and along different systematic rows yield matrices which

have comparable entries within the measurement accuracy of

the experiment. Significant is the entry M11, which varies

between 5.7 and 9.1 in different experiments and takes an

average value of 7.23.

Fig. 9 Systematic row in a diffraction pattern of undeformed (a) and

plastically deformed (b) icosahedral Al–Pd–Mn. In (b) deviations from

the ideal spot positions due to the presence of phason strain are seen.

The dotted line is a guide to the eye, indicating the course of the ideal

systematic row.

Fig. 10 Spot shifts |DgJ| in undeformed (a) and deformed (b) and (c) icosahedral Al–Pd–Mn plotted as a function of perpendicular-space

reciprocal vector |g>| (a) and (b) and physical-space reciprocal vector |gJ| (c). The solid line in (b) represents the linear increase of |g>|

corresponding to the phason matrix M>.
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The observed spot shifts and the phason matrices deter-

mined show a clear dependence on the amount of plastic

deformation. The undeformed reference samples, as shown

above, do not show visible spot shifts. Accordingly the entries

in the phason matrix are small and the entry M11 is zero.

A sample deformed by 0.15% shows visible spot shifts. The

phason matrix has entries in between those of the reference

sample and that deformed by 0.25% and we find M11 = 2.3.

It is apparent that the phason matrix determined is not

symmetric. Matrices describing the transformation of icosa-

hedral symmetric structures into tetrahedral, pentagonal or

trigonal symmetry have been explicitly given by Ishii.58 Owing

to the experimental uncertainties, it is not possible to decide

whether the matrices determined can be identified with those

described by Ishii.

Phasons in direct space

Phason defects can be observed in direct space by means of high-

resolution TEM. Fig. 11a is a high-resolution scanning TEM

micrograph of icosahedral Al–Pd–Mn along a fivefold direction.

Close inspection of the image reveals that some lattice planes

do not continue throughout the image but fade out and are

continued by neighboured lattice planes that fade in. This can

be better seen at a grazing angle as in Fig. 11b. One example of

a discontinuous lattice plane is marked by an arrow. These

defects are referred to as jags and can straightforwardly be

interpreted in terms of phasons: in an ideal QC each set of

lattice planes follows a sequence of short and long distances,

the order of which follows a Fibonacci sequence. A jag in a

lattice plane locally changes the order, and leads to a deviation

from the ideal sequence, which directly complies with the

definition of a phason. In high-resolution TEM images of

dislocations, jags surrounding the core corresponding to the

phason component of the Burgers vector are found (Section 3,

Fig. 4c).

Planar accumulations of phasons can also lead to the

occurrence of characteristic fringes in diffraction-contrast

TEM. Such a situation can be found in the wake of disloca-

tions that have moved at relatively low temperatures. Fig. 12a

shows a bright-field Bragg-contrast image of a planar defect

imaged using a (%1/0 0/1 0/0) reflection (inset). During the

growth process of the QC, the material is subjected to thermal

stresses. This induces some amount of dislocation motion,

which under these conditions leads to the creation of planar

defects. Their contrast closely resembles that of an ordinary

stacking-fault, but by suitable in situ annealing experiments it

can be shown that the faults consist of a planar arrangement of

a high local density of phasons.

Fig. 12b shows the same specimen area as in (a) after

heating the specimen to 580 1C. The surface of the specimen

now shows a cloudy contrast due to degradation of the sample

during heating. Nevertheless, the fringe contrast of the fault as

well as the leading dislocation (arrow) are still clearly visible.

When the heat treatment is resumed over longer durations, the

fringe contrast gradually weakens and eventually disappears.

This process does not involve any dislocation motion or size

changes of the contrast. Fig. 12c shows the same specimen

area imaged under the same conditions and with the same

diffraction vector (inset) after 100 min at 580 1C. The fringe

contrast has entirely vanished. Quantitative measurements

show that the contrast decays exponentially with a temperature

dependent time constant, which in the present case is about

1000 seconds.

During vanishing of the fringes, the contrast and position of the

dislocations remain completely unchanged. An ordinary stacking

fault or similar structural defect cannot disappear without

movement of the trailing dislocations and the disappearance

Fig. 11 High resolution scanning TEM micrograph along a fivefold

direction displaying jags (arrow) due to the presence of phason strain (a);

the same area in grazing view along the vertical image direction (b).

Fig. 12 Bright-field Bragg-contrast image of a planar defect in icosahedral Al–Pd–Mn (a), the same specimen area after heating the specimen to

580 1C (b) and after 100 minutes at 580 1C (c).
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cannot appear gradually. The observed particular contrast behavior

upon annealing can only occur since the planar faults consist of

an agglomeration of phason defects, and can be dissolved by

essentially independent movement of the latter into the bulk.59

The introduction of phasons by moving dislocations is

straightforwardly related to the quasiperiodicity of the material.

In any ordered nonperiodic structure, the motion of a dislocation

for strictly geometrical reasons must alter the structure in its

wake: due to the lack of translational symmetry, the Burgers

vector of a dislocation cannot be translationally invariant and

hence, upon its movement, a planar defect must be created. The

nature of the defect created for the case of quasicrystals was

described by Socolar et al.,9 who demonstrated that an agglo-

meration of local matching-rule violations is introduced in the

plane swept over by a dislocation. In other words, a moving

dislocation in a quasicrystal creates a plane of phason defects.

This finding was confirmed bymolecular dynamics simulations.60

Independent experimental characterizations of the planar faults

have revealed their phason-type nature. The matching-rule viola-

tions along lattice planes perpendicular to the plane of disloca-

tion motion were directly imaged by high-resolution TEM48 and

dedicated fringe-contrast analysis experiments49 unambiguously

demonstrated the phasonic nature of the faults.

The exponential disappearance of the contrast shows that

the underlying mechanism is a first order reaction, which

indicates a diffusive dissolution of the faults. We can therefore

draw the following conclusions: at very low temperatures the

kinetics of the diffusion process is low, so that the phason

defects introduced remain essentially within the plane of

dislocation motion. The situation then corresponds to the

dislocation simulation depicted in Fig. 4b and d and the

phason defects can directly be imaged by TEM as fringe

contrasts (Fig. 12a and b). At high temperatures, on the other

hand, the phason-diffusion kinetics becomes so fast that no

permanent defect planes are created. The defects immediately

diffuse into the bulk, and the moving dislocation is locally

surrounded by an increased phason density. The situation then

corresponds to the dislocation simulations depicted in Fig. 4a

and c and the phason defects cannot be directly imaged by

TEM. Dislocations appear as single linear defects without

attached planar defect (Fig. 7). Nevertheless, phason defects

are continuously produced during dislocation motion and

hence plastic deformation leads to their presence and accu-

mulation in the structure. In specimens deformed under these

conditions, phasons can be detected by reflection shifts in

electron diffraction patterns (Fig. 9b).

The continuous accumulation of phason defects during

dislocation motion has considerable effects on the macro-

scopic plastic behavior of icosahedral quasicrystals. It leads

to a decreasing resistance against dislocation mobility, which,

in combination with fast dislocation annihilation55 is a major

ingredient of the characteristic strain-softening phenomenon

of icosahedral quasicrystals.

Dislocations in icosahedral Zn–Mg–RE

quasicrystals

A new icosahedral phase was discovered by Luo et al.61 in

the Zn–Mg–Y alloy system. Isostructural phases exist in

the systems Zn–Mg–RE, where RE stands for the rare-earth

metals Dy, Ho, Er, Tb, and Gd. As icosahedral Al–Pd–Mn,

discussed above, these phases have a face-centred hyperlattice

and the physical-space atomic positions can be constructed via

the intersection procedure from a 6-dimensional hyperlattice.

Nevertheless, substantial differences are found in the plastic

behaviour and in the defect structures.

Detailed microstructural investigations were carried out on

the icosahedral phase Zn–Mg–Dy. Fig. 13 shows a bright-field

Bragg-contrast image of the typical defect structure in a

sample deformed up to a plastic strain of about 0.2%, which

corresponds to the upper yield point. A high density of planar

faults is observed. The planar faults could be identified as

antiphase boundaries (APBs).62 The APBs are created by

moving dislocations due to the particular hyperlattice structure

of icosahedral Zn–Mg–Dy. The inset of Fig. 13 shows a defect

arrangement with clearly visible dislocation lines (arrows)

terminating the APBs in a heat-treated sample, which contains

similar defects at lower density.

A structure model for icosahedral Zn–Mg–Ho represented

by a higher-dimensional unit cell was proposed by Ohno and

Ishimasa.63 The face-centred unit cell contains five spherical

hypersurfaces. The hyperlattice nodes n0 and n1 (cf. Fig. 2b)

are occupied by hypersurfaces representing Zn and Mg atom

positions, respectively. In contrast to the unit cell of icosa-

hedral Al–Pd–Mn, the bc2 position is also occupied and an

additional edge-center position is introduced. The model is

more elaborate than that of icosahedral Al–Pd–Mn but does

not describe the structure as accurate. Short atomic distances

in physical space occur and the overall reliability factor of the

model is about 24%. An improved model including an ellip-

tical edge-center position was presented later on,64 which also

did not lead to satisfactory results.

Even though the available models have their shortcomings,

we can see that the hyperlattice is an ordered face centred

structure. The physical-space structure therefore65 possesses

corresponding site-occupation order and the diffraction patterns

contain superstructure reflections along particular directions,

Fig. 13 Bright-field Bragg-contrast image of the typical defect structure

in icosahedral deformed Zn–Mg–Dy sample. The inset shows a similar

defect arrangement in a heat-treated sample, the arrows point at

dislocation lines. The scale bar corresponds to 200 nm in the main

image and 400 nm in the inset.
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in this case threefold and fivefold. The presence of the ordered

structure allows for the formation of APBs as boundaries

between different order domains.

The planar faults in plastically deformed icosahedral

Zn–Mg–Dy (Fig. 13) can be imaged by diffraction contrast

only using superstructure reflections. Using fundamental

reflections they are out of contrast. This identifies them

undoubtedly as APBs, and also implies that the dislocations

terminating the faults correspond to hyperlattice superpartial

dislocations.

The Burgers vectors of individual dislocations were deter-

mined by contrast-extinction techniques.66 In all cases, the

Burgers vectors were found to be parallel to twofold directions

of the QC lattice. Between the Burgers vectors and the line

direction most frequently an angle of 601, corresponding to the

angle between twofold directions, is observed and thus the

dislocations are of mixed edge/screw type. CBED or multiple-

contrast experiments have not been carried out, so the length

of the Burgers vectors is unknown.

In order to determine the mode of dislocation motion, the

plane normals of the APBs were determined and brought into

relation with the Burgers vector direction. In 60% of the cases,

relative angles of 901 were found in deformed samples, which

shows that these dislocations move by pure glide. In another

20%, angles between 751 and 801 were observed, which also

correspond to a very high glide component. These findings are

corroborated by the observation that these APB planes and

the Burgers vector directions are all oriented close to a 451

cone around the compression axis. The corresponding glide

systems have Schmid factors close to 0.5, i.e. the activated slip

systems resolve maximum shear stress. On the other hand, in

the remaining 20% of cases, angles between APB normals and

Burgers vectors between 321 and 641 were found. These

dislocations have a considerable climb component and in

accordance with this observation, we found a number of

APB normals parallel to the compression direction. On these

planes the resolved shear stress is zero, and only dislocations

moving with a climb component can contribute to strain.

Fig. 14a is a high-resolution scanning TEM micrograph

of a dislocation in icosahedral Zn–Mg–Dy along the fivefold

[0/0 1/0 0/1] direction. The dislocation is imaged almost end

on, i.e. its line direction is approximately parallel to the

electron beam. The dislocation core is located in the boxed

area, where a region of deviated structure can be seen. Outside

of the box, the perfect icosahedral structure is resolved. The

exact position of the dislocation cannot be located due to the

rather large distorted region and a slight misorientation of

the line direction. Fig. 14b is a fringe pattern of the boxed

region in (a), obtained by back-Fourier transformation using a

twofold (4/4 0/0 0/0) reflection. Clearly an inserted halfplane

in the lower right corner is seen (arrow). Fig. 14c shows an

analysis of the boxed region in terms of a rhomb-pentagon

tiling. The tiling is started in the perfect region outside the box

and continued into the distorted region. The boxed area is tiled

using regular pentagons and rhombs, plus two additional tiles.

The latter are boat- and crown-shaped and are topologically

equivalent to pentagons, in the sense that they are constructed

using the same edges as the pentagon only in a different order.y
The entire area can be covered except a small triangular area

(dark lines), which corresponds to the dislocation core. When

the three closest edges of an undistorted ideal pentagon are

used to construct the triangle a closure failure occurs, which

corresponds to the projection of the Burgers vector on the

image plane. We obtain a Burgers vector projection parallel to

the twofold [%1/0 1/1 0/%1] direction with a physical-space length

of about 0.191 nm. This in-plane Burgers vector component is

of reasonable length and corresponds well to the values found

for icosahedral Al–Pd–Mn.

Finally, let us discuss the question, why APBs are observed

so dominantly in icosahedral Zn–Mg–Dy, while this is not the

case with icosahedral Al–Pd–Mn. Both phases do have face

centred hyperlattices, but the decoration of the 6-dimensional

unit cell by atomic hypersurfaces is very different. In parti-

cular, for Zn–Mg–Dy the hypersurfaces on the nodes n0 and

n1 correspond to different atomic species, n0 entirely to Zn and

n1 entirely to Mg and the difference in their extension is about

31%. In Al–Pd–Mn these nodes are rather similar: both n0 and

n1 have an inner shell corresponding to Mn, and an outer shell

corresponding to Al and their outer radius differs only by 5%.

The main difference is that the hypersurface on the n1 node has

an additional intermediate shell corresponding to Pd. Hence,

only a small fraction of atoms in physical space is affected by

these differences, and accordingly the contrast of the APBs will

be weaker than in Zn–Mg–Dy. However, if a superstructure

reflection is used for imaging, they should be visible. Indeed,

Mompiou et al.38 observed APBs between pairs of dislocations

with fivefold Burgers vectors, which were identified as split

superdislocations.

Conclusions

The field of dislocations in QCs has, over the past three

decades, developed into a well explored and solidly founded

domain of materials science. In particular the icosahedral

Al–Pd–Mn phase has developed into a prominent exemplary

system, rendered possible by the availability of large single

Fig. 14 High resolution scanning TEM micrograph of a dislocation

in icosahedral Zn–Mg–Dy along a fivefold direction (a). Back Fourier

transformed fringe pattern of the boxed area displaying an inserted

fringe (b). Tiling analysis employing a rhomb-pentagon tiling (c), the

dislocation core is represented by a triangle (black).
y The boat-shaped tile has seven edges, but two of these cancel as they
are followed in opposite direction in a closed circuit around the edges.
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crystals of high structural quality. The microstructural as well

as the macroscopic plastic properties of this phase have been

well characterized, and novel mechanisms, directly related to

the quasiperiodicity of the structure, have been identified.

Most obvious is the contribution of phasons. Phasons are

pivotally involved in the formation of dislocations, and the

counteraction of their dynamics with that of the other pro-

cesses taking place during deformation dominates the defor-

mation mechanism. This leads to salient features in the

macroscopic mechanical properties such as the deformation-

softening phenomenon, which discriminates the plasticity of

icosahedral QCs from most other ordinary metals. In order to

account for these new aspects novel concepts were developed,

such as the higher-dimensional description of structure and

defects, and the phason component of the Burgers vector.

These concepts are generally required for the description of

QC plasticity and come into play also for other types of QC,

e.g. decagonal phases.

Besides icosahedral Al–Pd–Mn, only one further icosa-

hedral QC has been extensively explored – the icosahedral

phase in the system Zn–Mn–Dy. In this phase, as a result of

the different structure type, different phenomena are observed,

e.g. the dominant presence of APBs and dislocations moving

by glide. This shows that a solid understanding of the plasti-

city of one single QC phase is not sufficient for a general

understanding of the characteristic phenomenological differ-

ences between the plasticity of QCs and periodic crystals.

Hence, the approach of further QC phases is essential for

future research. In particular this concerns the new class of

binary and pseudo-binary icosahedral phases based on CdY,67

which is based on a different cluster type. Also fully unaddressed

concerning plastic properties and defects are one-dimensional

QCs, which structurally consist of a quasiperiodic stacking of

periodic planes. Stable phases of this class of QCs have e.g. been

found in the Al–Pd–Fe alloy system.68

In recent years, the concepts developed for the description

of QC defects and plasticity have turned out to be extremely

useful for the approach of complex metallic alloys (CMAs).

These materials are periodic, and their structure is characterized

by a high number of atoms per unit cell.69 They are closely

related to QCs in the sense that their local order is organized in

the form of icosahedral clusters, which in some cases are

almost identical to those in corresponding QCs. In the CMA

phase e-Al–Pd–Mn a novel type of defect, referred to as

metadislocation, was discovered,70 which could only be

adequately described by applying the concepts of QC plasticity:

metadislocations are associated to phason defects, which are

involved in their formation and dynamics. Metadislocations

were later on discovered in further CMAs, e.g. in T–Al–Mn–Pd71

and Al–Pd–Fe.72 and seem to emerge as a general concept for

the plastic deformation process in complex metal structures.73
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53 U. Messerschmidt, D. Häussler, M. Bartsch, B. Geyer,
M. Feuerbacher and K. Urban,Mater. Sci. Eng., A, 2000, 294, 757.

54 M. Feuerbacher, P. Schall, Y. Estrin and Y. Bréchet, Philos. Mag.
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