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Abstract

The subject of the thesis is to study a crystal field and spin-orbit coupling effects on multi-
plets observed in open d- and f -shells. The Coulomb interaction is considered by building
the electrostatic matrix, where the required Gaunt coefficient are calculated recursively.
Continuous fractions are used to produce Gaunt coefficients in the form of square roots of
rational numbers to verify them. L-S coupling between orbital and spin angular momenta
is assumed. Due to the spherical symmetry of the Coulomb potential, orbital and spin
angular momenta are conserved separately. The corresponding quantum numbers are used
to classify the eigenstates of the electrostatic matrix. These are compared with the eigen-
states of simplified approximations to the electrostatic matrix. Then a cubic or tetragonal
crystal field is introduced to electrostatic Hamiltonian and the interplay of Hund’s rule
and crystal-field splitting is studied. Finally spin-orbit coupling is added.

Keywords: Multiplets, Gaunt Co-efficients, Coulomb tensor, Model Hamiltonian, Crystal-
field splitting
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Many Body Problem
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2.1. The Hydrogen Atom

2.1.1. Schrödinger equation for the hydrogen atom

The simplest one-electron system that we consider is that of atomic hydrogen [1]. The
hydrogen atom comprises of one electron, and the nucleus contains a proton. Both these
particles have a set of co-ordinates associated with them: (xe, ye, ze) for the electron and
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(xp, yp, zp) for the proton. The wave-function depends on all six co-ordinates. The com-
plexity is introduced by the fact that the electron and the proton cannot be treated inde-
pendently, as their co-ordinates are linked through the electrostatic potential between the
electron and the proton. This is resolved by choosing an appropriate co-ordinate system,
which will reduce the number of independent co-ordinates. We work in the SI units for a
while. The Hamiltonian for this system can be written as

Ĥ = − ~2

2me
∇2
e −

~2

2mp
∇2
p + V (|re − rp|) (2.1)

where the Laplacian for the electron is defined as

∇2
e ≡

∂2

∂x2e
+

∂2

∂y2e
+

∂2

∂z2e
(2.2)

and similarly for the proton. The electrostatic interaction between the electron and the
proton is given by

V (|re − rp|) = − e2

4πε0

1

|re − rp|
(2.3)

The eigenenergies and corresponding wave-functions can then be obtained by solving the
Schrödinger equation for this Hamiltonian

Ĥψ (re, rp) = Eψ (re, rp) (2.4)

The electrostatic interaction is dependent, not on the absolute positions of the electron
and the proton, but on the the relative displacement between them. Now we switch to the
center of mass co-ordinate system. We define a relative position vector

x = xe − xp, y = ye − yp, z = ze − zp (2.5)

which would then mean that

r =
√
x2 + y2 + z2 = |re − rp| (2.6)
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We need three more co-ordinates to complete the six we originally had. The position of
the center of mass (R) is chosen.

R = Xi + Y j + Zk =
mere +mprp
me +mp

(2.7)

We need to recast our Hamiltonian in terms of the new co-ordinate vectors R and r. Using
the chain rule for derivatives, after some mathematical manipulation, we find that

1

me

∂2

∂x2e
+

1

mp

∂2

∂x2p
=

1

me +mp

∂2

∂X2
+
me +mp

memp

∂2

∂x2
(2.8)

and similarly for the other two directions. We define the total mass M = me + mp and
then a reduced mass µ =

memp

me+mp
and rewrite the Hamiltonian as

Ĥ = − ~2

2M
∇2

R −
~2

2µ
∇2

r + V (r) (2.9)

We now need to solve the Schrödinger equation (2.4) to find the wave-functions and eigenen-
ergies. At this point, we make an ansatz: the wave-function ψ is separable into two parts
each dependent on one of the independent co-ordinates i.e.

ψ (R, r) = χ (R)ϕ (r) (2.10)

We can substitute this into the Schrödinger equation

(
− ~2

2M
∇2

R −
~2

2µ
∇2

r + V (r)

)
χ (R)ϕ (r) = E χ (R)ϕ (r)

⇒ − ϕ (r)

[
~2

2M
∇2

Rχ (R)

]
+ χ (R)

[
− ~2

2µ
∇2

r + V (r)

]
ϕ (r) = E χ (R)ϕ (r) (2.11)

Then we divide the equation by χ (R)ϕ (r) to get

− 1

χ (R)

~2

2M
∇2

R χ (R) = E − 1

ϕ (r)

[
− ~2

2µ
∇2

r + V (r)

]
ϕ (r) (2.12)
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Since the left hand side and the right hand side depend on independent variables R and r,
they can be equal in general, only if they are equal to some constant. Let us denote this
constant by ECM , which means that

− ~2

2M
∇2

R χ (R) = ECM χ (R) (2.13)

and

[
− ~2

2µ
∇2

r + V (r)

]
ϕ (r) = EH ϕ (r) (2.14)

where E = ECM + EH

The first of these equations (2.13) is clearly just a free particle Schrödinger equation, the
wave-functions of which, after normalisation, are given by

χ (R) =
1√

(2π~)3
exp (iK ·R) (2.15)

and the eigenergies are given by

ECM =
~2K2

2M
(2.16)

The eigenenergy corresponds to the center of mass of the electron-proton system, and hence
gives the energy of the motion of the atom through space. The equation (2.17) describes
the motion of the electron and the proton relative to each other within the hydrogen atom.
This is the equation of greater interest for us. In order to simplify the notation a bit
further, we now switch to atomic units (see Appendix A). Since mp � me, we conclude
that µ ≈ me = 1. In this system of units we can rewrite (2.14) as

[
−1

2
∇2

r + V (r)

]
ϕ (r) = EH ϕ (r) (2.17)

To solve for the internal states of the hydrogen atom, we exploit the spherical symmetry
of the eigenvalue equation and transform it into spherical co-ordinates. The Laplacian can
be written as
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∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂2φ

]
(2.18)

We now tackle this problem in two steps. First we introduce the angular momentum
operators to look at how the angular dependence of the Schrödinger function can be solved
for, and then we deal with the radial part.

2.1.2. Angular momentum operators

We recall from classical mechanics that the angular momentum L for a body moving at
momentum p and located at a position r with respect to some origin is defined as

L = r× p (2.19)

The quantum mechanical angular momentum operator is defined in analogy to the classical
variant as

L̂ = r̂× p̂ = r× (−i∇) = −ir×∇ (2.20)

Then, the components of the angular momentum will be

L̂x = −i
(
y
∂

∂z
− z ∂

∂y

)
L̂y = −i

(
z
∂

∂x
− x ∂

∂z

)
L̂z = −i

(
x
∂

∂y
− y ∂

∂x

)
(2.21)

In the presence of an external field, the angular momentum is, in general, not conserved.
Rather, the conservation properties depend on the symmetry of the external field. In
our derivation, in the center of mass frame (2.17), we have a centrally symmetric field,
and hence all the radial directions are equivalent. Therefore, the angular momentum is
conserved.

Starting from the Hermiticity of the position and momentum operators and from the
commutation relations between the position and momentum operators, it can be shown
that the individual components of the angular momentum operator are Hermitian and that
they hold the following commutation relations
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[
L̂x, L̂y

]
= iL̂z

[
L̂y, L̂z

]
= iL̂x

[
L̂z, L̂x

]
= iL̂y (2.22)

It will be useful to transform the angular momentum operators into spherical co-ordinates
too. So we substitute x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ. Using the chain
rule for derivatives, we can write that

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
(2.23)

and similarly for the y and z components. After some work, it can be shown that

L̂x = i

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(2.24)

L̂y = i

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(2.25)

L̂z = −i ∂
∂φ

(2.26)

We can immediately solve equation (2.26) to find the eigenvalues and eigenfunctions of the
L̂z operator. Let the eigenvalues be m and the eigenfunctions be Φ (φ)

L̂zΦ (φ) = mΦ (φ) (2.27)

The eigenfunctions Φ (φ) are given by exp (imφ). The choice of the z-axis is arbitrary, i.e.
we could have chosen the x or the y axis as the polar axis, and then we could have obtained
similar results. It is not surprising that the expressions for the x and y components of
angular momentum are different from that of the z component, because of the commutation
relations between the operators(equation (2.22)).

Another operator we need to consider is the L̂2. It is simple, but cumbersome, to calculate
this operator, but it can be shown that

L̂2 = L̂2
x + L̂2

y + L̂2
z

= −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
= −∇2

θ,φ (2.28)
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We can also write an eigenvalue equation for L̂2. Since the operator depends on θ and φ,
we can assume that the eigenfunctions will be functions of both θ and φ. So

L̂2Y (θ, φ) = l (l + 1)Y (θ, φ) (2.29)

The notation Y (θ, φ) for the eigenfunctions and l (l + 1) for the eigenvalues is pre-emptive.
Now L̂2 has some nice properties. It commutes with each of L̂x, L̂y and L̂z. That means

that L̂2 and L̂z have common eigenfunctions. We have already found the eigenfunctions of
L̂z in equation (2.27). The form of the L̂z operator suggests a separation of the variables
θ and φ in the eigenfunctions of L̂2. We anticipate such a separation and make an ansatz

Y (θ, φ) = Θ (θ) Φ (φ) (2.30)

Substituting this ansatz into the eigenvalue equation, then multiplying throughout by
sin2 θ, dividing by Θ (θ) Φ (φ) and then rearranging the terms, we get

1

Φ (φ)

d2Φ (φ)

dφ2
= −l (l + 1) sin2 θ − sin θ

Θ (θ)

d

dθ

(
sin θ

dΘ (θ)

dθ

)
(2.31)

From equation (2.27) we already know how to find the left hand side of this equation.
Substituting and rearranging again, we get

1

sin θ

d

dθ

(
sin θ

d

dθ

)
Θ (θ)− m2

sin2 θ
+ l (l + 1) Θ (θ) = 0 (2.32)

The above equation has known solutions, which are the associated Legendre functions
Θ (θ) = Pml (cos θ), where Pml is defined by the Rodrigues formula

Pml (x) =
1

2ll!

(
1− x2

)m
2
dl+m

dxl+m
(
x2 − 1

)l
(2.33)

These solutions require that

l = 0, 1, 2, 3, . . . ; −l ≤ m ≤ +l ( m ε Z ) (2.34)
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Thus we now know the eigenvalues and joint eigenfunctions of the L̂2 and L̂z operators.
Now we note that the operator ∇2

θ,φ is the same as the second term in the Laplacian
operator in the Schrödinger equation for the hydrogen atom (2.18), except for a factor of
1
r2

. Since the first term of the Laplacian in (2.18) is independent of angular co-ordinates,
it is easily seen that

[
∇2

r,∇2
θ,φ

]
= 0 (2.35)

Using equation (2.17) and (2.28), we can then write that

[
L̂2, Ĥ

]
= 0 (2.36)

This is a very important result, since this implies that the Hamiltonian can be simultane-
ously diagonalised with the L̂2 operator. Further, since we already know the eigenfunctions
of L̂2, they are also eigenfunctions of the Hamiltonian.

The eigenvalue equation for the hydrogen atom (2.17) dictates that

[
−1

2

{
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2
θ,φ

}
+ V (r)

]
ϕ (θ, φ) = EH ϕ (r, θ, φ) (2.37)

Looking at equation (2.37), it is evident that the function ϕ (r, θ, φ) contains the function
Y (θ, φ). This suggests to us that it could be possible to separate the r dependence of the
wave function ϕ (r) from the angular dependence. Thus, we make a second ansatz

ϕ (r) = R (r)Y (θ, φ) (2.38)

2.1.3. Radial part of the hydrogen wave-function

We now need to find the radial part of the wave-function R (r). It will be beneficial if we
recast the radial part as

ϕ (r) =
1

r
ξ (r)Y (θ, φ) (2.39)

The radial derivatives in (2.18), when applied to the radial part of ϕ (r) then become
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1

r2
∂

∂r

(
r2
∂

∂r
R (r)

)
=

1

r2
∂

∂r

[
r2
∂

∂r

(
ξ (r)

r

)]
=

1

r

∂2ξ

∂r2
(2.40)

Then, after substitution into the equation (2.17), the Schrödinger equation becomes

−1

2

Y (θ, φ)

r

∂2ξ (r)

∂r2
− ξ (r)

r3
1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y (θ, φ) +

1

r
V (r) ξ (r)Y (θ, φ)

=
1

r
EH (r) ξ (r)Y (θ, φ)

(2.41)

Using the result for the angular part of the problem we derived before, this can be simplified
to

−1

2

d2ξ (r)

dr2
+

(
V (r) +

1

2

l (l + 1)

r2

)
ξ (r) = EHξ (r) (2.42)

where we have written the partial derivatives as total derivatives because the equation
has a single independent variable r. The analysis presented here is valid for any potential
V (r) that is only dependent on r i.e. for any central potential. Depending on the nature
of the function V (r), the form of the actual differential equation and consequently, the
wave-function, changes. The nature of the wave function for the electrostatic potential in
equation (2.3) is calculated using the following method: We first attempt to isolate the
functional forms that are present in the solution wave-function by analysing the behaviour
of the differential equation in the limiting cases, i.e when r → 0 and r →∞. This leaves us
with a bunch of known functional components of the solution and an unknown component.
We substitute this into the original equation to get a new differential equation for the
unknown function. We find this function in the second step by equating it to a polynomial
power series and calculate its coefficients. Carrying out such a functional analysis for the
radial equation, we find the final result for ξ (r) and hence for R (r) = ξ(r)

r

Rnl (r) =

[
(n− l − 1)!

2n (n+ l)!

(
2

n

)3
] 1

2 (2r

n

)l
L2l+1
n−l−1

(
2r

n

)
exp

(
− r
n

)
(2.43)

For the solution to have a terminating power series, the condition on the integer n is that
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n ≥ l + 1 (2.44)

The Stern-Gerlach experiment shows that electrons have a magnetic moment, which we
term as the spin. Electrons are know to have a spin angular momentum of σ = 1

2 , so
that the spin quantum number can take the values ms = ±1

2 . We do not derive the spin
character of the electron in the hydrogen atom from the Schrödinger equation. Hence, we
add a spin function to our hydrogenic wave-function independently as function % (σ) so
that our complete wave function now looks like

ϕn,l,m,σ (r) = R (r)Y (θ, φ) % (σ) (2.45)

We now have the eigenfunctions that satisfy the Schrödinger equation for the hydrogen
atom. We can also now find the eigenenergies of the hydrogen atoms corresponding to the
different values of n.

En = − 1

2n2
(2.46)

We can also summarise the different quantum numbers and their values from the eigenval-
ues and eigenfunctions of the Schrödinger equation.

n = 1, 2, 3, . . . (principal quantum number)

l = 0, 1, . . . , (n− 1) (orbital quantum number)

m = −l,−l + 1, . . . , l − 1, l (magnetic quantum number)

It is evident that the permitted energy levels for the electron are inversely proportional to
the square of the principal quantum number n, and completely independent of the quantum
number l and m. Note that for a given value of n, we can have n different values for the
quantum number l, and for each l, we can have 2l + 1 values of m. The spin does not
affect the eigenenergies of the hydrogen atom, and the wave-functions corresponding to
the two different spin functions are degenerate. Thus we have for a given value of n, 2n2

degenerate states.

Another thing to note here is that, although we solved this equation for a hydrogen atom,
i.e. a unit nuclear charge, the same procedure is valid for any single electron system with
a larger nuclear charge Z. The eigenenergies are scaled by a factor of Z2.
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2.2. Multi-electron atoms

The main difficulty arises when we have atoms with more than one electron in the system.
With multi-electron systems, we have an additional term - the electron-electron interaction
- appearing in the Hamiltonian. This introduces additional complexity, and the problem
is no longer soluble analytically. The idea used in such problems is to replace the instan-
taneous action of electrons on one another by an averaged action of all electrons on one
electron. This method, is of course approximate. A brief discussion of this method follows.

2.2.1. Mean Field Approximation

One of the methods of finding the solutions of the Schrödinger equation for many-electron
atoms is the so-called Mean Field Approximation [3]. The Hamiltonian for the system
under consideration, neglecting the relativistic and spin-orbit interactions, is given by

Ĥ =
∑
i

[
−1

2
∆i −

Z

ri

]
+
∑
i<j

1

|~ri − ~rj |
(2.47)

where Z is the nuclear charge. The first term constitutes the single particle contribution to
the Hamiltonian, coming from the kinetic term and the interaction of the electron with the
nucleus. The second term is the Coulomb term which comprises of the electrostatic inter-
action between the electrons. This term is the one that makes the problem ”many-body”
in character and introduces more complexity into it. We need to solve the Schrödinger
equation

ĤΨ = EΨ (2.48)

for the eigenenergies E and the many-body anti-symmetrised wave-functions Ψ of the
system.

First, we observe that the electrostatic interaction coming from the closed shells in an atom
is independent of the angular co-ordinates and is spherical in nature. This can be seen
from the fact that

l∑
m=−l

|Ylm (θ, φ)|2 = constant (2.49)

In general, the contribution of open shells to the electrostatic potential is not spherically
symmetric. In the central field approximation, we enforce spherical symmetry for the
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potential contributions from the open shells, by spherically averaging this potential. We
now use this to split the Hamiltonian into two parts. A term Ui (ri) is introduced to contain
the average effect of the electrostatic interaction. This term is assumed to be spherical.
Then we rewrite the Hamiltonian as

Ĥ =
∑
i

[
−1

2
∆i −

Z

ri

]
+
∑
i<j

1

|~ri − ~rj |

=

(∑
i

[
−1

2
∆i −

Z

ri
+ Ui (ri)

])
︸ ︷︷ ︸

Ĥ0

+

∑
i<j

1

|~ri − ~rj |
−
∑
i

Ui (ri)


︸ ︷︷ ︸

Ĥ1

= Ĥ0 + Ĥ1 (2.50)

Note that Ui (ri) is subtracted from Ĥ1 to avoid double counting to give an expression that
is exactly equivalent to the one in equation (2.47). The radially symmetric part Ui (ri)
forms a large part of the electron-electron interaction, so Ĥ1 is much smaller than Ĥ0.
Then the problem can be solved by solving the Schrödinger equation for Ĥ0 and then
treating Ĥ1 as a small perturbation.

Now, Ĥ0 is centrally symmetric and hence commutes with the angular momentum. The
quantum numbers n, l, ml and ms still characterise the eigenfunctions, but the degeneracy
in l may or may not exist, as the effective potential is not Coulomb-like. The biggest
difficulty is indeed finding the exact form of the central potential Ui (ri), because it requires
the knowledge of the wave-functions of all the other electrons. An iterative approach is
needed to solve the Schrödinger equation for each electron, and then to iteratively improve
the function Ui (ri).

The self-consistent field method can be used to estimate Ui (ri). This is based on the
variational approach due to Hartree. If the electrons are considered independent, then the
total wave-function is a product state of the individual electronic wave-functions. So for
an N electron system,

Ψ ({rν}) = ϕν1 (r1)ϕν2 (r2) . . . ϕνN (rN ) (2.51)

where νi = (nlmlms) is the set of quantum numbers associated with the single-particle
wave-function. Now, this wave-function is not actually a antisymmetric Slater determinant.
The Pauli principle is preserved by imposing the condition that each set of νi is different
in at least one quantum number. This product state is used as a trial wave-function and
then using the variational principle, the energy E [Ψ ({rν})] = 〈Ψ| Ĥ |Ψ〉 is minimised. We
impose the normalisation using Lagrange parameters εi to get the Hartree equations from
the energy minimisation
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(
−∇

2

2
− Z

r

)
ϕi (r) +

∑∫
d3r′

∣∣ϕj (r′)∣∣2 1

|r− r′|
ϕi (r) = εiϕi (r) (2.52)

The second term is the term that describes the electrostatic interaction of one electron
with the charge densities of the other electrons. This term is then spherically averaged and
used as the spherical potential for solving the Schrödinger equation

Ui (ri) 7→ Ui (ri) =

∫
dΩ

4π
Ui (ri) (2.53)

This method is called the Hartree method. An improved method is called the Hartree
Fock method, where the initial guess function is not a simple product state, rather a Slater
determinant of the single particle functions.

From these calculations, it becomes evident that although the eigenstates of multi-electron
atoms are characterised by the same quantum numbers as for the hydrogen atom - (n, l,ml,ms)
- the states for a given n and different values of l are not necessarily degenerate. It is ob-
served, that the states with lower l states lying lower in energy. This gives us the Aufbau
principle, which helps us identify the ground state configuration of a multi-electron atom.

Usually we are concerned only with the electrons in the outermost shells of the atom, as
these are the ones that contribute to chemical reactions and spectra. When the outermost
shell has several electrons, the Aufbau principle is often not enough to describe the ground
state of the atom. This is because the spins and the orbital angular momenta of the
electrons couple in different ways.

2.2.2. Properties of the Central Field Hamiltonian

The Hamiltonian Ĥ from equation (2.50) possesses certain properties that are crucial to
us for finding its eigenenergies and eigenfunctions [2]. First off, the Hamiltonian describes
a system of N particles, which are indistinguishable. This means that the Hamiltonian
is invariant under an interchange of particle co-ordinates. Also, it is clear from equation
(2.50) that the Hamiltonian is invariant under an inversion (r→ −r).

Let l̂i denote the angular momentum operator for the ith electron. We define the total
angular momentum operator as

L̂ =
N∑
k

l̂k (2.54)
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We will discuss the nature of this operator and its associated properties in chapter 3. We
can recall from the derivation of the hydrogen atom (2.35) that the the angular momentum
operator commutes with the kinetic energy operator in Ĥ0. Since the spherically averaged
potential U (r) and the electrostatic interaction with the nucleus Z

ri
are just dependent on

a scalar variable r, and the angular momentum operator acts only on the angular variables,
these terms clearly commute with l̂i. So, we can conclude that

[
Ĥ0, L̂

]
= 0 (2.55)

Now we turn to the electron-electron interaction part Ĥ1. Once again, the spherically
averaged correction U (ri) commutes with l̂i. Let us now calculate the commutation relation
for the Coulomb term with the total angular momentum.

∑
i<j

1

|ri − rj |
, L̂

 =

∑
i<j

1

|ri − rj |
,
∑
k

l̂k


=
∑
i<j

∑
k

1

|ri − rj |
l̂k −

∑
i<j

∑
k

l̂k
1

|ri − rj |
(2.56)

Using equation (2.20), l̂k = −irk × ∇k. We can let the operator act on some arbitrary
function Φ,

l̂k

(
1

|ri − rj |
Φ

)
=

1

|ri − rj |
l̂kΦ +−irk ×∇k

1

|ri − rj |
Φ

⇒ l̂k

(
1

|ri − rj |

)
=

(
1

|ri − rj |

)
l̂k − irk ×∇k

(
1

|ri − rj |

)
(2.57)

Substituting this into equation (2.56), we get

∑
i<j

1

|ri − rj |
, L̂

 = i
∑
i<j

∑
k

rk ×∇k
1

|ri − rj |

= i
∑
i<j

(
ri × rj

|ri − rj |3
+

rj × ri

|ri − rj |3

)
= 0 (2.58)

Therefore we see that Ĥ1 also commutes with L̂, which helps us to conclude that
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[
Ĥ, L̂

]
= 0 (2.59)

Further, we also see that the Hamiltonian Ĥ is completely independent of the spins of the
electrons. Thus, if we define another operator Ŝ =

∑
k ŝk where ŝk is the spin operator of

a single electron, we can see that,

[
Ĥ, Ŝ

]
= 0 (2.60)

Relations 2.59 and 2.60 will help us later in defining a suitable basis for solving the elec-
trostatic Hamiltonian. Before we go into greater details about the electrostatic problem,
it will be useful for us to see more terms that can appear in the Hamiltonian, so that we
can have a complete understanding of the problem at hand.

2.2.3. Spin-Orbit Coupling

A relativistic correction term needs to be added to the Hamiltonian, especially for higher
values of nuclear charge. This term appears due to the coupling between the spin and
the orbital degrees of freedom. Qualitatively, the origin of the spin-orbit coupling can
be understood as follows. The atomic nucleus creates an electric field through which the
electron moves, which is experienced as a magnetic field by the electron in its rest frame.
The Hamiltonian will thus contain a term that describes the orientation of the electron
spin with respect to this magnetic field. This term can be written as

Ĥ2 =
∑
i

ξ (ri) l̂i · ŝi (2.61)

Now we recall from equation (2.58) that the electrostatic Hamiltonian commutes with the
L̂ and Ŝ operators. This means that it also commutes with Ĵ = L̂ + Ŝ. It can be shown
that with regards to the spin orbit coupling term, although L̂ · Ŝ does not commute with
either of L̂ or Ŝ individually, it does commute with Ĵ. Depending on the relative strengths
of the electrostatic interaction and the spin-orbit coupling, there are two distinct methods
in which the angular and spin degrees of freedom of the individual electrons couple.

• Russell-Saunders (LS) Coupling:
When Ĥ1 � Ĥ2 we first couple the orbital angular momenta(L̂ =

∑
i l̂i) and

spins(Ŝ =
∑

i ŝi) separately for all electrons, and then add the total orbital mo-

mentum and total spin to calculate Ĵ.

• jj Coupling:
When Ĥ2 � Ĥ1, we choose to couple the angular momentum of individual electrons
first ĵi = l̂i + ŝi and then combine the individual ĵi to get Ĵ =

∑
i ĵi.
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2.2.4. Crystal Fields

All the interactions we spoke of until now are valid in the case of a free atom. But once we
talk about atoms in crystalline solids, we need to consider the effects of the neighbouring
atoms (or ligands) in the crystal. We were assuming a central potential until now, but in
a molecule or in a solid, this symmetry is reduced because of the crystal field. In general,
there are two different kinds of effects that come out due to the crystal field [6]. One is
simply the Coulomb interaction with the ions surrounding the atom. The other one is a
transfer of charge from the central atom to the ligand atoms due to the overlap of their
wave-functions.

We are only going to look at the Coulomb interaction between the central atom and the
ligand. This is a static field, and is called a crystalline electric field (CEF). In the model
that we use, each ligand is approximated by a point charge, and hence, the crystal is
approximated simply by a cage of point charges.

When we consider the transition metals (especially the 3d ions), we observe that many
compounds exhibit an octahedral or tetrahedral potential due to the surrounding ligands,
which are usually non-metal ions. The direct consequence of this is that the the degenera-
cies of the electrostatic Hamiltonian are lifted, and a splitting of these energy levels takes
place. From group theory arguments, it can be deduced whether or not a particular energy
level splits. But it does not give any idea about the magnitudes of the split.
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We briefly introduced the angular momentum operators while discussing the hydrogen
atom. Although the treatment was restricted to that system, a general theory of angular
momenta exists, which is crucial for us in understanding the theory of multiplets. We
will first look at some properties of a generalised angular momentum operator. Since our
ultimate goal is to deal with multi-electron atoms, it is obvious that we need to deal with
multiple angular momenta together. Another level of complexity arises when we start
dealing with the electron spins, as that constitutes an additional angular degree of freedom
for the electron. [4]

3.1. General Formalism of Angular Momentum

A general angular momentum ~J , that can be defined by its three components Ĵx, Ĵy and
Ĵz, satisfies the following commutation relations in p, q, r ∈ {x, y, z}

[
Ĵp, Ĵq

]
= iεpqrĴr (3.1)

where εpqr is the Levi-Civita symbol. Ĵx, Ĵy and Ĵz are Hermitian and have real eigenvalues.
The individual components do not commute with each other, so they don’t have common
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eigenstates. The square of the angular momentum is a scalar operator. So, it commutes
with the individual components of the angular momentum

[
Ĵ2, Ĵk

]
= 0 ; k ∈ {x, y, z} (3.2)

Ĵ2 can be simultaneously diagonalised individually with each component of the angular
momentum. As a convention, we choose to find the joint eigenstates of Ĵ2 and Ĵz. We
choose to represent the joint eigenstates as |α, β〉 and then the eigenvalue equations as

Ĵ2 |α, β〉 = α |α, β〉
Ĵz |α, β〉 = β |α, β〉 (3.3)

The eigenstates are orthonormal, and the orthonormality condition is given by

〈
α, β|α′, β′

〉
= δαα′δββ′ (3.4)

We can now introduce raising and lowering operators Ĵ± associated with Ĵz

Ĵ± = Ĵx ± iĴy (3.5)

Then we can express Ĵx and Ĵy in terms of the raising and lowering operators as

Ĵx =
1

2

(
Ĵ+ + Ĵ−

)
; Ĵy =

1

2i

(
Ĵ+ − Ĵ−

)
(3.6)

The following commutation relations hold for the raising and lowering operators.

[
Ĵ2, Ĵ±

]
= 0,

[
Ĵ+, Ĵ−

]
= 2Ĵz,

[
Ĵz, Ĵ±

]
= ±Ĵ± (3.7)

It is useful to note that the following expressions describe the Ĵ2 operator in terms of the
raising and lowering operators

Ĵ2 = Ĵ±Ĵ∓ + Ĵ2
z ∓ Ĵz =

1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ Ĵ2

z (3.8)
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Consider

Ĵz

(
Ĵ± |α, β〉

)
=
(
Ĵ±Ĵz ± Ĵ±

)
|α, β〉 = (β ± 1)

(
Ĵ± |α, β〉

)
(3.9)

which means that
(
Ĵ± |α, β〉

)
is an eigenstate of the Ĵz operator, and then due to the

commutation relation (3.7), also an eigenstate of the Ĵ2 operator. Now since Ĵ2 and Ĵ±
commute, we can write

Ĵ2
(
Ĵ± |α, β〉

)
= Ĵ±

(
Ĵ2 |α, β〉

)
= α

(
Ĵ± |α, β〉

)
(3.10)

Thus we can deduce that the raising and lowering operators leave the Ĵ2 eigenvalue un-
changed, but increment or decrement the Ĵz eigenvalue by 1. So, we can postulate that

Ĵ± |α, β〉 = Γ±αβ |α, β ± 1〉 (3.11)

where Γ±αβ is a coefficient of proportionality dependent on α, β and on whether the operator

is raising or lowering. Now the matrix elements of Ĵ2 − Ĵ2
z = Ĵ2

x + Ĵ2
y are positive which

means

〈α, β| Ĵ2 − Ĵ2
z |α, β〉 = α− β2 ≥ 0⇒ α ≥ β2 (3.12)

Thus, β has an upper limit at some βmax. This also means that there exists a state that
cannot be raised further using the Ĵ+ operator. Hence,

Ĵ+ |α, βmax〉 = 0

⇒ Ĵ−Ĵ+ |α, βmax〉 = 0

⇒
(
Ĵ2 − Ĵ2

z − Ĵz
)
|α, βmax〉 = 0

⇒
(
α− β2max − βmax

)
|α, βmax〉 = 0

⇒ α = βmax (βmax + 1) (3.13)

Similarly, there is also a lower limit βmin on the value of β which can be obtained by a
successive application of the lowering operator to the eigenstate |α, βmax〉. The resultant
state obeys
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Ĵ− |α, βmin〉 = 0 (3.14)

Similar to the arguments used in (3.13), we can deduce that

α = βmin (βmin − 1) (3.15)

From this, we can infer that βmax = −βmin. Suppose we obtained βmin after k successive
applications of Ĵ− to |α, βmax〉,

βmax = βmin + k ⇒ βmax = −βmin =
k

2
(3.16)

This means that β can take only integer or half-integer values. Now, we introduce a new
notation which will help us relate our analysis of a general angular momentum to the
orbital angular momentum discussed previously in chapter 2. Put βmax = j and β = m so
that j = k/2 and hence

α = j (j + 1) (3.17)

and from (3.12),

−j ≤ m ≤ j; m = −j,−j + 1, . . . , j − 1, j (3.18)

Then we can finally summarise our eigenvalue equation in (3.3) as

Ĵ2 |j,m〉 = j (j + 1) |j,m〉
Ĵz |j,m〉 = m |j,m〉 (3.19)

and then the orthonormality condition for the eigenstates is given by

〈
j,m|j′,m′

〉
= δjj′δmm′ (3.20)

Now we can derive the value for the coefficients Γ±αβ = Γ±jm. Consider
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(
Ĵ+ |j,m〉

)† (
Ĵ+ |j,m〉

)
=
∣∣∣Γ+
jm

∣∣∣2 〈j,m+ 1|j,m+ 1〉 =
∣∣∣Γ+
jm

∣∣∣2 (3.21)

But,

(
Ĵ+ |j,m〉

)† (
Ĵ+ |j,m〉

)
= 〈j,m| Ĵ−Ĵ+ |j,m〉

⇒ 〈j,m| Ĵ−Ĵ+ |j,m〉 =
∣∣∣Γ+
jm

∣∣∣2 (3.22)

But since Ĵ−Ĵ+ = Ĵ2 − Ĵ2
z − Ĵz,

∣∣∣Γ+
jm

∣∣∣2 = 〈j,m| Ĵ2 − Ĵ2
z − Ĵz |j,m〉

⇒
∣∣∣Γ+
jm

∣∣∣2 = j (j + 1)−m2 −m

⇒
∣∣∣Γ+
jm

∣∣∣ =
√
j (j + 1)−m (m+ 1) (3.23)

Here we have chosen an arbitrary phase, zero, for the constant Γ+
jm. Similarly we can

derive Γ−jm

∣∣∣Γ−jm∣∣∣ =
√
j (j + 1)−m (m− 1) (3.24)

The relations (3.11) can be simply summarised as

Ĵ± |j,m〉 =
√

(j ∓m) (j ±m+ 1) |j,m± 1〉 (3.25)

Using this definition, we can use (3.5) to find the expectation values of the angular mo-
mentum components in the x and y directions. It can be shown that

〈j,m| Ĵx |j,m〉 = 〈j,m| Ĵy |j,m〉 = 0 (3.26)
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3.1.1. Matrix Representation of angular momentum operators

We have already discussed that the set of joint eigenstates of Ĵ2 and Ĵz - |j,m〉 forms
a complete and orthonormal basis. Thus, in this basis, we can represent all our angular
momentum operators as matrices. Using (3.19) and (3.20), we can write that

〈
j′,m′

∣∣ Ĵ2 |j,m〉 = j (j + 1) δjj′δmm′〈
j′,m′

∣∣ Ĵz |j,m〉 = mδjj′δmm′ (3.27)

Therefore the representative matrices for Ĵ2 and Ĵz are diagonal. Further, we can use
(3.25) to write the matrix elements for the raising and lowering operators

〈
j′,m′

∣∣ Ĵ± |j,m〉 =
√

(j ∓m) (j ±m+ 1)δjj′δm±1,m′ (3.28)

These matrices are not diagonal. This relation can be used along with (3.6) to write out
the matrices for Ĵx and Ĵx

〈
j′,m′

∣∣ Ĵx |j,m〉 =
1

2

(√
(j −m) (j +m+ 1)δm+1,m′ +

√
(j +m) (j −m+ 1)δm−1,m′

)
δjj′〈

j′,m′
∣∣ Ĵy |j,m〉 =

1

2i

(√
(j −m) (j +m+ 1)δm+1,m′ −

√
(j +m) (j −m+ 1)δm−1,m′

)
δjj′

(3.29)

3.2. Addition of two angular momenta

In multi-electron atoms, we need to consider the angular momentum of all the electrons
in the atom. One of the many challenges of dealing with the many body problem is
to find a suitable basis for representing the many-body Hamiltonian. We have seen in
chapter (2) that the total orbital angular momentum and the total spin angular momentum
are conserved, and hence, the total orbital angular momentum L, the total spin angular
momentum S and the total angular momentum J are good quantum numbers for dealing
with the electrostatic interaction in the mean field approximation in the realm of Russell-
Saunders Coupling. While we had only mentioned the L̂, Ŝ and Ĵ in passing before, we
will now go into further details on about their evaluation and manipulation.

Let Ĵ1 and Ĵ2 be two angular momenta that belong to two different subspaces 1 and 2.
They individually satisfy all the properties of angular momenta we have discussed before.
Since they belong to different spaces,
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[
Ĵ1i, Ĵ2j

]
= 0, (i, j ∈ {x, y, z}) (3.30)

Now we denote the joint eigenstates of Ĵ2
1 and Ĵ1z by |j1,m1〉 and those of Ĵ2

2 and Ĵ2z by
|j2,m2〉. Then

Ĵ2
1 |j1,m1〉 = j1 (j1 + 1) |j1,m1〉
Ĵ1z |j1,m1〉 = m1 |j1,m1〉
Ĵ2
2 |j2,m2〉 = j2 (j2 + 1) |j2,m2〉
Ĵ2z |j2,m2〉 = m2 |j2,m2〉 (3.31)

Now we consider the subspaces 1 and 2 together. The resulting space is a direct product
space of 1 and 2, denoted by 1 ⊗ 2 and is of the dimension (2j1 + 1) (2j2 + 1). Since the
operators Ĵ2

1, Ĵ1z, Ĵ2
2 and Ĵ2z are mutually commuting, we can find joint eigenstates for

the four operators. The joint eigenstates can be written as the direct products of |j1,m1〉
and |j2,m2〉. We will write them in a combined notation as

|j1,m1; j2,m2〉 = |j1,m1〉 |j2,m2〉 (3.32)

These joint eigenstates form an orthonormal and complete basis in the eigenspace

〈
j1,m1; j2,m2|j′1,m′1; j′2,m′2

〉
= δj1j′1δm1m′

1
δj2j′2δm2m′

2∑
m1m2

|j1,m1; j2,m2〉
〈
j′1,m

′
1; j
′
2,m

′
2

∣∣ = 1̂ (3.33)

The idea is to generalise the concept of the a single angular momentum to a more general
total angular momentum, which can be found by adding two different angular momentum
operators. Since we already have a formalism for a single angular momentum, we would
like the total angular momentum to have similar properties. Intuitively, we can see that
the z-component of the total angular momentum and the square of the total angular
momentum are two operators that interest us a great deal. Then, we define the total
angular momentum operator as

Ĵ = Ĵ1 + Ĵ2 (3.34)
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We want to find the joint eigenstates of Ĵ2 and Ĵz in terms of the eigenvalues and eigenstates
of Ĵ2

1, Ĵ1z, Ĵ2
2 and Ĵ2z. We can check that the individual components of Ĵ satisfy the angular

momentum commutation relations, and thus

[
Ĵx, Ĵy

]
= iĴz,

[
Ĵy, Ĵz

]
= iĴx,

[
Ĵz, Ĵx

]
= iĴy (3.35)

Another set of operators that commute mutually is Ĵ2
1, Ĵ2

2, Ĵ2 and Ĵz. Thus it is also possi-
ble to diagonalise these four simultaneously. Let us denote these eigenstates as |j1; j2; j,m〉.
Then

Ĵ2
1 |j1; j2; j,m〉 = j1 (j1 + 1) |j1; j2; j,m〉

Ĵ2
2 |j1; j2; j,m〉 = j2 (j2 + 1) |j1; j2; j,m〉
Ĵ2 |j1; j2; j,m〉 = j (j + 1) |j1; j2; j,m〉

Ĵz |j1; j2; j,m〉 = m |j1; j2; j,m〉 (3.36)

We can build a transformation from one basis to the other using the identity operator
(3.33) as

|j1; j2; j,m〉 =

 j1∑
m1=−j1

j2∑
m2=−j2

|j1,m1; j2,m2〉 〈j1,m1; j2,m2|

 |j1; j2; j,m〉
=
∑
m1m2

〈j1,m1; j2,m2|j1; j2; j,m〉 |j1,m1; j2,m2〉 (3.37)

The matrix elements 〈j1,m1; j2,m2|j1; j2; j,m〉 are called Clebsch-Gordan coefficients. They
are real by convention. They possess certain properties

∑
m1m2

|〈j1,m1; j2,m2|j1; j2; j,m〉|2 =
∑
j

j∑
m=−j

|〈j1,m1; j2,m2|j1; j2; j,m〉|2 = 1 (3.38)

We can find the eigenvalues of Ĵ2 and Ĵz in terms of j1, j2, m1 and m2. Since Ĵz = Ĵ1z+Ĵ2z,
we can deduce that m = m1 +m2. Now, as mmax = m1max+m2max = j1 + j2 and |m| ≤ j,
we have that jmax = j1 + j2. Further, the number of eigenstates is equal to the dimension
of the product space (2j1 + 1) (2j2 + 1). Since each value of j corresponds to (2j + 1)
eigenstates,
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jmax∑
j=jmin

(2j + 1) = (2j1 + 1) (2j2 + 1)

(jmax − jmin + 1) (jmax + jmin)

2
= (2j1 + 1) (2j2 + 1) (3.39)

This can be simplified to give that jmin = |j1 − j2| which implies that |j1 − j2| ≤ j ≤
(j1 + j2). We can further define certain rules for the Clebsch-Gordan coefficients using
these eigenvalues. These coefficients are only non-zero when m = m1 +m2 and |j1 − j2| ≤
j ≤ (j1 + j2).

We can come up with a recursion relation for calculating the Clebsch-Gordan coefficients.
The limiting cases where m1 = j1, m2 = j2, j = j1 + j2, m = j1 + j2 and m1 = −j1,
m2 = −j2, j = j1 + j2, m = − (j1 + j2) are easy to calculate from (3.37) since the
corresponding expressions have only one term on the right hand side.

〈j1, j1; j2, j2|j1; j2; (j1 + j2) , (j1 + j2)〉 = 〈j1,−j1; j2,−j2|j1; j2; (j1 + j2) ,− (j1 + j2)〉 = 1
(3.40)

This expression is valid only up to a phase, depending on the convention being used.

The idea behind formulating the recursion relationship is to calculate the matrix elements
〈j1,m1; j2,m2| Ĵ± |j1; j2; j,m〉 in two different ways, once applying the operators to the bra
and then to the ket. In both methods, we calculate the same value. So, recalling that(
Ĵ±

)†
= Ĵ∓,

〈j1,m1; j2,m2|
(
Ĵ± |j1; j2; j,m〉

)
=
(
Ĵ∓ |j1,m1; j2,m2〉

)
|j1; j2; j,m〉

(3.41)

√
(j ∓m) (j ±m+ 1) 〈j1,m1; j2,m2|j1; j2; j,m± 1〉 =√

(j1 ±m1) (j1 ∓m1 + 1) 〈j1,m1 ∓ 1; j2,m2|j1; j2; j,m〉

+
√

(j2 ±m2) (j2 ∓m2 + 1) 〈j1,m1; j2,m2 ∓ 1|j1; j2; j,m〉 (3.42)

This relationship along with (3.42) can be used to calculate all the Clebsch-Gordan coeffi-
cients.
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4.1. Creation and Annihilation Operators

We will now define the fermionic creation and annihilation operators which we will use to
define all the angular momentum and operators for interactions that appear later [1]. The
way we approach these is by first recalling the nature of any many-body fermionic wave
function. For the case of identical fermions, each fermion occupies one of the many single
particle states. In general, the number of available single particle states need not be equal
to the number of particles. Suppose we have n single particle states, each state denoted by
its own set of quantum numbers a, b, c, . . . , n. We assume that these single particle states
are orthonormalised. Since we are dealing with fermions, each single particle state can
either be occupied by a single particle, or be empty. Let us say we have N particles, which
occupy the n states. The many-body wave function will be the Slater determinant of the
single particle states.

|ΨN ;a,b,...,n〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 · · · |N, a〉
|1, b〉 |2, b〉 · · · |N, b〉
...

...
. . .

...
|1, n〉 |2, n〉 · · · |N,n〉

∣∣∣∣∣∣∣∣∣ (4.1)
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Here we assume that all the n single-particle states are occupied. This is, however, not
necessary. In general, each single-particle state can either be occupied or be empty. This
can be made clearer using a concrete example. Consider a system of three particles. We
again label the available single particle states as a, b, . . . , n. Suppose that the three particles
occupy the states a, d and k, while the rest of the states are unoccupied. It is important to
use a consistent method of ordering the single particle states in this notation, as the sign of
the determinant will change upon reordering the single particle states. We will now order
all the states in alphabetical order and call this the standard ordering. At this point we
can introduce the occupation number notation, which explicitly denotes the occupations
of the individual single particle states.

|Ψ3;a,d,k〉 =
1√
3!

∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉
|1, d〉 |2, d〉 |3, d〉
|1, k〉 |2, k〉 |3, k〉

∣∣∣∣∣∣
= |1a, 0b, . . . , 1d, 0e, . . . , 0j , 1k, . . .〉 (4.2)

Here 0b denotes that the single particle state b is unoccupied whereas 1a means that the
single particle state a is occupied.

We posit, now, the existence of a fermionic creation operator for a single particle state.
The fermionic creation operator c†j converts a many-body state in which the single particle
state φj is empty into a many-body state where φj is occupied. In determinant notation,
ignoring the pre-factors for a moment,

c†j

∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉
|1, d〉 |2, d〉 |3, d〉
|1, k〉 |2, k〉 |3, k〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉 |4, a〉
|1, d〉 |2, d〉 |3, d〉 |4, d〉
|1, k〉 |2, k〉 |3, k〉 |4, k〉
|1, j〉 |2, j〉 |3, j〉 |4, j〉

∣∣∣∣∣∣∣∣ (4.3)

The fermionic creation operator adds a new particle to the single particle state j. This
corresponds to an additional row at the bottom and an additional column to the right of
the Slater determinant. Now this determinant is not, in general, in standard order. To
make the wave function standard ordered, we need to swap the two rows at the bottom of
the Slater determinant, which flips the sign of the determinant.

c†j

∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉
|1, d〉 |2, d〉 |3, d〉
|1, k〉 |2, k〉 |3, k〉

∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉 |4, a〉
|1, d〉 |2, d〉 |3, d〉 |4, d〉
|1, j〉 |2, j〉 |3, j〉 |4, j〉
|1, k〉 |2, k〉 |3, k〉 |4, k〉

∣∣∣∣∣∣∣∣ (4.4)

In general, the sign of the wave-function depends on the number of row swaps Sj required
to get the determinant in standard order. This can be formalised using the occupation
number notation, which we will eventually use extensively
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c†j |. . . , 0j , . . .〉 = (−1)Sj |. . . , 1j , . . .〉 (4.5)

Along these lines we define the fermionic annihilation operator. Using equation (4.5),

〈. . . , 1j , . . .| c†j |. . . , 0j , . . .〉 = (−1)Sj (4.6)

Taking the Hermitian adjoint on both sides

(
〈. . . , 1j , . . .| c†j |. . . , 0j , . . .〉

)†
=
(
c†j |. . . , 0j , . . .〉

)†
(〈. . . , 1j , . . .|)†

= 〈. . . , 0j , . . .| cj |. . . , 1j , . . .〉
= (−1)Sj (4.7)

Thus,

cj |. . . , 1j , . . .〉 = (−1)Sj |. . . , 0j , . . .〉 (4.8)

Thus, the operator cj converts a many-body state in which the single particle state j is
occupied, into a many-body state where the state j is empty. We call cj the fermionic
annihilation operator. It can be shown that the creation and annihilation operators obey
the following anti-commutation relationships

{
c†i , c

†
j

}
= {ci, cj} = 0{
c†i , cj

}
= δij (4.9)

What happens if we apply a creation operator c†k to a many-body state where the single
particle state k is already occupied, for example, the many-body state in (4.2) ? The action
of the operators adds a new row and a new column to the Slater determinant

c†k

∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉
|1, d〉 |2, d〉 |3, d〉
|1, k〉 |2, k〉 |3, k〉

∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 |3, a〉 |4, a〉
|1, d〉 |2, d〉 |3, d〉 |4, d〉
|1, k〉 |2, k〉 |3, k〉 |4, k〉
|1, k〉 |2, k〉 |3, k〉 |4, k〉

∣∣∣∣∣∣∣∣ (4.10)
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But we note that now, there are two identical rows in this Slater determinant, which means
that the determinant is singular. Thus we can define this action as

c†j |. . . , 1j , . . .〉 = 0 (4.11)

Similarly, if we apply the annihilation operator cj to a many-body state where the single
particle state j is empty,

cj |. . . , 0j , . . .〉 = 0 (4.12)

4.2. U-Matrix in the basis of spherical harmonics

Recall from chapter 2, that we defined the electrostatic part Hamiltonian as

ĤES =
1

2

∑
i 6=j

1

|ri − rj |
(4.13)

We would now like to represent ĤES in terms of our creation and annihilation operators.
We now label this Hamiltonian as Û which is then defined as

Û =
1

2

∑
i 6=j

Uαβγδc
†
αc
†
βcδcγ (4.14)

where we define the coefficient Uαβγδ as

Uαβγδ =

∫
dr1dr2ψα (r1)ψβ (r2)

1

|r1 − r2|
ψγ (r1)ψδ (r2) (4.15)

The Coulomb repulsion term only depends on the relative distance between the electrons,
and is completely independent of the electron spins. This means that we can separate the
spatial and spin degrees of freedom in the electron wave-functions. So

ψα (r1) = ϕν1 (r1)χσ1 (1) (4.16)
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Using this separation, we can rewrite the integral in (4.15) and the spin functions can then
be pulled out of the integral.

Uαβγδ = 〈αβ| Û |γδ〉

= 〈χσ1 (1)χσ2 (2) |χσ3 (1)χσ4 (2)〉
∫
dr1dr2ϕν1 (r1)ϕν2 (r2)

1

r
ϕν3 (r1)ϕν4 (r2)

= Uν1ν2ν3ν4δσ1σ3δσ2σ4 (4.17)

Now since the problem relates to a many-electron system of an atom, the function φν is
hydrogen-like (chapter 2)

ϕν = ϕnlm = Rnl (r)Y
m
l (θ, φ) (4.18)

For finding the U -matrix elements, we expand the r−1 term in the integrals, in terms of
the spherical harmonics Y µ

k (θ, φ)

1

|r1 − r2|
=
∞∑
k=0

rk<

rk+1
>

4π

2k + 1

k∑
µ=−k

Y µ
k (θ1, φ1)Y

µ
k (θ2, φ2) (4.19)

where r< is the smaller of r1 and r2, and r> is the larger of r1 and r2. Then we can expand
the integral in (4.17) into parts: a radial term

S(k) (n1l1, n2l2, n3l3, n4l4) =

∫ ∫
r21dr1r

2
2dr2Rn1l1 (r1)Rn2l2 (r2)

rk<

rk+1
>

Rn3l3 (r1)Rn4l4 (r2)

= 〈Rn1l1Rn2l2 |
rk<

rk+1
>

|Rn3l3Rn4l4〉 (4.20)

and two angular terms

∫ 2π

0
dφ

∫ π

0
sin θdθY m2

l2
(θ2, φ2)Y

µ
k (θ2, φ2)Y

m4
l4

(θ2, φ2) = 〈l2m2|kµ× l4m4〉∫ 2π

0
dφ

∫ π

0
sin θdθY m1

l1
(θ1, φ1)Y

µ
k (θ1, φ1)Y

m3
l3

(θ1, φ1) = 〈l1m1 × kµ|l3m3〉 (4.21)

Together, we can write Uν1ν2ν3ν4 as
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Uν1ν2ν3ν4 =
∞∑
k=0

S(k) (n1l1, n2l2, n3l3, n4l4)

 4π

2k + 1

k∑
µ=−k

〈l1m1|kµ× l3m3〉 〈l2m2 × kµ|l4m4〉


(4.22)

There is a special notation for the diagonal matrix elements: the direct term

Uνν′ = Uνν′νν′

=
∞∑
k=0

S(k)
(
nl, n′l′, nl, n′l′

) 4π

2k + 1

k∑
µ=−k

〈lm|kµ× lm〉
〈
l′m′ × kµ|l′m′

〉
=
∞∑
k=0

F (k)
(
nl;n′l′

)
a(k)

(
lm; l′m′

)
(4.23)

and the exchange term

Jνν′ = Uνν′ν′ν

=

∞∑
k=0

S(k)
(
nl, n′l′, n′l′, nl

) 4π

2k + 1

k∑
µ=−k

〈
lm|kµ× l′m′

〉 〈
l′m′ × kµ|lm

〉
=
∞∑
k=0

G(k)
(
nl;n′l′

)
b(k)

(
lm; l′m′

)
(4.24)

These radial integrals F (k) (nl;n′l′) and G(k) (nl;n′l′) are also called Slater integrals.

In the case of our problem of open shell electrons, all the electrons have the same n and l
quantum numbers, in which case, it is easy to see that

F (k) (nl;nl) = G(k) (nl;nl) (4.25)

Then 4.22 will now look like

Um1m2m3m4 =

∞∑
k=0

F (k) (nl;nl)

 4π

2k + 1

k∑
µ=−k

〈lm1|kµ× lm3〉 〈lm2 × kµ|lm4〉

 (4.26)
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Note that now we have explicit dependence on m1, m2, m3 and m4. We can modify our
notation for the diagonal matrix elements so that

Uνν′ = Umm′ =

∞∑
k=0

F (k) (nl;nl) a(k)
(
lm; lm′

)
Jνν′ = Jmm′ =

∞∑
k=0

F (k) (nl;nl) b(k)
(
lm; lm′

)
(4.27)

For the diagonal matrices, the integrals a(k) (lm; lm′) are given in Appendix C. For calcu-
lations related to electronic structure, it is more useful to have these integrals in the basis
of cubic harmonics rather than spherical harmonics. These are also found in Appendix C

4.3. Gaunt coefficients

We will now calculate the angular terms in (4.21). These integrals are called Gaunt coef-
ficients.

g
(l,k)
m,m′ =

∫ 2π

0
dφ

∫ π

0
sin θdθY m

l (θ1, φ1)Y
µ
k (θ1, φ1)Y

m′
l′ (θ1, φ1) (4.28)

Here, we will use the phase convention due to Condon and Shortley [5]. According to this
choice, a factor of −1 appears for spherical harmonics with an odd positive value of m.

Ylm (θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) exp (imφ) (4.29)

where the Legendre Polynomials Pml (x) are given by equation 2.33. Now if we express this
integral in terms of the associated Legendre polynomials, we get

g
(l,k)
m,m′ =

√
(2l + 1) (2k + 1) (2l + 1)

(4π)3

√
(l −m)! (k − µ)! (l −m)!

(l +m)! (k + µ)! (l +m)
×∫ 2π

0
dφeiφ(−m+µ+m′)

∫ π

0
sin θdθPml (cos θ)Pµk (cos θ)Pm

′
l (cos θ) (4.30)

Notice that we do not mention an explicit dependence on µ although we have a spherical
harmonic dependent on µ in the integral. From the formula in equation (4.30), we see that

the co-efficient g
(l,k)
m,m′ is non-zero only if
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m−m′ = µ (4.31)

Thus m and m′ fix the value of µ and we get no explicit dependence on µ. Consequently, we
can deduce from equation (4.30) that the Gaunt coefficients will be real, as every non-zero
term will have a real exponential term in the φ integral. We can then describe our Gaunt
coefficients as a two-dimensional matrix in terms of the indices m and m′.

We can of course calculate the Gaunt coefficients using the equation (4.30) above, as all
the integrals are known. But this calculation is computationally intensive and is very
complicated when represented in code. But we can use another clever way to simplify
the calculation. Recall from chapter 3, that the functions |l,m〉 are eigenfunctions of the
angular momentum operator and that they have associated raising and lowering operators.

L̂+ |l,m〉 =
√

(l −m) (l +m+ 1) |l,m+ 1〉 = Γ+
lm |l,m+ 1〉

L̂− |l,m〉 =
√

(l +m) (l −m+ 1) |l,m− 1〉 = Γ−lm |l,m− 1〉 (4.32)

Consider the integral
〈
l,m|L̂+k, µ× l,m′

〉
. We will calculate this integral in two different

ways to come up with a recurrence relation between the Gaunt coefficients. First, we can
see that the L̂± acts as a differential operator. So we can apply it on the right and use the
product rule of differentiation to get

〈
l,m|L̂+k, µ× l,m′

〉
= Γ+

kµ

〈
l,m|k, µ+ 1× l,m′

〉
+ Γ+

lm′
〈
l,m|k, µ× l,m′ + 1

〉
(4.33)

But we can also apply the L̂+ to the bra- to get

〈
l,m|L̂+k, µ× l,m′

〉
=

((
L̂+

)†
|l,m〉

)† ∣∣k, µ× l,m′〉
= Γ−lm

〈
l,m− 1|k, µ+ 1× l,m′

〉
(4.34)

From the two equations, we can write the relation

Γ+
kµ

〈
l,m|k, µ+ 1× l,m′

〉
+ Γ+

lm′
〈
l,m|k, µ× l,m′ + 1

〉
= Γ−lm

〈
l,m− 1|k, µ× l,m′

〉
(4.35)

We call this relation the L̂+ equation. Similarly, we can also come up with another recur-
rence relation, the L̂− equation, using the L̂− operator
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Γ−kµ
〈
l,m|k, µ− 1× l,m′

〉
+ Γ−lm′

〈
l,m|k, µ× l,m′ − 1

〉
= Γ+

lm

〈
l,m+ 1|k, µ× l,m′

〉
(4.36)

Additionally, the Gaunt coefficient matrix also has certain symmetry properties. First,
there is a diagonal symmetry

g
(l,k)
m,m′ =

∫
dΩY m

l (Ω)Y m−m′

k (Ω)Y m′
l (Ω) ( Ω = (θ, φ) )

=

∫
dΩY m

l (Ω)Y m−m′

k (Ω)Y m′
l (Ω)

= (−1)m−m
′
·
∫
dΩY m′

l (Ω)Y m−m′

k (Ω)Y m
l (Ω)

= (−1)m−m
′
· g(l,k)m′,m (4.37)

There is also anti-diagonal symmetry.

g
(l,k)
m,m′ =

∫
dΩY m

l (Ω)Y m−m′

k (Ω)Y m′
l (Ω) ( Ω = (θ, φ) )

=

∫
dΩ (−1)m Y m

l (Ω)Y m−m′

k (Ω) (−1)m
′
Y m′
l (Ω)

= (−1)m−m
′
·
∫
dΩY m′

l (Ω)Y m−m′

k (Ω)Y m
l (Ω)

= (−1)m−m
′
g
(l,k)
m′,m (4.38)

where we are now using the notation m = −m. The central element in the Gaunt coefficient
matrix is easy to calculate because for this element, we have m = m′ = µ = 0. Using these
central elements, the symmetry properties and the L̂+ and L̂− equations, we can come up
with an algorithm to calculate the Gaunt coefficient matrices for different values of (l, k)

65 void Gaunt( int l_no, int ik, double **gaunt_coeff_matrix )
66 {
67 Initialise_Centre_Element( gaunt_centre_element );
68
69 int iml1 = l_no, iml2 = l_no;
70
71 // Centre element
72 gaunt_coeff_matrix[iml1][iml2] = gaunt_centre_element[l_no][ik];
73
74 // First find all the diagonal elements in the +,- direction
75 while ( iml2 < ( 2 * l_no ) ) {
76
77 // Find the two elements on either side of the antidiagonal using L_+

equation
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78 if ( fabs( Cg_Minus( l_no, iml1-l_no ) + Cg_Plus( l_no, iml2-l_no ) ) <
EPSILON ) {

79 gaunt_coeff_matrix[iml1-1][iml2] = 0;
80 gaunt_coeff_matrix[iml1][iml2+1] = - gaunt_coeff_matrix[iml1-1][iml2];
81 } else {
82 gaunt_coeff_matrix[iml1-1][iml2] = Cg_Plus( ik, iml1-iml2-1 ) *

gaunt_coeff_matrix[iml1][iml2] / ( Cg_Minus( l_no, iml1-l_no ) +
Cg_Plus( l_no, iml2-l_no ) );

83 gaunt_coeff_matrix[iml1][iml2+1] = - gaunt_coeff_matrix[iml1-1][iml2];
84 }
85
86 iml1--;
87 iml2++;
88
89 // Use L_- equation to find diagonal element
90 if ( fabs( Cg_Minus( ik, iml1-iml2+1 ) ) < EPSILON ) {
91 gaunt_coeff_matrix[iml1][iml2] = 0;
92 } else {
93 gaunt_coeff_matrix[iml1][iml2] = ( Cg_Plus( l_no, iml1-l_no ) *

gaunt_coeff_matrix[iml1+1][iml2] - Cg_Minus( l_no, iml2-l_no ) *
gaunt_coeff_matrix[iml1][iml2-1] )/ Cg_Minus( ik, iml1-iml2+1 );

94 } }
95
96 // Now use the L_- equation to find the remaining unknowns in the top

triangle
97 for ( iml2 = ( 2 * l_no-1 ); iml2 >= l_no; iml2-- ) {
98 for ( iml1 = ( 2 * l_no - 1 - iml2 ); iml1 >= 0; iml1-- ) {
99 gaunt_coeff_matrix[iml1][iml2-1] = ( Cg_Plus( l_no, iml1-l_no ) *

gaunt_coeff_matrix[iml1+1][iml2] - Cg_Minus( ik, iml1-iml2+1 ) *
gaunt_coeff_matrix[iml1][iml2] )/ Cg_Minus( l_no, iml2-l_no );

100 } }
101
102 for ( iml2 = ( l_no - 1 ); iml2 >= 1; iml2-- ) {
103 for ( iml1 = iml2 - 1; iml1 >= 0; iml1-- ) {
104 gaunt_coeff_matrix[iml1][iml2-1] = ( Cg_Plus( l_no, iml1-l_no ) *

gaunt_coeff_matrix[iml1+1][iml2] - Cg_Minus( ik, iml1-iml2+1 ) *
gaunt_coeff_matrix[iml1][iml2] )/ Cg_Minus( l_no, iml2-l_no );

105 } }
106
107 // Now the north triangle is filled. Now to mirror these guys about
108 // the diagonal and antidiagonal.
109 // First find the east triangle by using antidiagonal symmetry.
110 for ( iml1 = 1; iml1 <= l_no; iml1++ ) {
111 for ( iml2 = ( 2 * l_no ); iml2 >= ( 2 * l_no + 1 - iml1 ); iml2-- ) {
112 int temp_sign = 1;
113 for ( int ii = 0; ii < fabs( iml1 - iml2 ); ii++ ) {
114 temp_sign=-temp_sign; }
115 gaunt_coeff_matrix[iml1][iml2] = temp_sign*gaunt_coeff_matrix[2*l_no-iml2

][2*l_no-iml1];
116 } }
117
118 for ( iml1 = ( l_no + 1 ); iml1 <= ( 2 * l_no ); iml1++ ) {
119 for ( iml2 = ( iml1 ); iml2 <= ( 2 * l_no ); iml2++ ) {
120 int temp_sign = 1;
121 for ( int ii = 0; ii < fabs( iml1 - iml2 ); ii++ ) {
122 temp_sign=-temp_sign; }
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123 gaunt_coeff_matrix[iml1][iml2] = temp_sign*gaunt_coeff_matrix[2*l_no-iml2
][2*l_no-iml1];

124 } }
125
126 // Now find the south and the west triangles using diagonal symmetry
127 for ( iml1 = 1; iml1 <= ( 2 * l_no ); iml1++ ) {
128 for ( iml2 = 0; iml2 <= ( iml1 - 1 ); iml2++ ) {
129 int temp_sign = 1;
130 for ( int ii = 0; ii < fabs( iml1 - iml2 ); ii++ ) {
131 temp_sign=-temp_sign; }
132 gaunt_coeff_matrix[iml1][iml2] = temp_sign*gaunt_coeff_matrix[iml2][iml1

];
133 } } }

Listing 4.1: Calculation of Gaunt Coefficients

The Gaunt Co-efficient matrices are listed in Appendix B.
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5.1. Basis Setup

We work in the basis of occupation numbers [8]. We formally define these basis states using

the fermionic creation and annihilation operators. The creation operator c†n,l,m,σ creates
an electron with z-component of spin σ in the orbital with principal quantum number n,
orbital angular momentum l and z-component of angular momentum m. As a shorthand
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notation, the quantum numbers (n, l,m, σ) can be denoted by the symbol ν. Analogously,
the operator cn,l,m,σ annihilates an electron from this spin-orbital. Thus for a system with
N electrons, we can write a general many body state as

|Ψ〉 = c†ν1c
†
ν2 . . . c

†
νN
|0〉 (5.1)

For our problem of interest, we work within a single shell, which means that the n and
the l quantum numbers are the same for all electrons. We can shorten the notation by
dropping the n and l so that ν ≡ (m,σ). For a given n and l, the following holds for the
remaining quantum numbers:

m : − l ≤ m ≤ +l

σ : σ = ±1

2

Thus, for a fixed shell, we can have 2 (2l + 1) possible spin-orbitals to put an electron in.
For a system with N electrons, the Hilbert space spans all the distributions of N electrons
into 2 (2l + 1) spin-orbitals. Using this fact, we can calculate the dimension of the Hilbert
space

D =

(
2 (2l + 1)

N

)
(5.2)

Consequently, we can define a basis on this Hilbert space using the individual distributions.
These can be viewed graphically. For example, in the case of a d4-shell (l = 2, N = 4), we
have 10 sub-orbitals to place the 4 electrons in. One distribution can be written as below

σ ↑ ↓
m -2 -1 0 1 2 -2 -1 0 1 2
occupancy 0 1 1 0 0 1 0 0 1 0 = 402

Since the occupancy of each quantum state can only be 0 or 1 due to the Pauli Principle,
we can read the occupancies as a binary representation of a positive integer. Since the
transformation from binary to decimal and vice-versa is unique, every such distribution
will correspond to a unique non-negative integer, which we denote as a configuration. The
basis states can then be simply stored using configurations, without needing to store the
entire sequences of 0s and 1s.

The function for building all the basis states - Setup_Basis() - uses the orbital angular
momentum l and the number of electrons N as inputs. For building the entire basis,
we first calculate the maximum and minimum integers that could be configurations for a
state with N electrons. Then, we traverse through all the integers in between and count
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the number of particles in the state represented by each configuration. Any configuration
which has N electrons is added to the configuration array. For future use, we also build
an array that uses the configuration to point to its index in the configuration array.

32 unsigned long max_confg = 0, min_confg = 0;
33
34 // Find maximum and minimum possible configuration
35 // formed by the distribution of N electrons in 2*(2*l+1) orbitals
36 // max_confg = 111...000 -> integer
37 // min_confg = 000...111 -> integer
38 // no. of 1s = no. of particles ; no. of zeros = 2*(2*l+1)-no. of particles
39 for ( int ii = 0; ii < n_tot; ii++ ) {
40 max_confg+= 1<<( 4 * l_no + 1 - ii );
41 min_confg+= 1<<ii; }
42
43 // Initialise the array of indices
44 for ( unsigned long ii = 0; ii <= max_confg; ii++ ) {
45 basis_index.push_back( -1 ); } // Insert -1 in the array if ‘ii‘ is not a

basis state
46
47 // Fill both arrays
48 for ( unsigned long ii = min_confg; ii <= max_confg; ii++ ) {
49 if ( Particle_Count( l_no, ii ) == n_tot ) {
50 basis.push_back( ii );
51 basis_index[ii] = ( basis.size()-1 ); } }

Listing 5.1: Basis setup

5.2. Angular Momentum Operators in Second Quantisation

We need to identify the representation of all the angular momentum operators in second
quantised creation and annihilation operators. For this purpose, we will need to use the
ladder operators for angular momentum which we discussed in section 3. For the orbital
angular momentum operator L̂, we have the following [8]

L̂z =

L∑
mL=−L

∑
{σ}

mL · c†mL,σ
cmL,σ

L̂+ =
L−1∑

mL=−L

∑
{σ}

√
(L−mL) (L+mL + 1) · c†mL+1,σcmL,σ

L̂− =
L∑

mL=−L+1

∑
{σ}

√
(L+mL) (L−mL + 1) · c†mL−1,σcmL,σ (5.3)

and similarly for the spin operators
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Ŝz =

S∑
σ=−S

∑
{mL}

σ · c†mL,σ
cmL,σ

Ŝ+ =
S−1∑
σ=−S

∑
{mL}

√
(S − σ) (S + σ + 1) · c†mL,σ+1cmL,σ

Ŝ− =
S∑

σ=−S+1

∑
{mL}

√
(S + σ) (S − σ + 1) · c†mL,σ−1cmL,σ (5.4)

From equation 3.8, we know that

Ĵ2 =
1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ Ĵ2

z (5.5)

Using this, we have an explicit method of calculating the action of the L̂2, L̂z, Ŝ2 and Ŝz
operators on our basis states.

5.3. Example: Finding joint eigenvalues and eigenvectors of

L̂2, L̂z, Ŝ, Ŝz for p2-shell

The theory of adding two angular momenta can be readily extended to adding more than
two angular momenta. Recall from chapter 2 that the electrostatic Hamiltonian commutes
with the L̂ and Ŝ operators. It can be shown that the electrostatic Hamiltonian is diagonal
in the basis of the operators L̂2, L̂z, Ŝ2 and Ŝz. The expectation values of these operators
can then be used to denote the eigenstates of the electrostatic Hamiltonian. This is done
using the so called spectroscopic notation, where each multiplet can be written as

multiplicity←− (2S+1)L −→ multiplet name

Rather than using the value of L, it is conventional to use the uppercase alphabet cor-
responding to that L. (2S + 1) gives the multiplicity of that multiplet. The individual
eigenstates within that multiplet are then distinguished using the expectation values of L̂z
and Ŝz. So in general, we represent any eigenstate using the angular momentum expecta-
tion values as |L,ML;S,MS〉 = |L,ML〉 |S,MS〉.

For the p2 configuration, we need to couple two orbital angular momenta and two spins.
Using the theory of adding two angular momenta, we know that the allowed values of L
are 0,1 and 2 and those of S are 0 and 1. In principle, we would have 6 multiplets owing
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to the combination of the three values of L and two values of S. But, we should remember
that the many-body wave-function should be antisymmetric. It can be shown that the spin
function corresponding to S = 0 is antisymmetric while the one with S = 1 is symmetric.
Similarly for the orbital part, L = 0 and L = 2 are symmetric while L = 1 is antisymmetric.
So, only three multiplets are valid and can be then written in the spectroscopic notation
as 1D, 3P and 1S.

Once we know which multiplets exist, we can illustrate the method for finding the joint
eigenstates of ~L and ~S using the ladder operators. We start with the eigenstates belonging
to the 1D multiplet. For the 1D states, the value of L = 2 and ML = −2,−1, 0, 1, 2.
We start with the state with the maximum ML. This state is represented by |2, 2〉 in
the orbital angular momentum notation. When we attempt to use our basis functions to
represent this state, we observe that there is only one basis function which can contribute
to the state |2, 2;S,MS〉, where the two electrons have opposite spins and occupy the state
with the highest ml - |001 : 001〉. Also, the spins of the individual electrons are in opposite
directions, owing to the Pauli principle, so the MS = 0. The value of S = 0. Thus,

|2, 2; 0, 0〉 = |001 : 001〉 (5.6)

This implies that the value of MS can only be 0.

Now, we can step lower in ML or MS using the lowering operators L− and S− respectively.
Since stepping up or down in MS is not possible, we use the L− operator

L− |2, 2; 0, 0〉 = L− |001 : 001〉 (5.7)

=

 l∑
ml=−l+1

∑
σ

√
(l +ml) (l −ml + 1)a†ml−1,σaml,σ

 |001 : 001〉 (5.8)

=
√

2 (|001 : 010〉+ |010 : 001〉) (5.9)

Normalising, we can write

|2, 1; 0, 0〉 =
1√
2

(|001 : 010〉+ |010 : 001〉) (5.10)

Using this procedure, we can keep applying L− to obtain the rest of the 1D states. The
results we obtain are

|2, 0; 0, 0〉 =
1√
3

(|001 : 100〉+ 2 |010 : 010〉+ |100 : 001〉) (5.11)

|2,−1; 0, 0〉 =
1√
2

(|010 : 100〉+ |100 : 010〉) (5.12)

|2,−2; 0, 0〉 = |100 : 100〉 (5.13)
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Now we need to find a way to step from the 1D states to the 3P states. For the 3P states,
the highest value of ML is 1. We note that the eigenstates |2, 1;S, 0〉 and |1, 1;S, 0〉 belong
to the same plane in the (ML,MS) subspace and are orthogonal to each other. Thus a
state orthogonal to the |2, 1; 0, 0〉 belongs to the 3P multiplet. This is calculated to be

|1, 1;S, 0〉 =
1√
2

(|001 : 010〉 − |010 : 001〉) (5.14)

We can again use ~S2 to calculate that the value of S for this state is 1. Now that we know
the expansion for |1, 1; 1, 0〉, we can use the ladder operators to calculate all nine states
belonging to the 3P multiplet.

Finally we need to find the single state that belongs to the 1S. Again, using the argument
for orthogonal functions in the (ML,MS) subspace, we can deduce that the state |0, 0; 0, 0〉
is orthogonal to |2, 0; 0, 0〉 and |1, 0; 1, 0〉 to give us that

|0, 0; 0, 0〉 =
1√
3

(|001 : 100〉 − |100 : 001〉 − |010 : 010〉) (5.15)

5.4. Simultaneous Diagonalisation

We want to use the occupation number basis to represent the various operators that are
needed for constructing the Hamiltonian and then identifying the resultant eigenstates.
First, to find the eigenstates of the many-body Hamiltonian, we need to write the Hamil-
tonian in our occupation number basis. We have already described the Coulomb interaction
between the electrons in the U-matrix, which we demonstrated in (section 4).

Let us now denote our many-body basis states by |ϕ〉. As per our discussion in (5), we
can, in general, expand |ϕ〉 in terms of creation operators using equation (5.1) as

|ϕ〉 = c†ν1c
†
ν2 . . . c

†
νN
|0〉 (5.16)

Then, we can build the electrostatic Hamiltonian matrix(ĤES) in the basis of occupation
numbers using the many-body basis states and the U-matrix (equation 4.14)

(
ĤES

)
ij

=
〈
ϕ′
∣∣ Û |ϕ〉 (5.17)
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Since the operation of creation and annihilation operators on the basis states |ϕ〉 is well de-
fined and the matrix element Um1m2

m3m4
is given by (equation 4.22), we can explicitly calculate

the electrostatic Hamiltonian in the basis of occupation numbers.

The next step is to diagonalise the electrostatic Hamiltonian and identify the multi-
plets for the given electronic configuration. This is achieved using the Linear Alge-
bra Package(LAPACK). Since the Hamiltonian is hermitian, we can use the subroutine
dsyev(...), which is the eigensolver for double precision real symmetric matrices. The
code for this part of the calculation is shown below. The Diagonalise_Matrix(...)
routine handles the call to LAPACK and returns the eigenstates and eigenenergies of the
input matrix.

78 for ( int ii = 0; ii < basis.size(); ii++ ) {
79 for ( int iml1 = -l_no; iml1 <= l_no; iml1++ ) {
80 for ( int iml2 = -l_no; iml2 <= l_no; iml2++ ) {
81 for ( int iml3 = -l_no; iml3 <= l_no; iml3++ ) {
82 for ( int iml4 = -l_no; iml4 <= l_no; iml4++ ) {
83 // Spin sums
84 for ( int ims1 = 0; ims1 <= 1; ims1++ ) {
85 for ( int ims2 = 0; ims2 <= 1; ims2++ ) {
86 unsigned long res_confg = basis[ii];
87 int res_sign = 1;
88
89 res_confg = El_Remove(l_no, iml3, ims1, res_confg, &res_sign);
90 res_confg = El_Remove(l_no, iml4, ims2, res_confg, &res_sign);
91 res_confg = El_Create(l_no, iml2, ims2, res_confg, &res_sign);
92 res_confg = El_Create(l_no, iml1, ims1, res_confg, &res_sign);
93
94 if ( res_sign !=0 ) {
95 if ( ( iml1+iml2 ) == ( iml3+iml4 ) ) {
96 ES_hamiltonian[basis_index[res_confg]][ii]+= 0.5 * res_sign *

U_Matrix_Element( l_no, iml1, iml2, iml3, iml4, F );
97 } } } } } } } } }
98
99 Diagonalise_Matrix( ES_hamiltonian, ES_eigvect, ES_eigval, basis.size(),

ES_eigenvalues, ES_eigenstates );

Listing 5.2: Diagonalisation of ĤES

This operation gives us the energy eigenvalues of the electrostatic Hamiltonian, and in turn
the multiplet energies. These eigenvalues are, in general, degenerate. Let us denote the
eigenvalues of the Hamiltonian as E1, E2,..., Ek. The degeneracy for each eigenvalue is
denoted by g1, g2,..., gk and the set of eigenstates belonging to each degenerate eigenvalue
is denoted by ψi1, ψ

i
2, . . . , ψ

i
gi . Thus

ĤES

∣∣ψij〉 = Ei
∣∣ψij〉 (5.18)

These eigenvectors can be written as linear combinations of the occupation number basis
states ϕn



48 Implementation

∣∣∣ψ(i)
j

〉
=
∑
k

a
(i)
jk |ϕk〉 (5.19)

From the physical point of view, we already know that the electrostatic Hamiltonian can
be simultaneously diagonalised with the angular momentum and spin operators L̂2, L̂z, Ŝ2

and Ŝz. This means that the eigenstates of the Hamiltonian are, in theory, also eigenstates
of the angular momentum and spin operators. So it becomes essential to identify the total
angular momentum and spin of these eigenstates to pin-point which specific multiplet each
eigenstate belongs to. This also works in code, but we can potentially run into problems
for degenerate eigenstates of the Hamiltonian. When the eigenvectors are degenerate, they
belong to the same degenerate eigenspace and are hence not unique. This means that the
eigenstates of the Hamiltonian are not necessarily the eigenstates of the angular momentum
and spin operators. Fortunately for us, we can construct the simultaneous eigenstates by
taking the linear combinations of the degenerate eigenstates.

We define a new operator Ô = α1L̂
2 +α2L̂z +α3Ŝ

2 +α4Ŝz, where αi are arbitrary real co-
efficients. If we now choose a set of degenerate eigenstates of the electrostatic Hamiltonian∣∣∣ψ(i)
j

〉
, for a given i, as a basis, we can build a matrix representation of Ô in this basis by

simply calculating the matrix elements
〈
ψij

∣∣∣ Ô ∣∣∣ψij′〉. Since we do this for a particular set

of degenerate eigenstates, we can drop the label (i). Let us denote the new basis as

∣∣ϕ′m〉 ≡ ∣∣∣ψ(i)
m

〉
(5.20)

We can diagonalise Ô in this basis and find the new eigenvectors
∣∣∣ψ′j′〉. If we are able

to ensure that all the eigenvalues of the matrix are unique, we can ensure that all the
eigenvectors are uniquely defined.

Ô
∣∣ψ′j′〉 = λ

∣∣ψ′j′〉 (5.21)

The eigenvectors diagonalise Ô, and hence it is obvious that λ is given by

λ =
〈
ψ′j′
∣∣ Ô ∣∣ψ′j′〉

= α1

〈
ψ′j′
∣∣ L̂2

∣∣ψ′j′〉+ α2

〈
ψ′j′
∣∣ L̂z ∣∣ψ′j′〉+ α3

〈
ψ′j′
∣∣ Ŝ2

∣∣ψ′j′〉+ α4

〈
ψ′j′
∣∣ Ŝz ∣∣ψ′j′〉

= α1L (L+ 1) + α2ML + α1S (S + 1) + α2MS (5.22)

The eigenstates are really useful to us only if we can enforce that all the eigenvalues λ for a
given i are unique. For this purpose, it becomes necessary to choose appropriate values for
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the parameters αp. The tuning of the eigenvalues can be done by analysing the minimum
gap hmin and maximum gap hmax between two consecutive eigenvalues of the individual
angular momentum operators. From theory, we already know that numerically, the largest
eigenvalues will be observed for the L̂2 operator. One way to ensure that the eigenvalues
are distinct, is to choose the coefficients αi such that the eigenvalues of one operator lie
between two consecutive eigenvalues of the other operator. We elaborate on this point
using an example. Consider the L̂2 operator; the minimum gap between two consecutive
eigenvalues for this operator will be between L1 = 1 and L2 = 0 (see Fig (5.1). Which
means that hmin can be simply calculated as

hmin

(
L̂2
)

hmax

(
Ŝ2
)

Figure 5.1.: Simultaneous Diagonalisation Example: Method of tuning α2

hmin = L1 (L1 + 1)− L2 (L2 + 1) = 2 (5.23)

For simplicity we set α1 = 1. Next we look at the Ŝ2 operator. We now want to tune α2

such that all the eigenvalues of Ŝ2 lie between two consecutive eigenvalues of L̂2. Seeing as
the largest opens shells we are looking at are f -shells, we can deduce that the maximum
range for the eigenvalues of Ŝ2 will correspond to S1 = 7

2 and S2 = 1
2

hmax = S1 (S1 + 1)− S2 (S2 + 1) = 30 (5.24)

So the problem has been reduced to finding a suitable value of α2 such that the entire
spectrum of Ŝ2 lies between consecutive eigenvalues of L̂2. It is then simple to deduce that
α2 = 2

30 = 0.06. Similarly, we can find the minimum gaps and ranges for the other angular
momentum operators as listed in the table below.

Operator hmin hmax

L̂2 2 - α1 = 1.00

Ŝ2 2 30 α2 = 0.06

L̂z 1 20 α3 = 0.006

Ŝz 1 7 α4 = 0.001
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This ensures that the eigenvalues are non-degenerate. These eigenstates are then linear
combinations of the basis states |ϕj〉. This leads us to

∣∣ψ′k′〉 =
∑
m

b
(i)
mk′

∣∣ϕ′m〉
=
∑
m

b
(i)
mk′

∣∣∣ψ(i)
m

〉
=
∑
m

b
(i)
mk′

(∑
k

a
(i)
jk |ϕk〉

)

=
∑
m

(∑
k

b
(i)
mk′a

(i)
jk |ϕk〉

)
=
∑
k

∑
m

b
(i)
mk′a

(i)
jk |ϕk〉

=
∑
k

(∑
m

b
(i)
mk′a

(i)
jk

)
|ϕk〉

=
∑
k

c
(i)
kk′ |ϕk〉

(5.25)

This gives us the representation of the simultaneous eigenvectors in the basis of occupation
numbers. These eigenstates can then be used to identify the multiplets belonging to a
particular electronic configuration, since they diagonalise all the necessary operators.

5.5. Basis Transform

When dealing with problems in solid-state physics, we generally describe wave-functions
in terms of cubic harmonics, rather than in terms of spherical harmonics. This is because
cubic harmonics are real, and much easier to visualise. Another reason to switch to cubic
harmonics is the fact that we are going to also look at a simplified version of our electrostatic
U -matrix later. This is a popular matrix for Quantum Monte Carlo, and hence much better
dealt with using real harmonics.

We approach this task by first transforming the many-body Hamiltonian into a basis of
occupation numbers, but this time in the basis of cubic harmonics. From the point of view
of the code, the new basis is exactly the same, but conceptually, the occupations denote
occupied single particle cubic harmonic states rather than spherical harmonic states.

We define cubic harmonics Xν
k ≡ |kν〉 in terms of the spherical harmonics defined in

equation 4.29
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|k,−ν〉 =
i√
2

(
Y −νk + (−1)ν+1 Y ν

k

)
|k, 0〉 = Y 0

k

|k, ν〉 =
1√
2

(
Y −νk + (−1)ν Y ν

k

)
(5.26)

As a specific example, we look at the p-shell. For l = 1, we have the following

|1,−1〉 =
i√
2

(
Y −11 + Y 1

1

)
= X−11

|1, 0〉 = Y 0
1 = X0

1

|1, 1〉 =
1√
2

(
Y −11 − Y 1

1

)
= X1

1 (5.27)

This transformation can be represented as a matrix product

1√
2

−i 0 −i
0
√

2 0
1 0 −1

Y −11

Y 0
1

Y 1
1

 =

X−11

X0
1

X1
1

 (5.28)

We can then generalise this matrix definition for any value of l. The matrix is denoted by
T and can be written as

T =
1√
2



−i (−1)l i
. . . . .

.

−i −i√
2

1 −1

. .
. . . .

1 (−1)l


(5.29)

This transformation is unitary and hence, the inverse transformation matrix S is simply

S = T−1 = T † (5.30)
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Here we make a note of some notation that will be used in this section. Firstly, to make
the transformation laws clear, we will use Einstein’s tensor notation. For a fixed value of
quantum numbers n, and l, we can write equation 4.22 in the tensor notation

Um1m2
m3m4

=
∞∑
k=0

S(k) (nl)

 4π

2k + 1

k∑
µ=−k

〈m1|kµ×m3〉 〈m2 × kµ|m4〉


= 〈m1m2| Û |m3m4〉 (5.31)

The eigenstates in spherical harmonics are denoted by |m〉. The transformation matrices
in this notation look like

T ≡ τ im; S ≡ %mi (5.32)

where the cubic harmonics are labelled by i = −l,−l + 1, . . . , l − 1, l. Then the cubic
harmonics are denoted by |i〉 and the transformation laws for the bra- and ket- vectors
being defined by

|i〉 = τ im |m〉
〈i| = 〈m| %mi (5.33)

Similarly we can also write the transformation laws for the creation and annihilation op-
erators.

c†iσ = τ imc
†
mσ

ciσ = cmσ%
m
i (5.34)

Now, we recall the definition of the electrostatic Hamiltonian in second quantisation 5.17
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Û =
1

2

∑
{m}{σ}

Um1m2
m3m4

c†m1σc
†
m2σ′cm4σ′cm3σ

=
1

2

∑
{m}{σ}{i}{j}

[
%m1
i1
%m2
i2
τ i3m3

τ i4m4
〈i1i2| Û |i3i4〉

]
×
[
τ j1m1

τ j2m2
%m3
j3
%m4
j4
c†j1σc

†
j2σ′cj4σ′cj3σ

]

=
1

2

∑
{i}{j}{σ}

U i1i2i3i4
c†j1σc

†
j2σ′cj4σ′cj3σ

∑
{m}

τ j1m1
%m1
i1
τ j2m2

%m2
i2
τ j3m3

%m3
i3
τ j4m4

%m4
i4


=

1

2

∑
{i}{j}{σ}

U i1i2i3i4
c†j1σc

†
j2σ′cj4σ′cj3σ

[
δj1i1 δ

j2
i2
δj3i3 δ

j4
i4

]
=

1

2

∑
{i}{σ}

U i1i2i3i4
c†i1σc

†
i2σ′ci4σ′ci3σ (5.35)

Thus the electrostatic potential operator in both bases looks the same. So the only task
we need to accomplish is to calculate the integrals U i1i2i3i4

from Um1m2
m3m4

. The code to do this
is shown in the listing below.

93 for ( int ii1 = -l_no; ii1 <= l_no; ii1++ ) {
94 for ( int ii2 = -l_no; ii2 <= l_no; ii2++ ) {
95 for ( int ii3 = -l_no; ii3 <= l_no; ii3++ ) {
96 for ( int ii4 = -l_no; ii4 <= l_no; ii4++ ) {
97 // Spin sums
98 for ( int ims1 = 0; ims1 <= 1; ims1++ ) {
99 for ( int ims2 = 0; ims2 <= 1; ims2++ ) {

100 unsigned long res_confg = basis[ii];
101 int res_sign = 1;
102
103 res_confg = El_Remove( l_no, ii3, ims1, res_confg, &res_sign );
104 res_confg = El_Remove( l_no, ii4, ims2, res_confg, &res_sign );
105 res_confg = El_Create( l_no, ii2, ims2, res_confg, &res_sign );
106 res_confg = El_Create( l_no, ii1, ims1, res_confg, &res_sign );
107
108 if ( res_sign !=0 ) {
109 complex<double> u_trafo (0.0, 0.0);
110
111 for ( int im1 = 0; im1 <= 2*l_no; im1++ ) {
112 for ( int im2 = 0; im2 <= 2*l_no; im2++ ) {
113 for ( int im3 = 0; im3 <= 2*l_no; im3++ ) {
114 for ( int im4 = 0; im4 <= 2*l_no; im4++ ) {
115 if ( (im1+im2) == (im3+im4) ) {
116 u_trafo = u_trafo + tau[ii1+l_no][im1] * tau[ii2+l_no][im2] *

U_Matrix_Element( l_no, im1-l_no, im2-l_no, im3-l_no,
im4-l_no, F ) * conj( tau[ii3+l_no][im3] ) * conj( tau[
ii4+l_no][im4] ) / 4.0; } } } } }

117
118 ES_hamiltonian[basis_index[res_confg]][ii]+= 0.5 * res_sign *

real( u_trafo );
119 } } } } } } }

Listing 5.3: Transformation of Um1m2
m3m4

to U i1i2
i3i4
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The process for generating the new many-body basis (using cubic harmonics), constructing
the Hamiltonian matrix in this basis (Ĥcubic

ES ) and finding the eigenenergies and eigenstates
of this matrix is exactly the same as before. This means with small modifications, we can
re-use the code we have written before to achieve these goals.

The resultant eigenstates are now in the basis of cubic harmonics, which means that the
angular momentum and spin operators which we used before are no longer useful to identify
the resulting multiplets. Just like we did for the U -matrix, we will transform the angular
momentum operators into the new basis. As an example, we will show how this is done
for the L̂z operator, and then use this method to derive all the other operators.

From 5.3 we know that

L̂z =

L∑
m=−L

∑
{σ}

m · c†mσcmσ (5.36)

Using the rules of transformation,

L̂z =
L∑

m=−L

∑
{σ}

m · τ imc
†
iσci′σ%

m
i′

=
∑

{i}{i′}{σ}

c†iσci′σ

(
L∑

m=−L
mτ im%

m
i′

)
(5.37)

In a similar fashion, we can define the rest of the operators for the new basis

L̂cubic+ =
∑

{i}{i′}{σ}

c†iσci′σ

(
L−1∑
m=−L

√
(L−m) (L+m+ 1) τ im+1%

m
i′

)

L̂cubic− =
∑

{i}{i′}{σ}

c†iσci′σ

(
L∑

m=−L+1

√
(L+m) (L−m+ 1) τ im−1%

m
i′

)
(5.38)

In case of the spin operators, it is much easier. Since the transformation is independent
of spin, the spin operators are identical to the ones in terms of spherical harmonics, but
using the cubic creation and annihilation operators. So



Electrostatic Hamiltonian 55

Ŝcubicz =

S∑
σ=−S

∑
{i}

σ · c†i,σci,σ

Ŝcubic+ =

S−1∑
σ=−S

∑
{i}

√
(S − σ) (S + σ + 1) · c†i,σ+1ci,σ

Ŝcubic− =

S∑
σ=−S+1

∑
{i}

√
(S + σ) (S − σ + 1) · c†i,σ−1ci,σ (5.39)

These operators can then be used to identify the multiplets appearing in the eigenstates
of the electrostatic Hamiltonian.

5.6. Electrostatic Hamiltonian

5.6.1. Multiplet Energies

The procedure we saw above of diagonalising the Hamiltonian can be implemented very
easily. The eigenvalues of the diagonalisation of the electrostatic Hamiltonian are of course
the energies of the multiplets. The corresponding eigenvectors can then be identified using
the angular momentum operators. While calculating the Hamiltonian, we have additional
parameters in the form of the Slater Integrals F (k) as seen in equation (4.26). It is common
practice to describe the multiplet energies in terms of these parameters. We will perform
all the calculations in the basis of cubic harmonics.

The multiplet energies obtained from this execution have been shown in Tables (5.1) and
(5.2). In case of the d-shell, it will so happen that for some configurations, there will be
repeated multiplets. In that case, the eigenspace of the repeated multiplets is degenerate,
and needs further diagonalisation. To avoid this, we have noted all the repeated multiplets
at the bottom of the table and the energy value is given for a ratio of F [4]/F [2] ≈ 0.652

5.6.2. Simplified Hamiltonian

We saw in equation (C.1) the expressions for the diagonal elements of the U -matrix. In
some calculations, the off diagonal elements of the U -matrix are dropped and only the di-
agonal elements Um,m′,m,m′ and Jm,m′,m′,m are considered in the electrostatic Hamiltonian.
This is especially popular in Quantum Monte Carlo calculations to make the problem more
tractable.

By making only slight modifications in our code, it is possible for us to calculate the
energies and wave-functions of this simplified Hamiltonian (Ĥred

ES ). The eigenstates are no
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d2 F [2] F [4]

3F −0.163 −0.0204

1D −0.061 0.0816

1G 0.081 0.002

3P 0.143 −0.190

1S 0.286 0.286

d3 F [2] F [4]

4F −0.306 −0.163

2G −0.224 0.029

2P −0.122 −0.027

2H −0.122 −0.027

4P 0.000 −0.333

2F 0.184 −0.197

2D −0.0052

2D 0.0149

Table 5.1.: Multiplet energies: d2 (left) and d3 (right)

longer diagonal in terms of the L̂2 and Ŝ2 operators, meaning L and S are no longer good
quantum numbers.

By doing this, it is possible for us to gain an insight into how calculations may be affected
due to this simplification. The energies and degeneracies of Ĥred

ES are different from those
of the full Hamiltonian. These details have been plotted in Fig (5.2) and (5.3).

As is evident, the spectra for the simplified Hamiltonian are very different from those
of the full Hamiltonian. Consequently, we would like to have a quantitative measure of
this difference. The idea is as follows. We know that the energies of the multiplets are
parametrised in terms of the Slater integrals F [k]. We know the exact dependence on these
parameters for the full Hamiltonian. We would then like to fit the energies of the full
Hamiltonian onto the energies of the simplified Hamiltonian via the Slater integrals. We
could then achieve different types of fits depending on what kind of application we are
dealing with. For example, if the ground state energy is of major significance, then we
could tune the parametrised equation for the simplified Hamiltonian to give us the best
results for the ground state.

One way of performing this task is to use the moments of the energy spectra that we
obtained. The moments of the spectrum help us decide the various characteristics of the
distribution of energy levels. As a simple example, we consider the d2 configuration. We
can calculate the nth moment of the distribution as
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d4 F [2] F [4]

5D −0.429 −0.429

3H −0.347 −0.156

1I −0.306 −0.020

3G −0.245 −0.213

3D −0.102 −0.293

1F 0.000 −0.190

3P −0.019

3P −0.0006

1G −0.013

1G 0.003

1D −0.009

1D 0.015

3F −0.019

3F −0.001

1S −0.010

1S 0.029

d5 F [2] F [4]

6S −0.714 −0.714

4P −0.571 −0.238

4G −0.510 −0.431

2I −0.490 −0.204

2H −0.449 −0.068

4D −0.367 −0.510

4F −0.265 −0.408

2S −0.061 −0.442

2P 0.408 −0.544

2D −0.025

2D −0.012

2D 0.007

2F −0.024

2F −0.019

2G −0.022

2G −0.008

Table 5.2.: Multiplet energies: d4 (left) and d5 (right)
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µn =
1

N

N∑
i

(Ei)
n (5.40)

where E is the multiplet energy and N is the dimension of the eigenproblem. We will calcu-
late the first three moments of the distributions for the full and the simplified Hamiltonian
in terms of the Slater parameters F [2] and F [4]

Moment Full Simplified

F [2] F [4] F [2] F [4]

1 0 0 0 0

2 1.908× 10−2 8.998× 10−3 7.618× 10−3 4.662× 10−3

3 −8.142× 10−4 −7.754× 10−4 −7.813× 10−4 −4.524× 10−4

Table 5.3.: First three moments of the spectra of the full and the simplified Hamiltonians
for the d2 configuration

We see that the first moments are the same for all. But from the second moment onwards,
we see the difference between the full and the simplified Hamiltonian. The idea then is to
use these higher order moments to tune the values of F [2] and F [4] so as to suit the problem
at hand.

5.7. Crystal Field Term

As we mentioned before, we are only concerned with the electrostatic potential exerted
by surrounding ligand atoms on the central metal ion. Since we work completely in the
second quantised formulation, we need to describe this interaction in terms of creation
and annihilation operators. The electrostatic potential due to the ligands is denoted by
VCEF (νi, νj). Since we assume that n and l are constant, VCEF is just a function of mi

and mj . Also, this interaction is independent of spin. So transforming this into second
quantisation, we can write the crystal field Hamiltonian as

ĤCEF =

l∑
m,m′=−l

∑
σ

VCEF (m,m′)c†m,σcm′,σ (5.41)

The calculation of VCEF (m1,m2) is a separate exercise which we do not discuss here. Our
main concern is to see the effect of the crystal field on our electrostatic energy levels. We
discuss here the commonly discussed case of an octahedral ligand field around the central
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atom. We assume that all the ligands possess the same charge and are equidistant from
the central atom. Under these assumptions, we can write VCEF (m1,m2) as

VCEF (m1,m2) =
I

6


1 0 0 0 5
0 −4 0 0 0
0 0 6 0 0
0 0 0 −4 0
5 0 0 0 1

 (5.42)

This matrix has known eigenvalues: I (2-fold degenerate) and −2I/3 (3-fold degenerate)
[6]. This separation between the two eigenvalues is conventionally referred to as 10Dq
and hence the eigenvalues are respectively 6Dq and −4Dq. We can demonstrate how this
interaction affects our electrostatic multiplets using Tanabe-Sugano diagrams, which plot
the energy levels for varying values of the splitting 10Dq. A feature of this interaction is
that it reverses under a particle-hole transform i.e. configurations dn and d10−n split in
opposite ways. As an example, we see the crystal field splitting for 4 different configurations
in figs. (5.4) and (5.5) below. Once again, we fix the ratio of F (4)/F (2) ≈ 0.652 for the
U -matrix. Then we can vary the value of 10Dq in terms of F (2). It is easy to see that in
terms of I, 10Dq = I/6. So we essentially vary the magnitude of I from 0 to 0.3F (2).

We can see the effect of the particle-hole transformation from the two sets of figures.

5.8. Spin-Orbit Coupling

The final term that we had considered was the spin-orbit coupling term. This is the first
case where we will have a direct interaction between the orbital and spin degrees of freedom.
The definition of the spin-orbit term is given as a sum over the N electrons [8]

ĤSO = λSO

N∑
i

l̂i · ŝi

= λSO

N∑
i

[
l̂zi ŝ

z
i +

1

2

(
l̂+i ŝ
−
i + l̂−i ŝ

+
i

)]
(5.43)

This can be translated into second quantised form as
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Figure 5.4.: Tanabe-Sugano diagrams for d2 (left) and d8. (right)

ĤSO =
λSO

2

m=−l∑
l

[
m
(
c†m↑cm↑ − c

†
m↓cm↓

)]
+
λSO

2

m=−l∑
l−1

[√
(l −m) (l +m+ 1)

(
c†m+1,↓cm↑ + c†m↑cm+1,↓

)]
(5.44)

The possibility of adding spin-orbit coupling has also been added to the code.
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Figure 5.5.: Tanabe-Sugano diagrams for d3 (left) and d7. (right)
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Atomic units

Very often, with problems involving the Schrödinger equation, it becomes difficult to keep
track of the various constants and prefactors. To avoid messy calculations, we fix up a
system of units where the numerical values of certain constants are set to 1. In atomic
units (or a.u. for short) we set the values of electron charge e, the electron mass me, the
Planck’s constant ~ and the dielectric constant 4πε0 to 1. Then we can evaluate all the
other quantities such as the atomic units of length, time, energy etc. using dimensional
analysis.

The atomic unit of length is a0 or the Bohr radius which is approximately equal to 5.29×
10−11m which is convenient for describing distance at atomic level. Another important
unit is the atomic unit of energy, which is called the Hartree, which is approximately equal
to 27.211 eV. The energy of the ground state of the free hydrogen atom stands at − 1/2
Hartree. Thus, these units are very suitable to electronic structure calculations.





A P P E N D I X B

Gaunt Co-efficient Matrices

The code to obtain the Gaunt Co-efficient Matrices was shown in 4. The output from this
was converted to the form of fractions and the data is presented here as matrices G (l, k).
(see also [5]

G(1, 0) =
1√
4π

1 0 0
0 1 0
0 0 1


G(1, 2) =

1√
20π

 −1
√

3 −
√

6

−
√

3 2 −
√

3

−
√

6
√

3 −1



G(2, 0) =
1√
4π


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



G(2, 2) =
1√

196π


−
√

20
√

30 −
√

20 0 0

−
√

30
√

5
√

5 −
√

30 0

−
√

20 −
√

5
√

20 −
√

5 −
√

20

0 −
√

30
√

5
√

5 −
√

30

0 0 −
√

20
√

30 −
√

20


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G(2, 4) =
1√

196π


1 −

√
5
√

15 −
√

35
√

70√
5 −4

√
30 −

√
40
√

35√
15 −

√
30 6 −

√
30
√

15√
35 −

√
40
√

30 −4
√

5√
70 −

√
35
√

15 −
√

5 1



G(3, 0) =
1√
4π



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



G(3, 2) =
1√

180π



−5 5 −
√

10 0 0 0 0

−5 0
√

15 −
√

20 0 0 0

−
√

10 −
√

15 3
√

2 −
√

24 0 0

0 −
√

20 −
√

2 4 −
√

2 −
√

20 0

0 0 −
√

24
√

2 3 −
√

15 −
√

10

0 0 0 −
√

20
√

15 0 −5

0 0 0 0 −
√

10 5 −5



G(3, 4) =
1√

484π



3 −
√

30
√

54 −
√

63
√

42 0 0√
30 −7

√
32 −

√
3 −

√
14

√
70 0√

54 −
√

32 1
√

15 −
√

40
√

14
√

42√
63 −

√
3 −

√
15 6 −

√
15 −

√
3
√

63√
42

√
14 −

√
40

√
15 1 −

√
32
√

54

0
√

70 −
√

14 −
√

3
√

32 −7
√

30

0 0
√

42 −
√

63
√

54 −
√

30 3



G(3, 6) =
5

429

√
13

4π



−1
√

7 −
√

28
√

84 −
√

210
√

462 −
√

924

−
√

7 6 −
√

105
√

224 −
√

378
√

504 −
√

462

−
√

28
√

105 −15
√

350 −
√

420
√

378 −
√

210

−
√

84
√

224 −
√

350 20 −
√

350
√

224 −
√

84

−
√

210
√

378 −
√

420
√

350 −15
√

105 −
√

28

−
√

462
√

504 −
√

378
√

224 −
√

105 6 −
√

7

−
√

924
√

462 −
√

210
√

84 −
√

28
√

7 −1


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Coulomb Integrals

Recall from 4 that we had defined the direct and exchange terms as

Uνν′ = Umm′ =
∞∑
k=0

F (k) (nl;nl) a(k)
(
lm; lm′

)
Jνν′ = Jmm′ =

∞∑
k=0

F (k) (nl;nl) b(k)
(
lm; lm′

)
(C.1)

The following tables give the values of the angular integrals for different values of (l, k) in
both the spherical and cubic bases. (see also [7])
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k a
(k)
mm′ b

(k)
mm′

0 1
1


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 1
1


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



2 1
49


4 −2 −4 −2 4

−2 1 2 1 −2

−4 2 4 2 −4

−2 1 2 1 −2

4 −2 −4 −2 4

 1
49


4 6 4 0 0

6 1 1 6 0

4 1 4 1 4

0 6 1 1 6

0 0 4 6 4



4 1
441


1 −4 6 −4 1

−4 16 −24 16 −4

6 −24 36 −24 6

−4 16 −24 16 −4

1 −4 6 −4 1

 1
441


1 5 15 35 70

5 16 30 40 35

15 30 36 30 15

35 40 30 16 5

70 35 15 5 1



Table C.1.: l = 2 in the basis of spherical harmonics

k a
(k)
mm′ b

(k)
mm′

0 1
1


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 1
1


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



2 1
49


4 −2 −4 −2 4

−2 1 2 1 −2

−4 2 4 2 −4

−2 1 2 1 −2

4 −2 −4 −2 4

 1
49


4 3 4 3 0

3 4 1 3 3

4 1 4 1 4

3 3 1 4 3

0 3 4 3 4



3 1
441


36 −4 6 −4 −34

−4 36 −24 −4 −4

6 −24 36 −24 6

−4 −4 −24 36 −4

−34 −4 6 −4 36

 1
441


36 20 15 20 35

20 36 30 20 20

15 30 36 30 15

20 20 30 36 20

35 20 15 20 36



Table C.2.: l = 2 in the basis of cubic harmonics
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k a
(k)
mm′ b

(k)
mm′

0 1
1



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1


1
1



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



2 1
225



25 −0 −15 −20 −15 −0 25

−0 0 0 0 0 0 −0

−15 0 9 12 9 0 −15

−20 0 12 16 12 0 −20

−15 0 9 12 9 0 −15

−0 0 0 0 0 0 −0

25 −0 −15 −20 −15 −0 25


1

225



25 25 10 0 0 0 0

25 0 15 20 0 0 0

10 15 9 2 24 0 0

0 20 2 16 2 20 0

0 0 24 2 9 15 10

0 0 0 20 15 0 25

0 0 0 0 10 25 25



4 1
1089



9 −21 3 18 3 −21 9

−21 49 −7 −42 −7 49 −21

3 −7 1 6 1 −7 3

18 −42 6 36 6 −42 18

3 −7 1 6 1 −7 3

−21 49 −7 −42 −7 49 −21

9 −21 3 18 3 −21 9


1

1089



9 30 54 63 42 0 0

30 49 32 3 14 70 0

54 32 1 15 40 14 42

63 3 15 36 15 3 63

42 14 40 15 1 32 54

0 70 14 3 32 49 30

0 0 42 63 54 30 9



6 5
4292



1 −6 15 −20 15 −6 1

−6 36 −90 120 −90 36 −6

15 −90 225 −300 225 −90 15

−20 120 −300 400 −300 120 −20

15 −90 225 −300 225 −90 15

−6 36 −90 120 −90 36 −6

1 −6 15 −20 15 −6 1


5

4292



1 7 28 84 210 462 924

7 36 105 224 378 504 462

28 105 225 350 420 378 210

84 224 350 400 350 224 84

210 378 420 350 225 105 28

462 504 378 224 105 36 7

924 462 210 84 28 7 1


Table C.3.: l = 3 in the basis of spherical harmonics
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k a
(k)
mm′ b

(k)
mm′

0 1
1



1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1


1
1



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



2 1
225



25 0 −15 −20 −15 0 25

0 0 0 0 0 0 0

−15 0 21 12 −3 0 −15

−20 0 12 16 12 0 −20

−15 0 −3 12 21 0 −15

0 0 0 0 0 0 0

25 0 −15 −20 −15 0 25


1

450



50 25 10 0 10 25 0

25 0 15 40 15 0 25

10 15 42 4 24 15 10

0 40 4 32 4 40 0

10 15 24 4 42 15 10

25 0 15 40 15 0 25

0 25 10 0 10 25 50



4 1
1089



9 −21 3 18 3 −21 9

−21 84 −7 −42 −7 14 −21

3 −7 21 6 −19 −7 3

18 −42 6 36 6 −42 18

3 −7 −19 6 21 −7 3

−21 14 −7 −42 −7 84 −21

9 −21 3 18 3 −21 9


1

1089



9 15 48 63 48 15 0

15 84 23 3 23 35 15

48 23 21 15 20 23 48

63 3 15 36 15 3 63

48 23 20 15 21 23 48

15 35 23 3 23 84 15

0 15 48 63 48 15 9


Table C.4.: l = 3 in the basis of cubic harmonics

We mention the last two integrals separately owing to their size

a
(6)
mm′ =

5

4292



463 −6 15 −20 15 −6 −461

−6 288 −90 120 −90 −216 −6

15 −90 435 −300 15 −90 15

−20 120 −300 400 −300 120 −20

15 −90 15 −300 435 −90 15

−6 −216 −90 120 −90 288 −6

−461 −6 15 −20 15 −6 463



b
(6)
mm′ =

5

2× 4292



926 469 238 168 238 469 924

469 576 483 448 483 504 469

238 483 870 700 420 483 238

168 448 700 800 700 448 168

238 483 420 700 870 483 238

469 504 483 448 483 576 469

924 469 238 168 238 469 926


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Simulation Vol. 2, Forschungszentrum Jülich, 2012. (cited in 2.2.4, 5.7.)

[7] E. Pavarini, The LDA+DMFT Approach, in The LDA+DMFT approach to strongly
correlated materials, edited by E. Pavarini, E. Koch, D. Vollhardt and A. Lichten-
stein, , Schriften des Forschungszentrums Jülich, Reihe Modeling and Simulation Vol. 1,
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