000132181 001__ 132181
000132181 005__ 20240619083446.0
000132181 0247_ $$2doi$$a10.1039/c3sm27754b
000132181 0247_ $$2ISSN$$a1744-683X
000132181 0247_ $$2ISSN$$a1744-6848
000132181 0247_ $$2WOS$$aWOS:000316967300005
000132181 0247_ $$2Handle$$a2128/5038
000132181 037__ $$aFZJ-2013-01413
000132181 082__ $$a530
000132181 1001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b0$$eCorresponding author$$ufzj
000132181 245__ $$aStructural arrest and texture dynamics in suspensions of charged colloidal rods
000132181 260__ $$aCambridge$$bRoyal Society of Chemistry (RSC)$$c2013
000132181 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s132181
000132181 3367_ $$2DataCite$$aOutput Types/Journal article
000132181 3367_ $$00$$2EndNote$$aJournal Article
000132181 3367_ $$2BibTeX$$aARTICLE
000132181 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132181 3367_ $$2DRIVER$$aarticle
000132181 500__ $$3POF3_Assignment on 2016-02-29
000132181 520__ $$aThere is an abundance of experiments and theories on the glass transition of colloidal systems consisting of spherical particles. Much less is known about possible glass transitions in suspensions of rod-like colloids. In this study we present observations of a glass transition in suspensions of very long and thin rod-like, highly charged colloids. We use as a model system fd-virus particles(a DNA strand covered with coat proteins) at low ionic strength, where thick electric double layers are present. Structural arrest as a result of particle-caging is observed by means of dynamic light scattering. The glass-transition concentration is found to be far above the isotropic-nematic coexistence region. The morphology of the system thus consists of nematic domains with different orientations.  Below the glass-transition concentration the initial morphology with large shear-aligned domains breaks up into smaller domains, and equilibrates after typically 50-100 hours. We quantify the dynamics of the transitional and the equilibrated texture by means of image time-correlation. A sharp increase of relaxation times of image time-correlation functions is found at the glass-transition concentration.  The texture dynamics thus  freezes at the same concentration where structural arrest occurs. We also observe a flow instability, which sets in after very long waiting times (typically 200-300 hours), depending on the rod concentration, which instability affects the texture morphology.
000132181 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000132181 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000132181 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b1
000132181 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/c3sm27754b$$gp. 10.1039.c3sm27754b$$n17$$p4401-4411$$tSoft matter$$v9$$x1744-6848$$y2013
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-2013-01413.pdf$$yOpenAccess
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-132181.pdf$$yPublished under German "Allianz" Licensing conditions on 2013-02-26. Available in OpenAccess from 2014-02-26$$zPublished final document.
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-132181.jpg?subformat=icon-1440$$xicon-1440
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-132181.jpg?subformat=icon-180$$xicon-180
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-132181.jpg?subformat=icon-640$$xicon-640
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-2013-01413.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-2013-01413.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000132181 8564_ $$uhttps://juser.fz-juelich.de/record/132181/files/FZJ-2013-01413.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000132181 909CO $$ooai:juser.fz-juelich.de:132181$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000132181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000132181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000132181 9101_ $$0I:(DE-588b)5008462-8
000132181 9101_ $$kFZJ
000132181 9101_ $$aForschungszentrum Jülich GmbH
000132181 9101_ $$6P:(DE-Juel1)130616
000132181 9101_ $$b1
000132181 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000132181 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000132181 9141_ $$y2013
000132181 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000132181 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000132181 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000132181 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132181 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132181 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132181 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132181 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132181 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000132181 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000132181 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000132181 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000132181 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000132181 9801_ $$aFullTexts
000132181 980__ $$ajournal
000132181 980__ $$aUNRESTRICTED
000132181 980__ $$aJUWEL
000132181 980__ $$aFullTexts
000132181 980__ $$aI:(DE-Juel1)ICS-3-20110106
000132181 980__ $$aVDB