TY - JOUR
AU - Alagha, S.
AU - Estévez Hernández, S.
AU - Blömers, C.
AU - Stoica, T.
AU - Calarco, R.
AU - Schäpers, Th.
TI - Universal conductance fluctuations and localization effects in InN nanowires connected in parallel
JO - Journal of applied physics
VL - 108
SN - 0021-8979
CY - Melville, NY
PB - American Institute of Physics
M1 - PreJuSER-13285
SP - 113704
PY - 2010
N1 - Record converted from VDB: 12.11.2012
AB - The low-temperature quantum transport of InN nanowires grown by plasma-assisted molecular beam epitaxy is investigated. Two sets of nanowires with diameters of 100 and 45 nm originating from two different growth runs are studied. Magnetic-field-dependent as well as gate-dependent measurements of universal conductance fluctuations are performed to gain information on the phase-coherence in the electron transport. By analyzing the correlation field and the average fluctuation amplitude a phase-coherence length of several hundred nanometers is extracted for both sets of nanowires at temperatures below 1 K. Conductance fluctuations are also observed when the Fermi wavelength is varied by applying a bias voltage to a back-gate. The results on the electron phase-coherence obtained from the gate-dependent measurements are consistent with the findings from the magnetic field dependent measurements. A considerable damping of the fluctuation amplitude by ensemble averaging is achieved by connecting nanowires in parallel. The suppression of the fluctuation amplitude is studied systematically by measuring samples with different numbers of nanowires. By utilizing the damping of the conductance fluctuations by connecting nanowires in parallel in combination with an averaging over the gate voltage, weak localization effects are resolved. For both sets of nanowires a clear evidence of the weak antilocalization is found, which indicates the presence of spin-orbit coupling. For the spin-orbit scattering length l(so) values in the order of 100 nm are extracted. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3516216]
KW - J (WoSType)
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000285474100064
DO - DOI:10.1063/1.3516216
UR - https://juser.fz-juelich.de/record/13285
ER -