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Parallel carbon nanotube quantum dots and their interactions
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We present quantum transport measurements of interacting parallel quantum dots formed in the strands of a
carbon nanotube rope. In this molecular quantum dot system, transport is dominated by one quantum dot, while
additional resonances from parallel side dots appear, which exhibit a weak gate coupling. This differential gating
effect provides a tunability of the quantum dot system with only one gate electrode and provides control over
the carbon nanotube strand that carries the current. By tuning the system to different states, we use quantum
transport as a spectroscopic tool to investigate the interdot coupling and show a route to distinguish among
various side dots. By comparing the experimental data with master-equation calculations, we identify conditions
for the tunneling rates that are required in order to observe different manifestations of the interdot coupling in
the transport spectra.
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I. INTRODUCTION

Carbon nanotubes (CNTs) are a versatile material for
electronics. In addition to extraordinary electronic1–4 and
thermal5–7 transport properties, they are mechanically flexible
and strong.8–10 The current is carried by the π orbitals of
the macromolecule and, thus, the electronic transport can be
strongly influenced by the environment. This feature can be
exploited by using carbon nanotubes as the functional element
in detectors, e. g., gas sensors.11,12 A different way of using
this property is the functionalization of individual CNTs with
molecules to create new hybrid types of nanodevices such as
biosensors13,14 or spin valves.15

The interactions involved in such a functionalization are
not yet fully understood but are expected to also play an
important role in the transport properties of other interacting
π systems such as graphene or individual molecules. Much
effort has been put into studying quantized transport in
these systems.16–29 In contrast to graphene and individual
molecules, quantum transport on clean, individual CNTs today
is well established and understood.30–35 Therefore, it can be
used as a spectroscopic tool to investigate more complex
multicomponent devices. Within this context, CNTs bundled
together in the form of a rope represent a generic and readily
available system to study the electrical transport of interacting
molecules.

Recently, we investigated the electronic hybridization
between the parallel quantum dots (QDs) in a CNT rope
system, when two electrochemical potentials of the dots are in
resonance.36 Here, we report on the same device, focusing,
however, on the off-resonance case in order to create a
complete picture of the manifold of effects that can arise
in a system of parallel coupled quantum dots. Tuning the
system from in-resonance to off-resonance cases is possible
by a differential gating effect which enables one to shift
the dot potentials relative to each other. This effect forms a
major part of this article, since it allows one to find a generic

route to distinguish several quantum dots by their coupling
to the environment. Previously, we reported on a selective
hybridization of in-resonance spin states in a magnetic field.36

Here, on the other hand, we use the transport data at high
magnetic field to extract relative tunnel rates and discuss their
effect on the stability diagram. In addition, we present the
influence of a capacitive coupling on a main resonance. The
experimentally observed shift of resonances can be explained
with the model developed previously.36 This confirms its
potential to fully describe a system of several parallel quantum
dots which exhibit a tunnel coupling as well as a capacitive
coupling.

This manuscript is structured as follows. After indicating
the sample fabrication and measurement techniques in Sec. II,
we evaluate in Sec. III the coupling and interaction parameters
of four parallel quantum dots within the CNT rope. This
section also includes a discussion of the differential gating
effect, which allows the system to be tuned into in-resonance
and off-resonance states. Section IV compares master-equation
calculations with quantum transport measurements in order to
show the effect of relative tunnel rates of parallel quantum
dots. At last, in Sec. V, we briefly outline how to extract the
true capacitive coupling between parallel quantum dots in the
presence of a strongly asymmetric coupling to one lead.

II. SAMPLE AND METHODS

We show quantum transport measurements of a CNT rope
device with the distance between the gold contacts being
patterned as 360 nm (see Fig. 1). The highly doped Si substrate
with SiO2 on top of it acts as a backgate. The CNTs are grown
on substrate by the chemical vapor deposition method using
Fe/Mo as catalyst and methane as the carbon precursor.37 The
growth temperature is 920 ◦C, where a predominant growth of
single-walled carbon nanotubes and a small fraction of double-
walled CNTs is expected.38 The height profile taken from the
atomic force micrograph in Fig. 1 in the quantum dot region
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FIG. 1. (Color online) Atomic force micrograph of the parallel
quantum dot device with gold contacts patterned on top of a CNT
rope. Inset: Height profile z in the quantum dot region between the
contacts.

between the two contacts gives a height of ∼7 nm. We can
rule out the presence of an individual multiwalled CNT with
a large diameter based on Raman scattering measurements
performed on the device reported here.39 We infer from these
experiments that the device consists of a bundle of several
carbon nanotubes with diameters between 0.6 and 1.3 nm in the
quantum dot region. The device exhibits a resistance of 290 k�

at room temperature with a linear current-voltage characteristic
indicating its metallic character. Low-temperature transport
measurements are performed in a dilution refrigerator at a
base temperature of ∼30 mK.

III. MULTIPLE PARALLEL QUANTUM DOTS

Figure 2 shows the stability diagram of the CNT rope
device measured at low temperatures, which exhibits Coulomb
diamonds as typical Coulomb blockade signatures and more
atypical additional resonances. Previously, we have shown that
the observable features can be explained by a formation of
interacting parallel quantum dots in different strands of the
rope.36 The Coulomb diamonds in Fig. 2 originate from one
quantum dot which we label as the main dot and the secondary

side
dot

main
dot

FIG. 3. (Color online) Circuit diagram of a system of two parallel
quantum dots, main dot m and side dot s, formed in two CNTs. The
tunnel barriers connecting them to the same source (sc) and drain (dr)
electrodes are characterized by a resistance R and a capacitance C.
The quantum dots interact via a tunnel coupling with the hybridization
amplitude t and a capacitive coupling with the capacitance Cms .

resonances marked by arrows originate from side dots formed
in parallel CNTs within the rope. These secondary resonances
are part of a Coulomb diamond pattern with smaller slopes of
the diamond edges due to a weaker backgate coupling of the
side dots.

Within the gate voltage range plotted in Figs. 2(a) and 2(b),
indications of three different side dots are observed as we
will discuss in the following. Three main signatures are used
to discriminate these three quantum dots. First, anticrossings
caused by a tunnel coupling between quantum dot states on
different dots can be observed at meeting points between
resonance lines. This tunnel coupling is characterized by a
hybridization amplitude t as sketched in the circuit diagram of
the quantum dot system in Fig. 3. Second, a capacitive coupling
characterized by the capacitance Cms between the dots leads
to a voltage shift �V (i) in the secondary resonances when
proceeding from one Coulomb diamond to the next. In the
stability diagram in Fig. 2(a), this voltage shift is illustrated

FIG. 2. (Color online) Differential conductance plot showing several charge states of the main dot. Secondary resonances of three different
side dots A, B (a) and C (b) are indicated by arrows. The slopes of the arrows represent the slope of the respective secondary resonance, which is
used for evaluating the coupling of the quantum dot to the electrodes. The resonances in subsequent main dot charge states are shifted by �V (i)
(i = A,B,C) due to a capacitive interdot coupling, which is indicated for side dot A as an example. Note that the differential conductance at
positive bias voltage in (a) is multiplied by 3.
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TABLE I. Coupling and interaction parameters of the quantum
dots observed in Fig. 2.

QD i αgt αsc αdr |t | (meV) �V (i) (meV)

Main dot 0.05 0.36 0.59 — —
Side dot A 0.019 0.765 0.216 0.1 0.40
Side dot B 0.007 0.074 0.919 0.075 0.20
Side dot C 0.001 0.002 0.997 �= 0 0.07

by a vertical shift of the arrows indicative of the secondary
resonances of side dot A. The reason for such an energy shift
of a side dot level is a potential change on the side dot due to
addition of an electron to the main dot.

Third, the bias coupling, which is due to the interaction of
the QDs with the leads, can be deduced from the slopes of the
diamond edges in the stability diagram. These are represented
by the slopes of the arrows indicating the secondary resonances
in Fig. 2. In our experiments, the bias voltage is applied
asymmetrically, i.e., the drain is kept grounded and the full bias
window is applied at the source electrode. The slopes of the
diamond edges of each quantum dot then are given as + αgt

1−αsc

and − αgt

αsc
for the positive and the negative slope, respectively.40

Here, αj = Cj/C is the dimensionless coupling parameter of
the quantum dot to electrode j , where C = ∑

Cj is the total
capacitance as defined for a single quantum dot within the
constant interaction picture.41 From this, the gate coupling
is obtained as αgt = Cgt

Csc+Cdr+Cgt
in our case and the source

coupling as αsc = Csc
Csc+Cdr+Cgt

, correspondingly.
The coupling parameters αj deduced from Fig. 2 are

summarized in Table I. The parameters of the main dot are
directly extracted from the observed diamond pattern. For the
side dots, it is not possible to observe complete Coulomb
diamonds. Considering each secondary resonance separately,
a large bias coupling, i.e., a strong coupling to either the
source or the drain electrode, has to be considered. In the
case of a large source coupling (αsc � αdr), the positive slope
becomes very steep, while the negative slope becomes flat. On
the other hand, if the coupling to the drain electrode is large, the
opposite will be observed: the positive slope is flat, while the
negative slope is steep. We interpret each secondary resonance
to be the flat slope of a diamond pattern, hence, belonging to
different side dots, labeled as A, B, and C in Fig. 2. The second
slope of each of these parallel Coulomb diamonds cannot be
smaller than the one of the main dot diamond pattern, because
it would be observable as a secondary resonance with the same
anticrossing gap and capacitive voltage shift. Since this is not
observed in our data, we assume the second slope to be equal to
or steeper than the main dot resonances. Due to its steepness,
it is then obscured by the prominent main diamond pattern. In
order to obtain an estimate for the coupling of the side dots
to the electrodes, we assumed values for this slope between
a minimum value, equal to the main diamond slopes, and a
maximum value corresponding to a vertical slope. Within this
range, the results for the coupling parameters do not change
significantly.

The coupling parameters found by this analysis are given
in Table I and assume the respective second slope of the side
dot diamonds to be equal to that of the main diamond. For

side dot A we find a strong source coupling, while side dots
B and C exhibit a strong drain coupling. The coupling to
the gate electrode is similar for side dots B and C, while it
is slightly stronger for side dot A. A screening of particular
CNTs by surrounding CNTs within the rope is a possible
reason for a different coupling to the backgate. Furthermore,
the asymmetric coupling to one of the contacts is a clear
indication for different interface properties at the leads, which
can originate from a changing assembly of the rope along the
QD region. The physics of the effects that we observe in the
system of coupled parallel QDs is similar to the dynamical
channel blockade that has been studied for a three-terminal
quantum dot.42

Although all quantum dots in the system are controlled by
the same gate electrode, the dot-dependent backgate coupling
creates a differential gating effect that is used to tune the
system into various states. This is illustrated in Fig. 4 for one
main dot (red) and one side dot (green) where interactions
between the QDs are neglected for simplicity. At the first
indicated position in the stability diagram in Fig. 4(a), the bias
voltage and the gate voltage V 1

gate are set such that tunneling
via both quantum dots is possible simultaneously. The level
alignment for this situation is sketched in the left panel of
Fig. 4(b): While the level on the main dot is in resonance
with the chemical potential of the drain (negative slope of the
Coulomb diamond), the level on the side dot is in resonance
with the chemical potential of the source (positive slope of
the secondary resonance). Keeping the bias voltage fixed and

(a)

(b)

N-1 N+1
0

N

t

FIG. 4. (Color online) (a) Schematic stability diagram of a main
dot (red) in parallel to one side dot (green) in the region of negative
bias voltage. (b) Level alignment for three gate voltages as indicated
in (a) at a constant bias voltage. At V 1

gate, tunneling via both quantum
dots is possible. Due to the differential gating, it is possible to add
one more electron onto the main dot, while the side dot occupancy
does not change for V 2

gate. At V 3
gate, again tunneling via two dots (but

different states) is possible.
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increasing the gate voltage to V 2
gate lowers the main dot level

below the bias window and fills the main dot permanently
with one more electron [see central panel of Fig. 4(b)]. The
main dot is in Coulomb blockade, but tunneling via the side
dot level is still possible. This is a particular property of the
parallel quantum dot system in contrast to a setup with serial
quantum dots. There, the transport via the whole device is fully
blockaded when only one of the dots is in Coulomb blockade.

Increasing the gate voltage further to V 3
gate tunes the next

higher energy level of the main dot into the bias window
allowing again tunneling via both quantum dots in parallel.
While the level on the main dot had a higher energy than
the side dot level at V 2

gate, it exhibits a lower energy at V 3
gate,

which (with only one gate electrode) is solely possible with
a differential gating effect. The situation where the electronic
states of the two quantum dots are at the same energy, i.e., in
resonance with each other, is depicted in the inset of Fig. 4(a).
To probe this in-resonance state and a possible hybridization
of quantum dot levels, both levels need to be simultaneously in
resonance with one of the electrode chemical potentials. From
earlier investigations we know that the current is carried by the
bonding state of hybridized levels and that the wave-function
overlap is symmetric.36

Hence, the differential gating effect as it is observed here,
can be used to tune the quantum dot system into in-resonance
and off-resonance states and provides a control over which
strand of the rope carries the current. This enables us to use
quantum transport as a spectroscopic tool for probing various
properties of the system.

Now that it is clear how the differential gating effect can
be employed to characterize the parallel quantum dot system,
we want to use it to distinguish between the side dots by
evaluating their interaction parameters in the following. From

the discrete shift of a secondary resonance �V (i) between
two subsequent main dot Coulomb diamonds, the capacitive
interdot coupling can be extracted. This shift is found to
be twice as large for resonance A in comparison to resonance
B (see Table I). For side dot C, an even smaller capacitive
coupling is found. The second interaction is the tunnel coupling
to the main dot, as mentioned above. A hybridization between
states on two different quantum dots causes an anticrossing
between resonance lines. The gap between a bonding and an
antibonding state observable at the anticrossings corresponds
to �E = 2|t |, where t is the hybridization amplitude.36

From a high-resolution measurement (shown in Ref. 36), |t |
can be estimated to be 0.1 and 0.075 meV for A and B,
respectively. For side dot C, a magnitude for the hybridization
amplitude cannot be accurately determined. However, the clear
bending of resonance lines indicate that a hybridization indeed
occurs also for these quantum dot states. Hence, the different
magnitude of the interactions between the quantum dots gives
evidence that Fig. 2 contains the fingerprints of one main dot
connected in parallel to three side dots.

A further evidence for interpreting the secondary reso-
nances as three side dots can be given from a distinct evolution
with increasing magnetic field. Figures 5(a) and 5(b) show the
stability diagram of the main dot and the secondary resonance
B at a magnetic field B = 0 T and 2 T, respectively. While
at B = 0 T the secondary resonance is passing the Coulomb
blockaded region at Vbias ≈ −0.6 mV, it appears at a more
negative bias voltage for B = 2 T. Figure 5(c) presents several
charge states of the main dot at B = 10 T. At this high magnetic
field, no secondary resonances can be observed at negative
bias voltages, where the signatures of side dot B could be
measured at zero magnetic field (see Fig. 2). In contrast,
enhanced secondary resonances can be observed at positive

FIG. 5. (Color online) Differential conductance plots for magnetic field (a) B = 0 T, (b) B = 2 T, and (c) B = 10 T. (b) The main and
secondary resonances as observed at B = 0 T are indicated in yellow. (c) Note that the differential conductance at negative bias voltage is
multiplied by 2. For better visibility, main dot Coulomb diamonds are indicated in red. Secondary resonances of side dot A indicated by black
lines with the same slope are visible in the single electron tunneling (SET) region of the main dot. The shift �V (A) of one resonance is
indicated by the arrow.
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bias voltage, indicating electrons tunneling favorably via side
dot A. The contrary evolution of the secondary resonances in
a magnetic field confirms once again the presence of several
parallel side dots.

Comparing the secondary resonances A in Fig. 5(c) with
those in Fig. 2(a), two differences can be observed in the single
electron tunneling (SET) region of the main dot. First, excited
states of side dot A are visible, which cause parallel secondary
resonances with equal coupling and interaction parameters.
A detailed discussion concerning these excited states can be
found elsewhere.36 Second, the voltage shift �V (A) of the
secondary resonance is found to occur within the SET regime
[see the arrow in Fig. 5(c)] and not at the edge of the subsequent
Coulomb diamond. This effect is best visible for the secondary
resonance with the lowest energy and has its origin in the
relative tunneling rates of the main dot and the side dots,
which will be discussed in the next section.

In this first section, we showed how a differential gating
effect enables the identification and characterization of several
parallel quantum dots. A strong bias coupling is found for the
side dots in the setup. By tuning to in-resonance and off-
resonance states of the system, various interactions can be
probed. Furthermore, the differential gating is used to control
which one of the strands within the rope carries the current.

IV. RATE-DEPENDENT QUANTUM TRANSPORT
FEATURES

Figure 6 depicts two possible observations in the SET
region of a main dot in parallel to a capacitively coupled side
dot (a hybridization of quantum dot states is neglected for
simplicity). In the first case (a), the voltage shift �V (i) occurs
exactly at the diamond edge of the right diamond, where an
additional electron is filled onto the main dot. The second case
(b) shows the up-shifted secondary resonance already in the
SET regime of the main dot. This observation can be made if
an electron resides for a long time on the main dot state within
the bias window due to a reduced tunneling rate towards the
drain electrode. This is the effect mentioned in Sec. III which
can be observed in Fig. 5(c) for the main dot and side dot A.
In a magnetic field (B = 10 T), the conductance via the main

SET

SET

(a)

(b)

FIG. 6. (Color online) Schematic stability diagram of a main dot
(red) in parallel to one side dot (green) in the region of positive
bias voltage. The voltage shift �V (i) occurs in (a) at the Coulomb
diamond edge and in (b) in the SET regime of the main dot.

FIG. 7. (Color online) Differential conductance plot exhibiting a
main resonance shifted by �V (m) (see black arrows and inset). The
secondary resonances of side dot A and B are indicated in yellow.

dot is very low (faint Coulomb diamonds), indicating reduced
tunneling rates of the main dot. Furthermore, the shift of the
secondary resonance is found to occur in the SET regime and
not at the diamond edge. At lower bias voltages, where an
unshifted resonance is expected (dotted line), no conductance
can be measured, in analogy to Fig. 6(b).

A similar effect with the same physical origin can be ob-
served in Fig. 7, which shows another transport measurement
at B = 0 T at similar charge states as in Fig. 2. The secondary
resonance of side dot B is observed similarly to the previous
measurement. The position of the secondary resonance from
side dot A is difficult to recognize due to a low conductance
in this particular measurement. Instead, a shift of the diamond
edge �V (m) can be observed close to the meeting point of the
secondary resonance with the main resonance. This is, like the
voltage shift in the secondary resonances, a manifestation of
the capacitive coupling between the main dot and side dot A. In
a system of capacitively coupled quantum dots, the chemical
potential of the quantum dots will mutually depend on each
other. Hence, resonance lines of any dot—not only a side
dot—are expected to shift when the number of electrons on
the parallel quantum dot is changed. This means that also
a situation inverse to what we have discussed so far can
appear in the stability diagram. Such a situation involves the
tunneling of an additional electron via a side dot state, which
changes the potential for the electrons on the main dot. Then, a
shifted main dot diamond edge is expected at energies higher
than the respective secondary resonance, i.e., in the single
electron tunneling regime of the side dot. This effect causes
the observed shift in Fig. 7. As we will see in the following,
the relative tunnel rates of quantum dot states are the decisive
parameter for a shift of resonances.

We use master-equation calculations with the model de-
veloped in Ref. 36, describing a parallel double quantum dot
(containing the main dot and side dot A) within a constant
interaction model43 extended to account for interactions
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FIG. 8. (Color online) (a) Differential conductance calculated by
master equations using the model of two interacting parallel quantum
dots. Black arrows indicate the shift of the main resonance appearing
at the secondary resonance (yellow arrow). (b) Schematic drawing of
electron tunneling via two parallel CNT quantum dots. �s

sc/dr and �m
sc/dr

are the tunneling rates from source (sc) and drain (dr) to the side dot
s (green) and the main dot m (red), respectively. (I) If �s

sc � �s
dr, the

side dot is mainly unoccupied and electrons can tunnel via the main
dot like in an uncoupled quantum dot. (II) In the case of �s

sc � �s
dr,

an additional electron resides on the side dot most of the time and
electrons tunneling via the main dot can only tunnel via a state shifted
in energy by the capacitive interdot coupling.

between the quantum dots. Figure 8(a) shows a calculated
stability diagram according to this model. Similarly to the
measurement, the main dot diamond edge is shifted at the
crossing of the secondary resonance. The calculations assume
a larger capacitive coupling than observed in the experiment
in order to enhance the visibility of the effect.

In the calculated stability diagram, the shifted main dot
diamond edge appears only for particular relative tunneling
rates from the leads to the quantum dots. The following
discussion assumes one state on each quantum dot to be within
the bias window and the applied bias voltage to be positive.
The left panel (case I) of Fig. 8(b) depicts a situation where
the tunneling rates for the state on the side dot are �s

sc < �s
dr,

while �m
sc = �m

dr > �s
dr is assumed for the main dot. The side

dot state then is mainly unoccupied, because electrons will
immediately tunnel out of the dot into the drain. Therefore,
electrons tunneling via the main dot will not experience an
additional potential, because the probability to have an electron
on the side dot at the same time is low. As a result, the diamond
edge in the stability diagram will appear as a continuous

resonance line and exhibit no shift as for uncoupled QDs [see
resonance I in Fig. 8(a)].

For the calculation shown in Fig. 8(a), the tunneling rates
for the side dot are assumed to be reversed, i.e., �s

sc > �s
dr,

as depicted in the right panel (case II) of Fig. 8(b). For
the main dot, �m

sc = �m
dr > �s

sc is assumed. This leads to the
following situation in the SET regime (i.e., above the side
dot resonance): The state on the side dot is mainly occupied,
and transport predominantly takes place via a state on the
main dot, which is shifted in energy due to the interdot
capacitive coupling. The conductance in the original diamond
edge (side dot not occupied) then is suppressed, whereas the
shifted diamond edge (side dot occupied) appears enhanced,
which causes the higher conductance in resonance II in
Fig. 8(a). This configuration of tunneling rates also suppresses
the conductance through the side dot; hence, the secondary
resonance appears less pronounced. This is consistent with
the experimentally found weak conductance of the secondary
resonance of side dot A in Fig. 7.

In conclusion, by reproducing the experimental observa-
tions with master-equation calculations, we have shown that
the energy and the conductance of the resonances in the
stability diagram of interacting parallel quantum dots strongly
depend on the tunnel rates into particular quantum dot states.
Hence, the tunneling rates of one quantum dot dictate the
relative conductance for the resonances of the parallel quantum
dot and are decisive for the observation of their energy
splitting.

V. EVALUATING THE TRUE CAPACITIVE COUPLING
STRENGTH

As we have shown above, a shift in the resonance lines of the
side dot as well as of the main dot is a measure of the capacitive
coupling between parallel quantum dots. However, here we
find the magnitude of the shift of the main resonance to be
�V (m) ≈ 0.2 meV, whereas �V (A) ≈ 0.4 meV is obtained
from the voltage shift of the secondary resonance. This
discrepancy can be explained by considering the difference
in the bias coupling of side dot A and the main dot. In
fact, the voltage offset due to a capacitive interdot coupling
and also the magnitude of the anticrossing gap depend on
the bias coupling, which we described in Sec. III. A large
αsc will increase the observable shift of resonances, because
�V (i) = Ums/[1 − αsc(i)], where αsc is the source coupling
of the dot corresponding to the shifting resonance and Ums is
the true capacitive coupling strength. The values of the shifts
are, thus, always upper bounds for the actual capacitive interdot
coupling.

Considering the source coupling of the main dot and the
side dot A in Table I, a shift of

�V (m) = �V (A)
1 − αsc(A)

1 − αsc(m)
= 0.15 meV (1)

is expected for the main dot resonance. This value is compara-
ble to the �V (m) deduced from the shift of the main resonance,
taking into account the experimental error. In principle, the
source coupling of the main dot is more reliable than the ones
of the side dots, because no assumptions had to be made for
obtaining them. Hence, we evaluate the true capacitive interdot
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coupling between main dot and side dot A from the shifted
main diamond edge and obtain UmA = 0.13 meV. Although
several side dots are interacting with the main dot, only side dot
A is coupled strongly enough to shift the main dot resonances
in energy.

VI. SUMMARY AND CONCLUSIONS

In summary, we discussed a multicomponent molecular
transport device employing quantum transport as a spectro-
scopic tool. We use a carbon nanotube rope as a molecular
model system, which exhibits rich characteristics in its
transport spectra. The formation of multiple parallel quantum
dots is concluded from secondary resonances. A differential
gating effect due to a dot-dependent gate coupling allows for
tuning the quantum dot system into various states using only
one gate electrode. By tuning to in- and off-resonance states
of the system, quantum transport spectroscopy can distinguish
several parallel quantum dots by their coupling and interaction
properties, as we have shown on three side dots coupled in
parallel to one main dot. Furthermore, the differential gating
provides a control over the carbon nanotube strand carrying
the current.

The distinct coupling of the quantum dots to the leads,
their interactions, and the impact of relative tunneling rates

lead to a variety of features in the transport spectra which
we discussed in depth. By reproducing the experimental
data with master-equation calculations, we have identified the
requirements for observing an energy offset due to a possible
interaction between parallel quantum dots. Concentrating on
the off-resonance quantum transport, we have found that a
capacitive interdot coupling is not only observable in a shift
of secondary resonances but, additionally, can manifest itself
in shifting the edges of otherwise regular Coulomb diamonds.
The exact position and appearance of such a shift depends on
the relative tunneling rates through the parallel quantum dots.

Our results provide the basis for understanding quantum
transport via parallel quantum dots, which is an important
issue in molecular transport where a large variety of hybrid
transport devices with new functionalities are expected.
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