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Abstract

Background and Aims: Hereditary disorders associated with metal overload or unwanted toxic accumulation of heavy
metals can lead to morbidity and mortality. Patients with hereditary hemochromatosis or Wilson disease for example may
develop severe hepatic pathology including fibrosis, cirrhosis or hepatocellular carcinoma. While relevant disease genes are
identified and genetic testing is applicable, liver biopsy in combination with metal detecting techniques such as energy-
dispersive X-ray spectroscopy (EDX) is still applied for accurate diagnosis of metals. Vice versa, several metals are needed in
trace amounts for carrying out vital functions and their deficiency due to rapid growth, pregnancy, excessive blood loss, and
insufficient nutritional or digestive uptake results in organic and systemic shortcomings. Established in situ techniques, such
as EDX-ray spectroscopy, are not sensitive enough to analyze trace metal distribution and the quantification of metal
images is difficult.

Methods: In this study, we developed a quantitative biometal imaging technique of human liver tissue by laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to compare the distribution of selected metals in cryo-
sections of healthy and fibrotic/cirrhotic livers.

Results: Most of the metals are homogeneous distributed within the normal tissue, while they are redirected within fibrotic
livers resulting in significant metal deposits. Moreover, total iron and copper concentrations in diseased liver were found
about 3-5 times higher than in normal liver samples.

Conclusions: Biometal imaging via LA-ICP-MS is a sensitive innovative diagnostic tool that will impact clinical practice in
identification and evaluation of hepatic metal disorders and to detect subtle metal variations during ongoing hepatic
fibrogenesis.
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Introduction

Hepatic fibrosis, cirrhosis and hepatocellular carcinoma are

characterized by a drastic increase of extracellular matrix proteins

comprising collagens, glycoproteins, proteoglycans and hyalur-

onan [1,2]. The pathogenesis is triggered by various noxious

agents (e.g. alcohol, drugs, viruses, and parasites), cholestasis,

autoimmune reactions, metabolic diseases, or other exogenous or

endogenous stimuli [1,2]. In addition, the overload with metals or

trace elements that originates from hereditary disorders, nutri-

tional oversupply, or occupational exposure is potentially causative

for the pathogenesis of liver diseases. Hereditary hemochromatosis

for example is the most common inherited disease of iron

metabolism that results in toxic accumulation of iron in

parenchymal cells of the liver [3]. This disease is most often

associated with a polymorphism within the HFE gene that is quite

common among white people resulting in an amino acid exchange

(i.e. C282Y). Homozygous carriers usually have increased serum

transferrin saturation levels and increased serum ferritin levels. In

addition, non-HFE hepatic iron overload diseases originate from

mutation in other genes such as transferin receptor 2, hepcidin,

hemojuvelin, and ferroportin [4]. Since these genes influence net

iron concentration by affecting the synthesis and activity of the

peptide hormone hepcidin that represents the master regulator of

iron homeostasis, respective mutational alterations most often give

rise to elevated concentrations of circulating iron and thus

overload occurs. Conversely, iron deficiency resulting from

decreased iron uptake, low absorption, rapid growth, pregnancy,
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and blood loss provoked by frequent blood donation or heavy

menstrual periods, leads to anemia impairing proper body

function.

Copper is a unique essential trace element playing an important

function as a cofactor for a number of cellular processes [5].

Copper homeostasis is regulated by copper uptake in the

gastrointestinal tract, distribution through the body, and excretion

mainly into the bile. At the cellular level two copper transporters

namely CTR1 and CTR2 regulate the intake, while copper efflux

occurs via the ATP-dependent pumps ATP7B and ATP7A [6].

Hepatic copper accumulation can result from increased copper

intake, inherited metabolic defects or from a reduced biliary

excretion of copper. Wilson disease (WD) is an autosomal recessive

disease caused by mutations of the WD gene ATP7B resulting in

copper accumulation in different tissues. In liver, ATP7B is mainly

expressed in hepatocytes and its loss is the basis for reduced

hepatic biliary copper excretion and reduced incorporation of

copper into ceruloplasmin [7]. Affected patients display hepatic

and neurological disease with yet poorly understood pathome-

chanisms. In line, Atp7b-/- mutant mice display a gradual

accumulation of hepatic copper inducing gross anatomic liver

abnormalities in older mice with an irregular liver surface with

protruding regenerative nodules of different sizes indicative for

cirrhosis [8].

These examples underline that body metal homeostasis is

crucial and metal deficiencies or dramatic build-ups should be

prevented to avoid hepatic or other organic impairments.

Therefore, indicative, non-invasive serum parameters (e.g. serum

transferrin concentration and saturation, ferritin, haemoglobin,

hematocrit, serum ceruloplasmin) and genetic testing of causative

genes is widely propagated in diagnosis to identify metal disorders

or predisposition for respective diseases. Moreover, the perfor-

mance of liver biopsy to measure or stain in situ metal content in

combination with scanning electron microscopy with energy-

dispersive X-ray analysis (SEM-EDX) is traditionally the confir-

matory test in cases in which the non-invasive markers suggest

elevated metal concentrations. Unfortunately SEM-EDX is often

not sensitive enough for trace element imaging. However, liver

heterogeneity can result in wrong analytical data). Therefore,

novel imaging techniques that provide information about the

regional distribution of individual metals or groups of metals

combined with a diagnostic score system further providing

information about the extent of hepatic insult are urgent required.

Although potentially not causative, the outcome of hepatic

fibrosis is also significantly modulated by variations in hepatic

metal distribution and concentrations. Hepatic iron overload for

example has been described in chronic hepatitis C as a cofactor

affecting fibrosis progression and hepatic iron deposits were found

in well-compensated chronic hepatitis B infection, especially in

patients that were co-infected with hepatitis D virus [9]. Likewise,

severe copper deficiency exacerbates liver injury and liver fibrosis

in rats that underwent experimental bile duct ligation surgery [10],

again demonstrating that variations in individual metal concen-

trations might not only be the result of ongoing hepatic

fibrogenesis but are further important modulators in disease

progression. Therefore, there is no doubt that accurate method

allowing to measure hepatic metal concentrations or to detect

metals deposits are of important diagnostic relevance not only in

determination liver insult but further to predict overall disease

outcome.

Magnetic resonance imaging (MRI) allows the mapping only of

selected single metals (such as iron) in organs [11], but the

quantification is often difficult [12]. Novadays, laser ablation

inductively coupled plasma mass spectrometry (LA-ICP-MS)

techniques with multi-element capability and high spatial resolu-

tion are herein discussed has been established to a new generation

of sensitive analytical tools for imaging of metals in biological

tissue.

Recently, LA-ICP-MS imaging technique has been applied as a

reference standard method to validate the results from quantitative

gadolinium enhanced MRI technique [12]. Although LA-ICP-MS

imaging has been introduced in diagnosis of metal disorders in

brain [13–16], this innovative technique has not been used in

quantitative bioimaging of metals in human liver. A first report

from Feldmann’s working group from 2003 demonstrated for

copper and zinc in sheep liver sections the capability of LA-ICP-

MS for elemental mapping [17]. In another previous study, LA-

ICP-MS imaging revealed that staphylococcal aureus liver abscesses

from normal mice are enriched in Ca2+, while these abscesses are

devoid of detectable Zn2+ and Mn2+ [18]. These studies are

encouraging and show that LA-ICP-MS is indeed a methodology

that might be suitable to detect delicate metal alterations in liver

that are the cause or a consequence of organ alteration or

dysfunction.

The aim of the present study is to develop a novel quantitative

imaging technique for trace metals and to characterize the

distribution of various metals in cryo-sections of normal, fibrotic

and cirrhotic human liver tissues. We demonstrate that most of the

metals analyzed are regularly distributed within normal liver

tissue, while they are redirected within fibrotic and cirrhotic livers

resulting in defined deposits suggesting that this method is not only

valuable in diagnosis of common metal disorders but also adequate

to determine subtle changes during ongoing liver fibrogenesis.

Materials and Methods

Patients and informed consent
Liver samples were taken from internal tissue banks of the

RWTH University Hospital Aachen or the University Hospital

Regensburg in which liver tissue was used for experimental

purposes that was acquired either from biopsies for routine clinical

purposes or explants of cirrhotic livers that were obtained during

liver transplantation. Each patient from which material is stored

provided written informed consent and the study was approved by

the local ethics committee at the RWTH Aachen University and

the University of Regensburg. Liver fibrosis/cirrhosis was diag-

nosed mainly on the grounds of liver routine histology. Fibrotic/

cirrhotic tissue samples used in this study were obtained from five

independent patients (D1 – D5). Secluded tissue from tumour-free

margins of resected hepatic metastasis within normal liver

parenchyma (N1 – N5) served as controls.

Immunohistochemical characterisation of liver
specimens

After being fixed in 4% buffered formalin for 24 h, the liver

tissue was embedded into paraffin wax. A histological semi-

quantitative examination of the liver was performed on sections

after standard Sirius Red and H & E stains. Liver sections were

stained with an anti-human a-SMA antibody using standard

procedures. To assess the degree of fibrosis, a standard Ladewig

staining was performed and the severity of liver biopsy lesions and

overall immunological activity were graded and staged according

to routine scoring guidelines of Desmet and Scheurer [19].

Patients with cirrhosis were stratified according to the Child-Pugh

score. The characteristics of the biopsies used in this study are

given in Table 1.

Metal Bioimaging of Liver by LA-ICP-MS

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e58702



Scanning Electron Microscopy with EDX analysis (SEM-
EDX)

Slices of 20 to 50 mm thickness were obtained from paraffin-

embedded liver tissue, sputtered with a conductive silver paint to

make contact on the surface, carbon-coated in a rotary evaporator,

and then maintained in desiccators to prevent air-contact before

analysis. Analysis of element content by EDX was rapidly

performed within two days of preparation using an environmental

scanning electron microscope (ESEM XL 30 FEG, FEI, PHILIPS,

Eindhoven, The Netherlands) in a high vacuum environment

operating at 15 to 20 kV. The slices were imaged by back-

scattered electrons and analysed for the elemental composition of

the element present. For quantitative analysis of the element

concretions, the contributions of the C-coating and the embedding

resin containing C, O and trace of Cl were computer-based

subtracted from the quantitative data of each spectrum.

Metal imaging of liver tissue section by laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-
MS)

A quadrupole-based inductively coupled plasma mass spec-

trometer (ICP-MS, XSeries 2, Thermo Scientific, Bremen,

Germany) coupled to a laser ablation system (NWR 213, New

Wave Research, Fremont, CA, USA) was used to study elemental

distributions in tissue sections of human livers (30 mm thickness).

Laser ablation of biological tissue was performed using a focused

Nd:YAG laser beam in the scanning mode (wavelength 213 nm,

repetition frequency 20 Hz, laser spot diameter 60 mm, scanning

speed 60 mm s-1, laser fluency 0.24 J cm22). The ablated material

was transported by argon gas (as carrier gas) into the inductively

coupled plasma (ICP). The ions formed in the atmospheric

pressure ICP were extracted in the ultrahigh vacuum mass

spectrometer via a differential pumped interface, separated in the

quadrupole mass analyzer according to their mass-to-charge ratios

and detected by an ion detector. No reference standard materials

for quantification of metals in human liver were available.

Therefore, SRM NIST 1577b (bovine liver) was used as standard

reference material. The trace metal concentrations in the samples

were determined by single point calibration using this SRM.

Moreover, the selection of internal standard element is the

important part for LA-ICP-MS analyzing. The appropriate

internal standard element was chosen to correct for plasma

instabilities and sample-to-sample variations in the ion signal

intensity. In this work, sulphur was used as an internal standard

element for all the analyses because sulphur in human livers

present rather a homogeneous distribution and provide constant

concentration (see below). The human liver tissue and the NIST

standard reference material deposited on glass slide were mounted

in the laser ablation chamber to perform LA-ICP-MS imaging of

sample and standard reference material under identical experi-

mental conditions. Mass spectrometric measurements by LA-ICP-

MS for imaging of liver tissue were performed by line scanning

ablation (line by line) with a focused laser beam under the

optimized experimental parameters given in Table 2. The

experimental parameters of LA-ICP-MS were optimized with

respect to the maximum ion intensity of 63Cu+ using a SRM 1577b

Table 1. Characteristics of biopsy samples used in this study.

No. Internal Number / Origin Remarks / Desmet-Scheuer Score Etiology of disease

N1 NG237 / Aachen no fibrosis/ 0 liver metastasis from colon adenocarcinoma

N2 NG238 / Aachen no fibrosis/ 0 liver metastasis from breast adenocarcinoma

N3 NG265 / Aachen no fibrosis/ 0 hepatocellular carcinoma

N4 27 (normal) / Regensburg no fibrosis/ 0 no known disease history

N5 29 (normal) / Regensburg no fibrosis/ 0 slight signs of steatosis due to alcohol abuse

D1 NG205 / Aachen mild fibrosis, portal extracellular matrix
deposits/ 1

liver metastasis from colon adenocarcinoma; fibrosis of
unknown origin

D2 NG241 / Aachen cirrhosis/ 4 hepatocellular carcinoma; cirrhosis in chronic HCV
infection

D3 NG264 / Aachen cirrhosis/4 hepatocellular carcinoma; cirrhosis of unknown origin

D4 8 (cirrhosis) / Regensburg cirrhosis/ 4 cryptogenic cirrhosis, burned-out NASH

D5 23 (cirrhosis) / Regenburg cirrhosis/ 4 cryptogenic cirrhosis, burned-out NASH

doi:10.1371/journal.pone.0058702.t001

Table 2. Optimized experimental parameters used for LA-
ICP-MS imaging of human liver samples.

ICP mass spectrometer ICP-QMS, Thermo XSeries II

Rf power 1450 W

Cooling gas flow rate 16.0 L min-1

Auxiliary gas flow rate 0.7 L min-1

Carrier gas flow rate 1.0 L min-1

Dwell time 20 ms

Extraction lens potential 3400 V

Mass resolution (m/Dm) 300

Scanning mode peak hopping

Analysis time per liver sample
(10 mm610 mm)

4 hours

Laser ablation system New Wave (NRW213)

Wavelength of Nd:YAG laser 213 nm

Laser fluence 0.24 J cm-2

Repetition frequency 20 Hz

Laser spot size 60 mm

Scan speed 60 mm s-1

Ablation mode line scan

doi:10.1371/journal.pone.0058702.t002

Metal Bioimaging of Liver by LA-ICP-MS
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bovine liver standard. To validate the metal ion images, two isotopes

of the same element were analyzed, whenever possible. From the

continuous list of raw pixel values elemental images were reconstruct-

ed using the IMAGENA LA-ICP-MS Image Generation software

created at Forschungszentrum Juelich [20]. Trace metal concentra-

tions were calculated from ion intensities averaged throughout freely

drawn regions of interest (ROIs) within ion intensity images using

PMOD version 3.0 (details see www.pmod.com).

Results

Analysis of liver specimen by SEM-EDX
SEM-EDX is used for chemical analysis and determination of

the elemental composition of microscopic particles or regions

within a sample by in situ measuring the energy and intensity

distribution of X-ray signals generated by a focused electron beam

on the specimen (i.e. biopsy). It relies on the investigation of an

interaction of some source of X-ray excitation and the sample

resulting in a unique set of peaks on the X-ray spectrum that is

characteristic for each element. In brief, the necessary equipment

for this technique is based on an excitation source that transmits

an electron beam, an X-ray detector that converts X-ray energy

into voltage signals, a pulse processor and an analyzer that

processed the signals and matches them to individual atoms. Based

on the fact that this technique allows discriminating of metals, this

technique is used to corroborate or even score metal disorder in

organ tissue.

Figure 1. Representative SEM/EDX microanalysis in liver. (A) SEM overview of a paraffin embedded liver specimen from a patient (N1)
suffering from fibrosis. (B) The metal deposit that was subsequently analysed by EDX is marked by a white arrow. (C) Resulting elemental EDX
microanalyses of the marked mineral crust in (B). The peaks in the spectrum are labelled with the EDX line of the corresponding element.
doi:10.1371/journal.pone.0058702.g001

Metal Bioimaging of Liver by LA-ICP-MS
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When we applied this method to non-WD patients suffering

from liver fibrosis or cirrhosis, we noticed that although it allows

the identification of individual metal deposits (Figure 1), it was

unsuitable to discriminate between normal, fibrotic or cirrhotic

liver tissue. Moreover, the identification of metals by SEM-EDX is

somewhat critical because several elements have overlapping peaks

and data interpretation is somewhat enigmatic and only possibly

by highly experienced investigators.

LA-ICP-MS analysis of liver tissues
The introduction of LA-ICP-MS technology has recently been

successfully applied as a powerful imaging (mapping) technique to

produce quantitative images of detailed regionally specific element

distributions in thin tissue sections of human or rodent brain [21].

In an attempt to use this methodology for analysis of liver tissue,

we established a protocol that allows quantitative metal imaging of

liver tissue. In the final workflow, liver tissue is cryo-sected into

specimen of 30 mM thickness and mounted on glass slides (Figure

2B). Mass spectrometric measurements is then performed in the

LA-ICP-MS by line scanning ablation (line by line) with a focused

laser beam under the optimized experimental parameters given in

Table 1.

To evaluate the LA-ICP-MS imaging technique in liver

specimen and to further analyse if the concentration or

distribution of individual metals is altered in fibrotic or cirrhotic

liver tissue, we thought to apply this imaging technique in a small

set of histological well-characterized samples from normal, fibrotic

and cirrhotic liver tissue (Figure 3).

Trace metal imaging and quantification in selected liver
sections

The reproducibility of the LA-ICP-MS imaging technique for

the analysis of 20 mm thin cross section of human brain tissues is

already well studied [22]. 3% reproducibility had been observed

for homogeneous tissues (thin cross sections of matrix-matched

laboratory standards) and 5%–7% reproducibility for inhomoge-

neous tissue. Moreover, the applicability of LA-ICP-MS technique

was demonstrated in Parkinson mouse brain 14 mm sections

[23,24]. The reproducibility of 5% for Fe and Cu, 12% for Zn,

and 11% for Mn was presented. In our study, the replicate

Figure 2. Principle and workflow of LA-ICP-MS for hepatic metal imaging. (A) Principle and (B) Workflow of imaging mass spectrometry
from sample preparation of thin section by cryo-cutting, via the LA-ICP-MS measurement procedure by scanning of thin tissue section (line by line),
acquisition and evaluation of analytical data including quantification using single point calibration (NIST SRM 1577b bovine liver).
doi:10.1371/journal.pone.0058702.g002
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measurement of 4 adjacent sections of the same human liver tissue

(N3) were scanned using optimum condition of LA-ICP-MS in

order to determine the reproducibility (see Figure 4). The

reproducibility values calculated were 9% for S, 10% for Mn,

14% for Fe, 6% for Cu, 4% for Zn and Cd. Since sulphur is an

abundant element showing an overall homogenous distribution in

liver (see Figure 4, left panel), we used this non-metal as an internal

standard.

Figure 5 shows LA-ICP-MS images of the detected elements (C,

Na, Mg, P, K, Ca, Cr, Mn, Fe, Co, Cu, Zn, Mo, Ag, Cd, Sn, Hg,

and Pb) in a fibrotic liver sample (N3). Ca, Mn, Fe, Cu, Zn, Mo,

Cd, were detected with a higher abundance in fibrotic zones

compared to normal zones, whereas the ion intensity measured of

C, Na, Mg, P, K, Cr, Co, Ag, Sn, Hg, and Pb were not different

between fibrotic and normal zones. This picture presents the

potential of LA-ICP-MS to investigate the distribution of various

essential and toxic elements. However, no quantification of some

elements (C, P, Mo, Sn, and Hg) was possible due to the lack of

certified concentrations in the bovine liver standard reference

material used in this study.

Quantitative bioimages of Mn, Fe, Cu, Zn, and Cd of control

and diseased (fibrotic and cirrhotic) human liver samples are

illustrated in Figure 6 and Figure 7, respectively. In the case of

control liver samples, Mn, Cu, Zn, and Cd images are

homogeneous distributed. For Fe images, the hexagonal structure

was found clearly in N1 and N3 control liver sections. These

hexagonal shapes are corresponding to the structure of human

liver lobule and reflect the typical histological pattern of iron

deposition in the normal liver. As shown in the Fe image, Fe was

distributed predominantly around the rim of lobule structure. Fe

distribution presented a decreasing gradient from the rim area to

the central area. However, these hexagonal structures cannot be

investigated in disease liver tissue section (Figure 7).

The bioimaging approach of metals in fibrotic/cirrhotic liver

tissue sections by LA-ICP-MS revealed inhomogeneous distribu-

tion of Mn, Fe, Cu, Zn, and Cd. Very low concentrations of metals

were observed in fibrous septa areas when compared to nodules

areas. Moreover, the concentrations of Fe and Cu in all disease

liver (Figure 7) were significant higher than all control liver section

(Figure 6). In contrast, Zn concentrations in control liver samples

were higher than in disease liver. In comparison with the high Fe

content region (mark within circle area), it’s was found low

concentration of Cu (Figure 7).

Figure 8 compares the average of trace metal concentrations

measured in the control liver tissue (N1–N5) and disease liver

tissue (D1–D5). The average concentrations of Mn, Fe, Cu, Zn,

and Cd were 5.8, 493, 23, 140, and 1 mg g-1 in control; were 4.9,

576, 35, 80, and 0.5 in disease (fibrotic/cirrhotic) liver samples. In

the case of Mn and Cd, the different concentrations between

control and disease are not significant. On the other hand, the

concentration of Fe, Cu, and Zn are quite different between the

control and disease liver. Fe and Cu concentrations in diseased

liver are higher than in normal liver samples, while Zn

concentrations are decreased in diseased samples suggesting that

these changes can be used to predict the changing of liver state

from healthy to diseased liver.

Discussion

Hereditary liver diseases resulting in metal intoxication are

reasons for morbidity and mortality worldwide [25,26]. In

addition, various liver diseases including both alcoholic and non-

alcoholic steatohepatitis are associated with increased iron deposits

[27,28]. Furthermore several trace elements are known to

influence the outcome of hepatitis virus infections [29]. Although

there have been great advancements in the establishment of novel

genetic test systems and measurements of serum parameters that

are indicative and suitable for identification of respective diseases

or intoxications, metal stains in liver sections and other techniques

like SEM-EDX measurements are traditionally the confirmatory

diagnostic tests for hepatic metal poisoning and is one the first

sight attractive because (i) the detectors have high sensitivity due to

a wide solid angle collecting the X-rays emitted from the sample,

(ii) the entire chemical composition of the analyzed specimen can

be observed without wavelength scans, and (iii) analysis time are

rather small [30]. However, the accuracy of techniques that are

based on electron-microscopic analysis of liver sections such as

SEM-EDX is limited by several factors. First the analysts

performing the SEM have a bias and restrict their analysis to

material deposits that are visible. Second several elements in EDX

have overlapping peaks that under certain constellations does

prevent precise assignment of signals to element. Third quantifi-

cation of individual element concentration is impossible or only

hardly to achieve. Finally, the accuracy of the spectrum can also be

affected by the nature of the sample per se in that way that

inhomogeneous samples result in inadequate or dissimilar

excitations.

X-rays can be generated by any atom in the sample that is

sufficiently excited by the incoming beam. These X-rays are

emitted in any direction, and so they may not all escape the

sample. The likelihood of an X-ray escaping the specimen, and

thus being available to detect and measure depends on the energy

of the X-ray and the amount and density of material it has to pass

Figure 3. Representative immunohistochemical analysis of
liver sections of patients enrolled in this study. (A, C, E) Normal
(N1) and (B, D, F) cirrhotic liver tissues (D2) were stained with (A, B)
hematoxylin and eosin, (C, D) Ladewig, or (E, F) probed with an
antibody specific for a-SMA. The space bar in each figure represents
100 mM each.
doi:10.1371/journal.pone.0058702.g003

Metal Bioimaging of Liver by LA-ICP-MS
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through. This can result in reduced accuracy in inhomogeneous

and rough samples.

All these limitations of SEM-EDX measurements become

evident in our experiment that is depicted in Figure 1 demon-

strating that this method is not sensitive enough to illustrate trace

metal distribution or even quantify individual metals in the

analyzed liver specimens.

LA-ICP-MS on the other side is one of the most powerful and

sensitive techniques for the analysis of a variety of solid samples

because it provides good sensitivity for major, minor, trace, and

ultra-trace elements with high sample throughput and without

sample preparation which generates a large amount of waste as

occurring in solution-based techniques [14]. Several years ago, the

imaging analysis for biometal concentrations in human tissues

obtained either by biopsy or postmortem was becoming an

increasingly important function of the clinical laboratory.

The use of matrix matched reference material for quantification

of analytical data is important because the ablation yield varies

with the sample matrix. However, an appropriate matrix-matched

standard reference material that for metal in human liver is not

available. The most common quantification method for tissue in

LA-ICP-MS is external calibration utilizing matrix-matched

standards [24]. In the ongoing project, suitable matrix-matched

tissue standards with well-defined concentrations of the biometals

of interest were created and used for the calibration of the LA-

ICP-MS technique. Several independent other studies have shown

Figure 4. Reproducibility of imaging of elements in liver tissue sample. Representative spatial distribution of elements of interest (S, Mn, Fe,
Cu, Zn, and Cd) in four adjacent sections from the same human liver tissue is depicted.
doi:10.1371/journal.pone.0058702.g004

Metal Bioimaging of Liver by LA-ICP-MS
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that this one point calibration method also known as offset-only

calibration gives a reasonable accuracy in quantification of various

metals in LA-ICP-MS [12,17,31,32].

Human liver consists of two main lobes, left and right, which

overlap slightly. Each lobe contains lobules that are the building

blocks of the liver that are six-sided structures or hexagonal shapes.

As shown in Figure 6, Fe-rich regions are found around the rim of

hexagonal shape. In contrast, the concentrations of Fe become

lower at the central of structure. Our results also support the

previous finding, which investigated the distribution of Fe in liver

tissue. Kinoshita and coworkers have been reported distribution in

the lobule of human liver by synchrotron radiation X-ray

fluorescence (SRXRF) microscopy [33]. In their report, Fe was

distributed predominantly in periportal hepatocytes in the normal

liver in a decreasing gradient from the periportal area (rim of

hepatocyte) to the perivenous area (central of hepatocyte).

Mn is one of the important trace biometal, which can be

detected in human liver. Mn is secreted in bile and concentration

increase in cholestatic liver disease. The manganese content of the

liver is very high as compared to its concentration in serum [34]. It

has also been demonstrated that the liver has an important role in

the excretion of manganese. Previous findings reported the

increasing of whole blood Mn concentrations in patients with

liver cirrhosis [35,36]. Moreover, they suggested that in cirrhosis of

the liver failure of biliary excretion of Mn leads to overload and

subsequent cerebral accumulation of this metal. Mn accumulates

in mitochondria, a major source of superoxide, which can oxidize

Mn2+ to the powerful oxidizing agent Mn3+ [37]. Oxidation of

important cell components by Mn3+ has been suggested as a cause

of the toxic effects of it. For our results, in fibrotic/cirrhotic tissue

samples (Figure 7), Mn was increased to higher concentration in

fibrotic and cirrhotic zones compared to non-tumor zones.

Figure 5. LA-ICP-MS imaging of essential and toxic metals and carbon in hepatic cirrhosis. Representative LA-ICP-MS maps of C, Na, Mg,
P, K, Ca, Cr, Mn, Fe, Co, Cu, Zn, Mo, Ag, Cd, Sn, Hg, and Pb isotope as detected in cirrhotic human liver sample (D3).
doi:10.1371/journal.pone.0058702.g005
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However, the average concentrations of Mn in control liver and

disease samples (Figure 8) are not significant different.

In the animal model of liver fibrogenesis, iron acts as a ‘‘co-

factor’’ of fibrogenesis [38]. Within the liver, iron related oxidative

stress can lead to fibrosis and ultimately to cirrhosis [39]. When

present in excess within the cell (hemochromatosis), iron can be

toxic due to its ability to catalyze the formation of damaging

radicals via a chemical reaction known as the Fenton reaction,

which promote cellular injury and cell death. The results shown in

this study could be in agreement with results from previous studies.

In the control livers, the distributions of Fe are quite homoge-

neous. In contrast to disease livers, higher concentration of Fe was

found in fibrotic or cirrhotic area when compared to normal area.

For fibrotic liver, Fe concentration is higher than control tissue

(Figure 8). However, the different between these values are not

significant. In contrast to fibrotic tissue, the average concentrations

of Fe in cirrhotic liver samples are higher than control liver about

three times.

Not only Fe overload, the accumulation of too much Cu in WD

is able to catalyze the development of liver disease. The major

physiologic aberration is excessive absorption of copper from the

small intestine and decreased excretion of copper by the liver. WD

is an inherited metabolic disorder characterized by accumulation

of copper in the tissue leading to progressive hepatic damage in the

Figure 6. Selected LA-ICP-MS images in control liver samples. Images of Mn, Fe, Cu, Zn and Cd of control human liver samples (N1-N5)
measured by LA-ICP-MS.
doi:10.1371/journal.pone.0058702.g006
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liver and the other organs [40,41]. With progressive parenchymal

damage, fibrosis and subsequently cirrhosis can be developed. In

early stages of the disease, copper is mainly in the cytoplasm

bound to metallothionein and is not histochemically detectable; in

later stages, copper is found predominantly in lysosomes [41]. The

amount of copper varies from nodule to nodule in cirrhotic liver

and may vary from cell to cell in pre-cirrhotic stages. The absence

of histochemically identifiable copper does not exclude WD, and

this test has a poor predictive value for screening for WD. By use

of LA-ICP-MS, we found inhomogeneous distributions in all

fibrotic/cirrhotic liver sections analyzed. The average concentra-

tions of fibrotic and cirrhotic are 204, and 210 mg g-1, and 39.4 mg

g-1 for control tissue samples. With these data, Cu is the important

element that relates to the stage of liver failure and therefore used

as an indicator for liver damage.

Zn is necessary for normal liver function and, the liver plays a

central role in Zn homeostasis [42,43]. The liver is important for

the regulation of zinc homeostasis, while zinc is necessary for

proper liver function. It has long been speculated that Zn has a

protective effect against liver fibrosis [42,44]. In our study, Zn

concentrations in liver tissue were decreased from control (319 mg

g-1), fibrosis (223 mg g-1), and cirrhosis (192 mg g-1), respectively.

Data obtained from our and previous studies suggest that ongoing

liver disease correlates with reduced Zn levels. These findings fit

Figure 7. Selected LA-ICP-MS images in diseased liver. Images of Mn, Fe, Cu, Zn and Cd of fibrotic (D1) and cirrhotic human liver samples (D2-
D5) measured by LA-ICP-MS.
doi:10.1371/journal.pone.0058702.g007
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quite well with recent experimental observations showing that Fe

and Cu act in an antagonistic fashion and iron is an important

factor triggering copper deficiency in liver [45].

Cadmium is a highly toxic element present in food and water. It

can deposit in the liver and kidney and strongly binds to

macromolecules in the intracellular compartment and influences

the metabolism of Fe, Ca, Zn, Mn and Cu [46,47]. Therefore, the

overloading of Cd in liver may be disturbed the protective function

of Zn to liver disease. However, Cd concentrations of control

samples in our study are slightly higher than in fibrotic and

cirrhotic samples. This result may be due to the fact that Cd

concentration in liver tissue varies depending on many factors.

The major route for cadmium intake for non-smoker is ingestion

of cadmium in foodstuffs of natural origin or from the use of

phosphate fertilizers and sludge on agricultural soils. Smokers have

elevated blood and tissue concentrations of cadmium from

cigarette smoke. As shown in Figure 8, the average concentration

of the toxic trace metal Cd is not higher than 1 mg g-1 in all tissue

samples.

Considering all known hepatic diseases that are caused,

promoted or modulated by accumulation of metals, there is a

mandatory need for the establishment and evaluation of precise

non-invasive metal imaging methods for diagnostics. In recent

years, many studies have demonstrated the possibility of perform-

ing hepatic iron quantification with magnetic resonance imaging

technology. However, a consensus has not been reached yet

regarding the technique or the possibility to reproduce the same

method of calculus in different equipments and intensive

discussion for the establishment of consensus guidelines for clinical

practice of hepatic iron quantification by magnetic resonance

imaging techniques are conducted [48]. Since recent experimental

and clinical studies have further demonstrated that different metals

act as strong modifiers that influence the outcome of hepatic

fibrogenesis [10,49], it is obvious that the quantitative trace metal

determination in the diagnosis of disease progression will

potentially become more important in future. The demonstration

that LA-ICP-MS imaging representing one direct solid sampling

technique for major, minor and trace element analysis is suitable

for biometal analysis in normal and disease liver will therefore

enrich the spectrum of diagnostic options. It allows to parallel

measure the metal content in cryo-sections that become available

in routine biopsy that still represent the gold standard for accurate

assessment of the degree of fibrosis or presence of cirrhosis.

It would be an absolute goal to further analyze the sub-lobular

and sub-cellular distribution of signals regarding different metals in

both normal and disease conditions. In our study we noticed that

the signals of several metals are more punctuated than others.

However, the precise mapping of individual metals to cellular

subpopulation of the liver is a complex venture and must be

addressed in future studies. There are however already pioneering

studies available that have already precisely co-localized aggre-

gates and mercury deposits within cellular subpopulations of the

liver [50]. Such studies would be fundamental for understanding

the pathophysiological relevance of individual hepatic cells

including Kupffer cells, hepatocytes, sinusoidal endothelial cells,

hepatic stellate cells, and Pit cells (or even hepatic stem cells) in any

kind of metal-induced liver disorders.

In summary, all these findings indicate that LA-ICP-MS is a

novel powerful and innovative analytical technique that will have

tremendous impact on diagnostics of metal disorders in liver. The

fact that the obtained metal concentrations in liver tissue were the

same in specimen that were obtained from two different hospitals

(Aachen and Regensburg) further demonstrates that the results

obtained in LA-ICP-MS are mostly independent from potential

pre-analytical differences that may arise from sample collection.

Although we presently do not know how individual hepatic

disorders impact the distribution and location of individual metals

or groups, it is known that metal overload or lack of individual

metals may induce or contribute to the pathogenesis of liver

disease. Therefore, LA-ICP-MS allowing quasi-simultaneous

measurement of all metals and selected non-metals will provide

an important add-on to routine diagnosis of liver sections or

biopsies.
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