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Non-Equilibrium Properties of Semidilute Polymer

Solutions under Shear Flow
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Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for
Advanced Simulation, Forschungszentrum Jülich, D-52428 Jülich, Germany

E-mail: r.winkler@fz-juelich.de

Abstract. We review results of the non-equilibrium properties of semidilute polymer solutions
under shear flow. A hybrid simulation approach is adopted, combing molecular dynamics
simulations and the multiparticle collision dynamics method, which has been shown to fully
capture hydrodynamic interactions. The polymers exhibit a shear rate dependent deformation
and alignment. In addition, shear thinning is observed, which is related to the finite polymer
extensibility. It is characterized by the shear-rate dependent viscosity and the first normal-
stress coefficient. The conformational and rheological properties are universal functions of a
concentration dependent Weissenberg number. The cyclic dynamics of an individual polymer
is described in terms of a shear-rate dependent tumbling time. The tumbling time is tightly
linked to the polymer end-to-end vector relaxation time and depends on concentration, which
is attributed to screening of hydrodynamic interactions in semidilute solutions.

1. Introduction

The properties of dilute polymer solutions under shear flow have been studied intensively [1–18].
Far less attention has been paid to the non-equilibrium properties of semidilute solutions [17–
20]. Insight into the behavior of such systems is of fundamental importance in a wide spectrum
of systems ranging from biological cells, where transport appears in dense environments, to
turbulent drag reduction in fluid flow. While the dynamical behavior of polymers in dilute
solution is strongly affected by hydrodynamic interactions [21–23], their relevance in semidilute
solutions is less clear.

Experimental studies of single DNA molecules by fluorescence microscopy studies [1–4, 9]
reveal a remarkably rich polymer dynamics in shear flow. A polymer chain exhibits large
conformational changes and continuously undergoes stretching and compression cycles, denoted
as tumbling, and never reaches a steady-state extension. The detailed temporal evolution
depends upon the shear rate. These microscopic dynamical properties are tightly linked to the
macroscopic rheological behavior of a polymer solution and give rise to phenomena such as shear-
rate dependent viscosities and non-vanishing normal-stress differences [11, 16, 17, 21, 24, 25].

The characterization of the tumbling dynamics is an important step toward a microscopic
understanding of the polymer dynamics, an issue which accordingly received considerable
attention [2–4, 6–8, 10, 11, 18, 26–28]. As it turns out, this is a non-trivial task because of the
non-Markovian nature of the process [4, 8, 11, 29]. As is commonly accepted by now, tumbling is
a cyclic but non-periodic process, which poses challenges for the calculation of a characteristic
time.
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The complex interactions in polymer solutions hamper an analytical treatment. Here,
computer simulations are essential to shed light on their rich and intricate dynamical behavior.
We apply a hybrid mesoscale hydrodynamics simulation approach, which combines molecular
dynamics simulations (MD) for the polymers with the multiparticle collision dynamics (MPC)
method describing the solvent [22, 23, 30–36]. As has been shown, the MPC method is very well
suited to study the non-equilibrium properties of polymers [12, 37–40], colloids [13, 41, 42], and
other soft-matter object such as vesicles [43] and cells [44, 45] in flow fields. Moreover, simulation
studies of the dynamics of polymers in dilute solution yield excellent agreement with predictions
of the Zimm model [21, 33–35].

By this approach, we demonstrate that polymers in dilute and semidilute solutions exhibit
large deformations and a strong alignment with the flow direction in simple shear flow [17, 18].
More importantly, in the stationary state, the conformational and rheological properties for
various concentrations are universal functions of the Weissenberg number Wic = γ̇τ(c), where
γ̇ is the shear rate and τ(c) the concentration-dependent polymer end-to-end vector relaxation
time at equilibrium. Hence, with increasing concentration, hydrodynamic interactions affect
the conformational and rheological properties only via the increasing relaxation time τ(c).
Experiments on DNA in shear flow [20] and simulations of polymer brushes [46] lead to a
similar conclusion.

By analyzing the non-equilibrium dynamical properties—orientational distribution functions
and tumbling times, which are extracted from gyration tensor correlation functions along the flow
and gradient direction—of semidilute polymer solutions, we find that the dynamical behavior
depends on concentration (in excess of τ(c)), a dependence which we attribute to screening
of hydrodynamic interactions in semidilute solution [18]. Compared to the dilute case, such a
screening causes a broadening of orientational angle distribution functions and an increase of the
tumbling frequency f = τ(c)/τT , where τT is the tumbling time, at the sameWeissenberg number
Wic in dilute and semidilute solutions. More importantly, the same asymptotic dependencies are
obtained as function of the Weissenberg number Wic in dilute and semidilute solutions. This
explains the previously obtained agreement between power spectral densities of free-draining
and non-draining computer simulations [2].

In this article, we briefly review the results presented in Refs. [17, 18] for polymer
conformational, rheological, and dynamical properties under shear flow of dilute and semidilute
solutions, and discuss their connection in a coherent manner. In Sec. 2, the model and simulation
approach are described. The conformational properties are discussed Sec. 3. Results for the
rheological behavior are presented in Sec. 4. Sec. 5 addresses the dynamical aspects of polymers,
including the tumbling dynamics, and Sec. 6 summarizes our findings.

2. Model and Parameters

We consider a solution of Np linear flexible polymer chains embedded in an explicit solvent.
Each polymer is comprised of Nm beads of mass M , which are connected by harmonic springs.
The bond potential is

Ub =
κ

2

Nm−1
∑

i=1

(|Ri+1 −Ri| − l)2 , (1)

where Ri denotes the position of monomer i, l is the bond length, and κ the spring constant.
Inter- and intramolecular excluded-volume interactions are taken into account by the repulsive,
shifted, and truncated Lennard-Jones potential

ULJ = 4ǫ

[

(σ

r

)12
−

(σ

r

)6
+

1

4

]

, (2)
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for r < 6
√
2σ, where r is the distance between two monomers, and ULJ = 0 for r ≥ 6

√
2σ. Here, ǫ

characterizes the energy of the interaction potential and σ the diameter of a monomer. Newton’s
equations of motion for the polymer are integrated by the velocity Verlet algorithm with the
time step hp [47, 48].

The solvent is simulated by the multiparticle collision (MPC) dynamics method [22, 23, 30, 31].
It is composed of Ns point-like particles of massm, which interact with each other by a stochastic
process. The algorithm consists of alternating streaming and collision steps. In the streaming
step, the particles move ballistically and their positions ri are updated according to

ri(t+ h) = ri(t) + hvi(t), (3)

where i = 1, . . . , Ns, h is the time interval between collisions—denoted as collision time—, and
vi is the velocity of particle i. In the collision steps, the particles are sorted into cubic cells of
side length a and their relative velocities, with respect to the center-of-mass velocity

vcm =
1

Nc

Nc
∑

j=1

vj, (4)

of the cell of particle i, are rotated around a randomly oriented axis by a fixed angle α, i.e.,

vi(t+ h) = vi(t) + (R(α) −E)(vi(t)− vcm(t)), (5)

where R(α) is the rotation matrix, E is the unit matrix, and Nc is the total number of fluid
particles in that cell.

The solvent-polymer coupling is achieved by taking the monomers into account in the collision
step, i.e., for collision cells containing monomers, the center-of-mass velocity reads

vcm(t) =

∑Nc

i=1mvi(t) +
∑Nm

c

j=1MVj(t)

mNc +MNm
c

, (6)

where Nm
c is the number of monomers within the considered collision cell. To ensure Galilean

invariance, a random shift is performed at every collision step [49]. The collision step is a
stochastic process, where mass, momentum and energy are conserved, which leads to the build
up of correlations between the particles and gives rise to hydrodynamic interactions.

To impose a shear flow, we apply Lees-Edwards boundary conditions [47, 50] for systems
with short chains with Nm = 50. A local Maxwellian thermostat is used, which we denote
as Maxwell-Boltzmann Scaling (MBS), to maintain the temperature of the fluid at the desired
value [51]. A parallel MPC algorithm is exploited for systems of long chains, which is based on
a three-dimensional domain-decomposition approach, where particles are sorted onto processors
according to their spatial coordinates [17, 52]. Here, shear flow is imposed by the opposite
movement of two confining walls. The walls are parallel to the xy-plane and periodic boundary
conditions are applied in the x- and y-directions. The equations of motion of the solvent particles
are modified by the wall interaction [50]. We impose no-slip boundary conditions by the bounce-
back rule, i.e., the velocity of a fluid particle is reverted—in the reference moving with the
wall—when it hits a wall, and phantom particles in a wall are taken into account. The same
rule is applied for monomers when colliding with a wall [23].

We employ the parameters α = 130◦, h/
√

ma2/(kBT ) = 0.1 (kB is Boltzmann’s constant
and T is temperature), 〈Nc〉 = 10, M = m 〈Nc〉, l = σ = a, kBT/ǫ = 1, h/hp = 50, and the bond
spring constant κ = 5× 103kBT/a

2. The latter choice ensures that the mean of the bond length
changes by less than 0.5% and the variance of the bond length distribution by 3% only, even at
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the largest shear rate. Transport properties of the solvent depend on h, α, 〈Nc〉 [23, 50]. Tuning
these variables allows us to attain solvents with a high Schmidt number and low Reynolds
number, where momentum transport dominates over mass transport. The above parameters
correspond to the solvent viscosity η = 8.7

√

mkBT/a4 and a Schmidt number Sc = 17. The
polymer lengths Nm = 50 and 250 are considered in the concentration ranges c/c∗ = 0.16− 2.08

and 0.17 − 10.38, respectively, and for the shear rates γ̇/
√

kBT/(ma2) = 10−4 − 3 × 10−1 and

γ̇/
√

kBT/(ma2) = 10−6 − 3 × 10−2, respectively. The corresponding overlap concentrations
are c∗ = 0.098l3 and c∗ = 0.029l3, determined by their radii of gyration. In dilute solution,
the equilibrium end-to-end vector relaxation times are τ0/

√

ma2/(kBT ) = 6169 and 78330 [17].
Brownian MPC simulations [23, 53]—where hydrodynamic correlations are switched off—yield
an approximately five times larger relaxation time than hydrodynamic MPC for Nm = 50.

A posteriori, knowing the non-equilibrium behavior of the polymer, it can be demonstrated
that the Reynolds number Re for the polymer is smaller than unity. The radius of gyration
tensor of a polymer chain is defined as

Gββ′ =
1

Nm

Nm
∑

i=1

〈∆ri,β∆ri,β′〉, (7)

where ∆ri,β is the position of monomer i in the center-of-mass reference frame of the polymer
(β, β′ ∈ {x, y, z}) [17]. Using its y−component Gyy as characteristic length scale, the Reynolds
number Re is given by Re = v

√

Gyy/ν, where ν = η/(m〈Nc〉) is the kinematic viscosity of our
MPC solvent. Shear implies a rotation of the fluid and the polymer with the frequency ωR = γ̇/2
at low shear rates. Hence, we set v = ωR

√

Gyy = Wic
√

Gyy/(2τ(c)), which yields

Re =
WicGyy

2τ(c)ν
. (8)

At low Weissenberg numbers Wic . 10, the conformations of a polymer are little perturbed
compared to the equilibrium state, hence, Gyy ≈ R2

g0, where R2
g0 is equilibrium radius of

gyration in dilute solution. For the polymer lengths Nm = 50 and Nm = 250, R2
g0 = 24.5l2

and R2
g0 = 163.5l2, respectively, as documented in Ref. [17]. With the above relaxation times

τ0, this yields Re < 0.1 for Wic < 50. For larger Weissenberg numbers, we take into account the
deformation of the radius of gyration tensor. As shown in Ref. [17], Gyy decreases for Wic > 50
approximately as Gyy ∼ 1/

√
Wic. With Gyy ≈ R2

g0/
√
Wic, we find Re < 0.2 up to Wic = 104.

The applied approximations certainly overestimate the Reynolds number, since the frequency
ωR also depends on the Weissenberg number for Wic > 1 and increases slower than linear with
Wic, as has been shown for star polymers in Refs. [13, 53].

3. Conformations

We characterized the flow strength by the Weissenberg number Wic = γ̇τ(c), i.e., by the
concentration dependent relaxation time. In the weak-shear flow regime, with Wic ≪ 1, the
chains are able to undergo conformational changes before the local strain has changed by a
detectable amount, while in the strong shear-flow regime Wic ≫ 1, the chains are driven by the
flow and they are not able to relax back to the equilibrium conformation. This is illustrated
in Fig. 1, which displays snapshots for various flow rates. At small Wic, the polymers are only
weakly perturbed and are close to their equilibrium conformations, whereas large Wic imply large
deformations and a strong alignment with flow. The question is, to what extent the influence
of concentration on the polymer dynamics can be accounted for by a concentration-dependent
Weissenberg number. As we will see, this concept applies well for all structural and rheological
properties.
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Figure 1. Snapshots of systems with Np = 400 polymers of length Nm = 250 for the
Weissenberg numbers Wic = 13 (left) and Wic = 126 (right). For illustration, some of the
chains are highlighted in red.

The polymer deformation is quantified by the gyration tensor (7). In Fig. 2, the relative
deformation along the flow direction

δGxx =
Gxx −G0

xx

G0
xx

, (9)

whereG0
xx = R2

g/3 is the gyration tensor component and R2
g the radius of gyration at equilibrium

for the particular concentration, is shown for various concentrations and polymer lengths. A
significant polymer stretching appears for Wic > 1. At large shear rates, the stretching saturates
at a value smaller than the value corresponding to a fully stretched chain (Gxx ≈ l2N2

m/12)
and reflects the finite size of a polymer. This is consistent with experiments on DNA [2, 9],
where the maximum extension is on the order of half of the contour length, and theoretical
calculations [16]. It is caused by the large conformational changes of the polymers during the
tumbling cycles, which yields an average extension smaller than the contour length. Nevertheless,
molecules assume totally stretched conformations at large Weissenberg numbers during their
tumbling dynamics. Interestingly, a universal dependence is obtained for δGxx as function of
a concentration-dependent Weissenberg number Wic at a given polymer length. In contrast,
polymers at larger concentrations exhibit a stronger stretching in terms of the Weissenberg
number Wi = γ̇τ0 for a dilute solution, because their actual concentration dependent relaxation
time is larger and hence their Weissenberg number is higher.

Theoretical calculations for single polymers in dilute solution predict the dependence δGxx =
CxWi2 for Wi < 1, where Cx is a universal constant. The renormalization group calculations of
Ref. [15] yield Cx = 0.27, whereas a calculation based on a Gaussian phantom chain model yields
Cx ≈ 0.3 [11, 16, 54–56]. As shown in Fig. 2, the simulations confirm the quadratic dependence
on the shear rate; δGxx is independent of chain length for Wi < 1 and Cx ≈ 0.1. For Wi > 10,
finite-size effects appear and different asymptotic values are assumed for the two chain lengths.
We like to stress that our simulations are in agreement with the molecular dynamics simulation
results of Ref. [56] and the SANS data of Refs. [57, 58].

As is evident from the average shape of an individual chain displayed in Fig. 3, a polymer is
not only stretched by the flow, but also aligned. This alignment is characterized by the angle
χG, which is the angle between the eigenvector of the gyration tensor with the largest eigenvalue
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Figure 2. Deformation ratios δGxx (left) and tan(2χG) (right) as function of Weissenberg
number. Bullets correspond to systems with Nm = 50 for c/c∗ = 0.16 (•), c/c∗ = 1.6 (•),
and c/c∗ = 2.08 (•). Squares denote results for Nm = 250 with the concentrations c/c∗ = 0.17
(�), c/c∗ = 2.77 (�), c/c∗ = 5.19 (�), and c/c∗ = 10.38 (�). The line in δGxx indicates
the dependence δGxx ∼ Wi2, and the lines for tan(2χG) are theoretical results according to
Refs. [11, 16] for Nm = 50 (blue) and Nm = 250 (red).
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Figure 3. Monomer density distribution in the flow-gradient plane for Nm = 250, c/c∗ = 10.38,
and Wic = 569 (left). Illustration of polymer stretching and recoiling and the definition of the
angles θ and ϕ (right). θ is the angle between the end-to-end vector and its projection onto the
flow-gradient plane and ϕ is the angle between this projection and the flow direction.

and the flow direction. It is obtained from the components of the radius of gyration tensor via

tan(2χG) =
2Gxy

Gxx −Gyy
. (10)

The dependence of tan(2χG) on shear rate and concentration is shown in Fig. 2. Again, a
universal curve is obtained for the different concentrations at a given polymer length. Moreover,
tan(2χG) seems to be independent of polymer length for Wic < 100, whereas we find a
length dependence for larger Weissenberg numbers. In this high shear-rate regime, we find
tan(2χG) ∼ (Wic)

−1/3. We like to emphasize that only the shear rate can be scaled in order to
arrive at a universal function. The angle, or tan(2χG), cannot be scaled to absorb flow or polymer
properties in an effective variable. Hence, the universal behavior of the alignment angle for
various concentrations confirms that the Weissenberg number Wic is the correct scaling variable
and that the alignment of polymers at different concentrations depends on the combination
Wic = γ̇τc of shear rate and relaxation time only.
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The analytical approach of Refs. [11, 16] predicts the dependence

tan(2χG) ∼
(

lp
LWi∗

)1/3

(11)

for semiflexible polymers in dilute solution in the limit Wi∗ → ∞. Here, we introduce the
Weissenberg number Wi∗ = γ̇τth for the theoretical result, because the relaxation times from
theory and simulation might not be exactly the same; L is the length and lp the persistence
length of the polymer. The analytical result describes the simulation data well at large shear
rates, when the Weissenberg number of the theoretical model is set to Wi∗ = Wic/2. To compare
the predicted length dependence with that of the simulation, we apply the relation 〈R2

e〉 = 2lpL
to obtain a persistence length, with 〈R2

e〉 the polymer mean square end-to-end distance in dilute
solution at equilibrium, which yields lp/L ≈ 0.025 for Nm = 50 and lp/L ≈ 0.008 for Nm = 250.
With these values, the ratio of tan(2χG) of the polymer of length L = 50a and L = 250a is 1.5.
This compares well with the factor 1.33 following from the simulation results, which suggests
that excluded-volume interactions are of minor importance for intermediate flow rates.

In the limit Wic → 0, theory predicts tan(2χG) ∼ Wi−1
c . The simulation data do not

show this dependence on the considered range of Weissenberg numbers, which might be due to
excluded-volume interactions.

4. Rheology

Applying a shear flow, the viscosity η(γ̇) is obtained from the relation

η(γ̇) =
σxy(γ̇)

γ̇
, (12)

where σxy is the shear stress [24, 59]. In our simulations, σxy is calculated using the virial
formulation of the stress tensor [47, 50, 60]. For sufficiently weak flow, the polymer solution is
in the Newtonian regime, i.e., σxy ∼ γ̇ and the viscosity is independent of shear rate. Thus, the
viscosity obtained in this low shear rate regime is equal to the zero-shear viscosity denoted by
η0. A discussion of concentration dependence of η0 can be found Ref. [17].

At sufficiently large shear rates, the polymers are aligned and deformed, which implies shear
thinning [11, 14, 16, 24]. Figure 4 shows the polymer contribution ηp to the shear viscosity.
Similar to the alignment angle, the viscosity is a universal function of the Weissenberg number
Wic and shows a weak dependence on polymer length. It is independent of shear rate for
Wic ≪ 1, decrease approximately as Wi−0.3

c for 1 < Wic < 102, and Wi−0.45
c for higher shear

rates. This behavior is consistent with other simulation results [9, 46, 61–63]. However, an even
stronger decay of the viscosity is observed in simulations at larger shear rates in Refs. [9, 14].
Experiments of dilute polymer solutions reported exponents ranging from −0.4 to −0.85 [9, 24].
Theoretical calculations for dumbbells and finite extensible polymers predict the dependence
ηp ∼ Wi−2/3 in the limit Wi → ∞ [11, 16, 24, 25, 64]. The differences in the observed behavior
can be explained by a broad crossover regime before the asymptotic behavior is reached, as
suggested by the simulations of Ref. [9]

The ratio of the viscosities of the two lengths is approximately 1.33 for the large Weissenberg-
number regime, as for the alignment angle, which compares well with the theoretically predicted
length dependence in Eq. (11).

The concentration and shear-rate dependencies of the first normal-stress coefficient [24, 25]

Ψ1 =(σxx − σyy)/γ̇
2 (13)

is displayed in Fig. 4. Within the accuracy of the simulations, the ratio Ψ1/Ψ
0
1, where Ψ

0
1 is the

stress coefficient at zero shear rate, is a universal function of Wic for various concentrations and
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Figure 4. Polymer contribution ηp to the shear viscosity (left) and first normal-stress coefficient
Ψ1 (right) as function of shear rate. Bullets correspond to systems with Nm = 50 for c/c∗ = 0.16
(•), c/c∗ = 0.41 (•), c/c∗ = 0.81 (•), c/c∗ = 1.63 (•) and c/c∗ = 2.08 (•). Squares denote
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c/c∗ = 2.77 (�), c/c∗ = 5.19 (�), and c/c∗ = 10.38 (�).

decreases as Ψ1 ∼ γ̇−4/3 for large shear rates. This is consistent with analytical calculations [16,
24, 25], various computer simulations [9, 17, 25, 61–63, 65], and experiments [2, 3] for dilute
solutions. Similar to the viscosity, the decay is related to the finite polymer extensibility.

Surprisingly, the first normal-stress coefficient follows the theoretical prediction [16, 24,
25] already for moderate Weissenberg numbers, whereas the viscosity ηp does not. This
is consistently found in various simulation studies applying different models and simulation
approaches [9, 17, 25, 61–63, 65]. The origin of the disparity is not clear. Theoretical models
based on phantom polymers, i.e., models neglecting excluded-volume interactions, suggest an
intimate coupling of the shear-rate dependence of the viscosity and the normal-stress coefficient
[16]. It seems that excluded-volume interactions, which lead to a tight coupling of the polymer
deformation along the flow and gradient direction, as expressed in the correlation function
presented in Fig. 6 (left), affect the shear stress σxy more severely and lead to the observed
differences. Such a coupling is not captured in a phantom chain model. This speculation could
be checked by simulations of phantom chains.

5. Angular Probability Distribution Functions

The probability distribution function (PDF) P (ϕ) for the orientation angle ϕ (for a definition
of ϕ, see Fig. 3 (right)) provides further insight into the orientational behavior of polymers
[4, 6, 8, 11]. Theoretical calculations yield the expression [11]

P (ϕ) =

√

π4 + 4Wi∗2(π2 − 4)/µ2

2π [π2 + 4]Wi∗2 sin2(ϕ)/µ2 − 4Wi∗ sin(2ϕ)/µ
(14)

in the limit of long and flexible polymers L/lp ≫ 1, where µ follows from the equation

µ3 − µ5/2 − π4lp
270L

Wi∗2 = 0, (15)

which yields µ = Wi∗2/3 3
√

π4lp/(270L) in the asymptotic limit Wi∗ → ∞.
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Figure 5. Probability distribution functions of the angle ϕ. (a) Dilute solution with c/c∗ = 0.16
and Nm = 50 for Wic = 616.9 (�), Wic = 61.7 (�), and Wic = 12.3 (�). (b) Dilute solution for
Nm = 250, c/c∗ = 0.17, and Wic = 2350 (•), Wic = 235 (•), Wic = 23.5 (•). The solid lines
in (a) and (b) are calculated according to Eq. (14) for the Weissenberg number Wi∗ = Wic/2.
(c) Semidilute solutions of polymers of length Nm = 250 for c/c∗ = 2.77 with Wic = 5520 (•),
Wic = 552 (�), and Wic = 55.2 (�), for c/c∗ = 5.19 with Wic = 5423 (◦), Wic = 542.3 (�), and
Wic = 54.23 (⋄), as well as c/c∗ = 10.38 with Wic = 5691 (green line), Wic = 569.1 (red line),
Wic = 56.91 (blue line). (d) Comparison of P (ϕ) for dilute c/c∗ = 0.35 (solid) and semidilute
c/c∗ = 5.19 (dashed) solutions with Wic = 2670 (black solid line), Wic = 267 (red solid line),
Wic = 2700 (black dashed line), and Wic = 270 (red dashed line).

For a dilute solution, P (ϕ) is shown in Figs. 5(a) and (b) for various Weissenberg numbers,
together with theoretical lines obtained from Eq. (14) [11] (note that Wi∗ = Wic/2). Evidently,
the simulation results agree well with the analytical approach, as is expected for a dilute
solution in which the intermolecular interactions are irrelevant. P (ϕ) exhibits a significant
shear-rate dependence. Without any shear, no angle is preferred. A finite shear rate leads to
the appearance of a peak, which shifts to smaller values with increasing γ̇ and, at the same
time, the width ∆ϕ of P (ϕ) decreases. Figure 5(c) displays distribution functions for various
concentrations and Weissenberg numbers Wic of semidilute solutions. For every Weissenberg
number, distributions are compared for three concentrations c > c∗. Evidently, the distributions
are almost independent of concentration for the considered Weissenberg numbers. However,
we observe a clear concentration dependence, when we compare distributions from dilute and
semidilute solutions. Figure 5(d), displays distributions for the concentrations c/c∗ = 0.35 and
5.19 and the Weissenberg numbers Wic ≈ 267, 2670 and 270, 2700, respectively. The increase
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in concentration from a dilute solution beyond the overlap concentration leads to a broadening
of the distribution function. Interestingly, the value ϕm at the peak of the distribution function
is independent of concentration at a given Wic [18]. Theoretical calculations show that ϕm is
close to the alignment angle χG [11].

6. Tumbling Dynamics

As has been shown [2, 18], the tumbling dynamics of a polymer can be characterized by and a
characteristic time be obtained from the cross-correlation function

Cxy(t) =

〈

G′

xx(t0)G
′

yy(t0 + t)
〉

√

〈G′2
xx(t0)〉

〈

G′2
yy(t0)

〉

, (16)

for deviations from average stationary values G′

ββ(t) = Gββ(t)− 〈Gββ〉 of the radius of gyration
tensor components along the flow and gradient direction. Examples of cross-correlation functions
are displayed in Fig. 6 for several shear rates and concentrations. Every curves exhibits a deep
minimum at a time t+ > 0 and a pronounced maximum at a time t− < 0, and decays to zero
at large time-lags. Hence, the tumbling dynamics is not periodic, but cyclic. The latter has
been questioned for tethered polymers [26]. The minimum at t+ indicates that positive values
of G′

ββ are linked with negative ones of the orthogonal directions, i.e., polymer shrinkage in the
y-direction is linked with its extension in x-direction, and similarly, an extension in y-direction
is linked to shrinkage in x-direction. The maximum of Cxy(t) reveals that positive deviations
G′

xx are correlated with positive values G′

yy at earlier times, or a collapsed state along the x-
direction (G′

xx < 0) is correlated with a previous collapsed state in y-direction [2]. Hence, the
time difference t+ − t− is related to conformational changes that a polymer undergoes during
tumbling, which is characterized by the time τt = 2(t+− t−) [2]. The factor two accounts for the
fact that two non-equivalent conformations lead to a maximum and a minimum, respectively,
and will be (more or less) assumed during a cycle.

As shown in Fig. 6, the positions of the maxima and minima are rather close for equal
Weissenberg numbers, when the lag-time is scaled by the relaxation time τ(c). Hence, the
tumbling times exhibit a strong concentration dependence due to the concentration dependence
of the relaxation times [17].

Normalized tumbling frequencies f = τ(c)/τT , with tumbling times extracted from the
correlation functions and scaled by the corresponding relaxation times τ(c), are presented in
Fig. 6 (right) for a wide range of shear rates and concentrations. For comparison, the theoretical
prediction for a polymer in dilute solution is presented as well [11, 16]. The results agree very
well. The short chain results clearly show the crossover from unity, assumed in the limit γ̇ → 0, to

the asymptotic dependence ∼ Wi
2/3
c at high shear rates. We obtain a chain-length dependence in

close agreement with the theoretical prediction. More importantly, we find a slight and gradual
shift of f to larger values with increasing concentration at a given Wic, until a saturation is
reached in the semidilute regime c/c∗ > 1. This is seen for the two largest concentrations for
Nm = 50 and the three largest ones for Nm = 250. As a consequence, the polymers exhibit a
universal behavior, both in dilute (c ≪ c∗) as well as in semidilute solution as function of Wic,
with the same power-law dependence on Wic (for Wic > 1).

Alternatively, relaxation times under shear flow can be obtained by the end-to-end vector
auto-correlation function 〈Rβ(t)Rβ(0)〉, where Rβ = RNm,β −R1,β [10, 11, 28, 66, 67]. Similar to
the results presented in Refs. [28, 66], we find a damped oscillatory behavior for Wic & 1 [67].
By fitting the obtained correlation function with the function

Fβ(t) = aβe
−t/τ

(1)
β [cos(ωβt) + bβ sin(ωβt)] + [1− aβ]e

t/τ
(2)
β , (17)
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Figure 6. Left: Cross-correlation functions [Eq. (16)] for a polymer of length Nm = 250 and the
concentrations c/c∗ = 2.77 (green), c/c∗ = 10.38, (red), and c/c∗ = 0.35 (blue), corresponding
to the Weissenberg numbers Wic = 5520, Wic = 5690, and Wic = 2670, respectively. Right:
Normalized tumbling frequencies f = τ(c)/τT . Bullets correspond to the polymer length
Nm = 50 for c/c∗ = 0.16 (•), c/c∗ = 0.41 (•), c/c∗ = 0.81 (•), c/c∗ = 1.63 (•), and
c/c∗ = 2.08 (•). Squares indicate results for Nm = 250 and c/c∗ = 0.35 (�), c/c∗ = 0.69 (�),
c/c∗ = 1.38 (�), c/c∗ = 2.77 (�), c/c∗ = 5.19 (�), c/c∗ = 10.38 (�). The lines present the
theoretical predictions [11, 16].

with the amplitudes aβ, bβ, relaxation times τ
(i)
β , and frequencies ωβ, we obtain non-equilibrium

relaxation times. Strictly speaking, the functional form of the correlation function is unknown.
As expressed by the correlation function Cxy (16), tumbling is non-periodic and, hence, Eq. (17)
applies over a certain time window only. We expect the equation to capture correlations in the
polymer conformations over a time scale comparable to a tumbling cycle.

By fitting, we obtain the following general relations for the various shear rates and densities:
ax ≈ az ≈ 1, ay ≈ 1/2, and ωz = 0, ωx ≈ ωy. Since ay ≈ 1/2, the decay in the gradient

direction is governed by two exponentials, where τ
(2)
y is an order of magnitude smaller than

τ
(1)
y , but shows a similar shear-rate dependence. Since ωz = 0, the correlation function along
the vorticity direction decays exponentially. Moreover, bx and by, where by is negative, are
approximately independent of shear rate, but depend on polymer length. Most importantly, the

relaxation times τ
(1)
x , τ

(1)
y , and τ

(1)
z are equal in dilute solution and agree with the tumbling times

displayed in Fig. 6 (right). Hence, the polymer tumbling times are equal to the non-equilibrium
end-to-end relaxation times. The parameter ωβ is independent of shear rate for the considered
systems. This is in contrast to results of Ref. [66], where very short polymers (Nm = 10) have
been considered only.

We attribute the concentration independence of the tumbling time and the probability
distribution functions for c/c∗ > 1 to screening of hydrodynamic interactions. To confirm
our hypothesis, we performed Brownian MPC simulations for dilute and semidilute solutions
[18]. Using similar Weissenberg numbers, we find, within the accuracy of the simulations,
identical distribution functions P (ϕ) for both cases. Moreover, the distributions agree with
those of semidilute systems of the same concentration and Weissenberg number in the presence
of hydrodynamic interactions. Hence, the differences between distribution functions at low and
high concentrations, as displayed in Fig. 5(d), are due to hydrodynamic interactions. In dilute
solutions, hydrodynamic interactions are present, whereas in systems with c > c∗, hydrodynamic
interactions are screened. Naturally, at larger concentrations friction is higher. This aspect is
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captured in the relaxation time τ(c), which increases considerably with concentration [17].
The fact that the tumbling frequencies and the widths of the distribution functions are larger

in semidilute solutions, i.e., when hydrodynamic interactions are screened, might be explained
as follows. (i) The observed broadening of the distribution function P (ϕ) in semidilute solution
implies that hydrodynamic interactions favor polymer alignment and lead to a faster dynamics
during the collapse and stretching part of the tumbling motion. (ii) At the same Weissenberg
number, the shear rate of a non-draining polymer is larger than that of a free-draining one, due
to differences in equilibrium relaxation times, i.e., for a coiled conformation. As a consequence,
the effective Weissenberg number WiR = γ̇τR, where τR is the rotational relaxation time in
the stretched rodlike conformation, of the non-draining polymer is larger than that of the free-
draining one. This could explain the larger probability of angles in the vicinity of ϕm for
non-draining polymers as well as their faster collapse dynamics. Overall, the tumbling time is
larger in a non-draining system.

The broadening of the distribution functions with increasing concentration or screening of
hydrodynamic interactions is not captured by standard theories employing the preaveraging
approximation [11, 16, 21]. Here, hydrodynamic interactions are included in the relaxation
times and hence the Weissenberg number only; additional, “higher order effects” are neglected.
Therefore, one might expect that the theoretical description would reproduce results of
simulations without hydrodynamic interactions. In contrast, the model calculations rather
reproduce the simulation data for systems with hydrodynamic interactions.

7. Conclusions

We have calculated conformational, dynamical, and rheological properties of polymers in dilute
and semidilute solution under shear flow by mesoscale hydrodynamic simulations. We find that
their stationary-state conformational and rheological properties are independent of concentration
when expressed in terms of the Weissenberg number Wic = γ̇τ(c). This is remarkable, since
the longest polymer relaxation time τ(c) increases significantly with concentration and indicates
that an effective local friction determines the stationary-state properties.

By analyzing dynamical properties—orientational distribution functions and tumbling
times—of semidilute polymer solutions, we find that they depend on concentration (in excess of
τ(c)), a dependence which we attribute to screening of hydrodynamic interactions in semidilute
solution. Compared to the dilute case, such a screening causes a broadening of orientational
angle distribution functions and an increasing ratio f = τ(c)/τT at the same Weissenberg number
Wic in semidilute solution. The effect itself is small (f(c = 0)/f(c > c∗) ≈ 1.3 at Wic = 103).
More importantly, the same asymptotic dependencies are obtained as function of the Weissenberg
number Wic in dilute and semidilute solutions. This explains the previously obtained agreement
of power spectral densities obtained from free-draining and non-draining computer simulations
[2].

Moreover, we find that the tumbling times almost quantitatively agree with the non-
equilibrium end-to-end vector relaxation times, which, hence, exhibit the asymptotic shear rate
dependence ∼ γ̇−2/3 for γ̇ → ∞.

Our simulations reveal a complex interplay between shear rate, deformation, and
intramolecular excluded-volume interactions, which is difficult to grasp by analytical theory.
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Jülich Supercomputer Centre (JSC) for allocation of a special CPU-time grant.

Microparticles in Stokes Flows 2011 IOP Publishing
Journal of Physics: Conference Series 392 (2012) 012003 doi:10.1088/1742-6596/392/1/012003

12



References
[1] Smith D E, Babcock H P and Chu S 1999 Science 283 1724
[2] Schroeder C M, Teixeira R E, Shaqfeh E S G and Chu S 2005 Phys. Rev. Lett. 95 018301
[3] Teixeira R E, Babcock H P, Shaqfeh E S G and Chu S 2005 Macromolecules 38 581
[4] Gerashchenko S and Steinberg V 2006 Phys. Rev. Lett. 96 038304
[5] Doyle P S, Ladoux B and Viovy J L 2000 Phys. Rev. Lett. 84 4769
[6] Celani A, Puliafito A and Turitsyn K 2005 Europhys. Lett. 70 464
[7] Chertkov M, Kolokolov I, Lebedev A and Turitsyn K 2005 J. Fluid. Mech. 531 251
[8] Puliafito A and Turitsyn K 2005 Physica D 211 9
[9] Schroeder C M, Teixeira R E, Shaqfeh E S G and Chu S 2005 Macromolecules 38 1967

[10] Delgado-Buscalioni R 2006 Phys. Rev. Lett. 96 088303
[11] Winkler R G 2006 Phys. Rev. Lett. 97 128301
[12] Winkler R G, Mussawisade K, Ripoll M and Gompper G 2004 J. Phys.: Condens. Matter 16 S3941–S3954
[13] Ripoll M, Winkler R G and Gompper G 2006 Phys. Rev. Lett. 96 188302
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[25] Öttinger H C 1996 Stochastoic Processes in Polymeric Fluids (Berlin: Springer)
[26] Zhang Y, Donev A, Weisgraber T, Alder B J, Graham M G and de Pablo J J 2009 J. Chem. Phys. 130

234902
[27] Kobayashi H and Yamamoto R 2010 Phys. Rev. E 81 041807
[28] Usabiaga F B and Delgado-Buscalioni R 2011 Macromol. Theory Simul. 20 466
[29] Das D and Sabhapandit S 2008 Phys. Rev. Lett. 101 188301
[30] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605
[31] Malevanets A and Kapral R 2000 J. Chem. Phys. 112 7260–7269
[32] Malevanets A and Yeomans J M 2000 Europhys. Lett. 52 231–237
[33] Ripoll M, Mussawisade K, Winkler R G and Gompper G 2004 Europhys. Lett. 68 106
[34] Ripoll M, Mussawisade K, Winkler R G and Gompper G 2005 Phys. Rev. E 72 016701
[35] Mussawisade K, Ripoll M, Winkler R G and Gompper G 2005 J. Chem. Phys. 123 144905
[36] Padding J T and Louis A A 2006 Phys. Rev. E 73 031402
[37] Ryder J F and Yeomans J M 2006 J. Chem. Phys. 125 194906
[38] Cannavacciuolo L, Winkler R G and Gompper G 2008 EPL 83 34007
[39] Frank S and Winkler R G 2008 EPL 83 38004
[40] Chelakkot R, Winkler R G and Gompper G 2010 EPL 91 14001
[41] Padding J T and Louis A A 2004 Phys. Rev. Lett. 93 220601
[42] Wysocki A, Royall C P, Winkler R G, Gompper G, Tanaka H, van Blaaderen A and Löwen H 2009 Soft
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