000133044 001__ 133044
000133044 005__ 20210129211415.0
000133044 0247_ $$2doi$$a10.2967/jnumed.112.109603
000133044 0247_ $$2pmid$$apmid:23232275
000133044 0247_ $$2ISSN$$a0097-9058
000133044 0247_ $$2ISSN$$a0161-5505
000133044 0247_ $$2ISSN$$a1535-5667
000133044 0247_ $$2ISSN$$a0022-3123
000133044 0247_ $$2WOS$$aWOS:000314691200023
000133044 0247_ $$2altmetric$$aaltmetric:1123429
000133044 037__ $$aFZJ-2013-01608
000133044 041__ $$aeng
000133044 082__ $$a610
000133044 1001_ $$0P:(DE-HGF)0$$aRapp, M.$$b0$$eCorresponding author
000133044 245__ $$aDiagnostic Performance of 18F-FET PET in Newly Diagnosed Cerebral Lesions Suggestive of Glioma
000133044 260__ $$aReston, Va.$$bSNM84042$$c2013
000133044 264_1 $$2Crossref$$3online$$bSociety of Nuclear Medicine$$c2012-12-11
000133044 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2013-02-01
000133044 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2013-02-01
000133044 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1376381476_2903
000133044 3367_ $$2DataCite$$aOutput Types/Journal article
000133044 3367_ $$00$$2EndNote$$aJournal Article
000133044 3367_ $$2BibTeX$$aARTICLE
000133044 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133044 3367_ $$2DRIVER$$aarticle
000133044 500__ $$3POF3_Assignment on 2016-02-29
000133044 520__ $$aThe aim of this study was to assess the clinical value of O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) PET in the initial diagnosis of cerebral lesions suggestive of glioma.In a retrospective study, we analyzed the clinical, radiologic, and neuropathologic data of 174 patients (77 women and 97 men; mean age, 45 ± 15 y) who had been referred for neurosurgical assessment of unclear brain lesions and had undergone (18)F-FET PET. Initial histology (n = 168, confirmed after surgery or biopsy) and the clinical course and follow-up MR imaging in 2 patients revealed 66 high-grade gliomas (HGG), 77 low-grade gliomas (LGG), 2 lymphomas, and 25 nonneoplastic lesions (NNL). In a further 4 patients, initial histology was unspecific, but during the course of the disease all patients developed an HGG. The diagnostic value of maximum and mean tumor-to-brain ratios (TBR(max/)TBR(mean)) of (18)F-FET uptake was assessed using receiver-operating-characteristic (ROC) curve analyses to differentiate between neoplastic lesions and NNL, between HGG and LGG, and between high-grade tumor (HGG or lymphoma) and LGG or NNL.Neoplastic lesions showed significantly higher (18)F-FET uptake than NNL (TBR(max), 3.0 ± 1.3 vs. 1.8 ± 0.5; P < 0.001). ROC analysis yielded an optimal cutoff of 2.5 for TBR(max) to differentiate between neoplastic lesions and NNLs (sensitivity, 57%; specificity, 92%; accuracy, 62%; area under the curve [AUC], 0.76; 95% confidence interval [CI], 0.68-0.84). The positive predictive value (PPV) was 98%, and the negative predictive value (NPV) was 27%. ROC analysis for differentiation between HGG and LGG (TBR(max), 3.6 ± 1.4 vs. 2.4 ± 1.0; P < 0.001) yielded an optimal cutoff of 2.5 for TBR(max) (sensitivity, 80%; specificity, 65%; accuracy, 72%; AUC, 0.77; PPV, 66%; NPV, 79%; 95% CI, 0.68-0.84). Best differentiation between high-grade tumors (HGG or lymphoma) and both NNL and LGG was achieved with a TBR(max) cutoff of 2.5 (sensitivity, 79%; specificity, 72%; accuracy, 75%; AUC, 0.79; PPV, 65%; NPV, 84%; 95% CI, 0.71-0.86). The results for TBR(mean) were similar with a cutoff of 1.9.(18)F-FET uptake ratios provide valuable additional information for the differentiation of cerebral lesions and the grading of gliomas. TBR(max) of (18)F-FET uptake beyond the threshold of 2.5 has a high PPV for detection of a neoplastic lesion and supports the necessity of an invasive procedure, for example, biopsy or surgical resection. Low (18)F-FET uptake (TBR(max) < 2.5) excludes a high-grade tumor with high probability.
000133044 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0
000133044 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de, PubMed,
000133044 7001_ $$0P:(DE-Juel1)132315$$aHeinzel, Alexander$$b1$$ufzj
000133044 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b2$$ufzj
000133044 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b3$$ufzj
000133044 7001_ $$0P:(DE-HGF)0$$aFelsberg, Jörg$$b4
000133044 7001_ $$0P:(DE-HGF)0$$aEwelt, Christian$$b5
000133044 7001_ $$0P:(DE-HGF)0$$aSabel, Michael$$b6
000133044 7001_ $$0P:(DE-HGF)0$$aSteiger, Hans J$$b7
000133044 7001_ $$0P:(DE-HGF)0$$aReifenberger, Guido$$b8
000133044 7001_ $$0P:(DE-HGF)0$$aBeez, Thomas$$b9
000133044 7001_ $$0P:(DE-Juel1)131816$$aCoenen, Heinrich Hubert$$b10$$ufzj
000133044 7001_ $$0P:(DE-HGF)0$$aFloeth, Frank W$$b11
000133044 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b12$$ufzj
000133044 77318 $$2Crossref$$3journal-article$$a10.2967/jnumed.112.109603$$b : Society of Nuclear Medicine, 2012-12-11$$n2$$p229-235$$tJournal of Nuclear Medicine$$v54$$x0161-5505$$y2012
000133044 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.112.109603$$gVol. 54, no. 2, p. 229 - 235$$n2$$p229-235$$tJournal of nuclear medicine$$v54$$x0161-5505$$y2012
000133044 8564_ $$uhttps://juser.fz-juelich.de/record/133044/files/FZJ-2013-01608.pdf$$yRestricted
000133044 909__ $$ooai:juser.fz-juelich.de:133044$$pVDB
000133044 909CO $$ooai:juser.fz-juelich.de:133044$$pVDB
000133044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132315$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000133044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000133044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131816$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000133044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000133044 9132_ $$0G:(DE-HGF)POF3-579H$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vAddenda$$x0
000133044 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000133044 9141_ $$y2013
000133044 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000133044 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000133044 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000133044 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000133044 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000133044 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000133044 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133044 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133044 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000133044 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000133044 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000133044 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000133044 920__ $$lyes
000133044 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000133044 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000133044 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000133044 980__ $$ajournal
000133044 980__ $$aVDB
000133044 980__ $$aUNRESTRICTED
000133044 980__ $$aI:(DE-Juel1)INM-3-20090406
000133044 980__ $$aI:(DE-Juel1)INM-4-20090406
000133044 980__ $$aI:(DE-Juel1)INM-5-20090406
000133044 981__ $$aI:(DE-Juel1)INM-4-20090406
000133044 981__ $$aI:(DE-Juel1)INM-5-20090406